![]() Apparatus and method for compensating received signal strength indicator according to temperature
专利摘要:
An apparatus for compensating a received signal strength (RSSI) according to temperature. An average power detector detects average power of a received signal. An RSSI compensation value detector detects an internal temperature of the RSSI compensation apparatus and detects an RSSI compensation value according to the detected temperature. An RSSI detector detects an RSSI by adding the average power to the RSSI compensation value. 公开号:US20010004586A1 申请号:US09/737,372 申请日:2000-12-15 公开日:2001-06-21 发明作者:Chin-Sob Choe;Kyung-Min Lee 申请人:Samsung Electronics Co Ltd; IPC主号:H04B17-309
专利说明:
[0001] This application makes reference to and claims all benefits accruing under 35 U.S.C. Section 119 from an application entitled “APPARATUS AND METHOD FOR COMPENSATING RECEIVED SIGNAL STRENGTH INDICATOR ACCORDING TO TEMPERATURE” filed in the Korean Industrial Property Office on Dec. 20, 1999 and there duly assigned Serial No. 99-59246. [0001] BACKGROUND OF THE INVENTION [0002] 1. Field of the Invention [0002] [0003] The present invention relates generally to an intermediate circular orbit satellite communication terminal, and in particular, to an apparatus and method for adjusting setting of the received signal strength indicator according to temperature changes in the terminal. [0003] [0004] 2. Description of the Related Art [0004] [0005] Generally, a satellite communication terminal is serviced through a low earth orbit satellite. In most cases, however, such a communication terminal is typically used in a poor whether condition when compared with other normal radio terminals. Therefore, it is important for the satellite communication terminal to accurately measure the power level RSSI (received signal strength indication) of the received signals. This is because, for mode switching of the satellite communication terminal, the RSSI is transmitted to a satellite repeater through the low earth orbit satellite such so the satellite repeater controls the transmission power of a forward link. The RSSI is also used to estimate a timing offset by profiling the transmission power during the initial sync acquisition operation. Therefore, the RSSI detected by the satellite communication terminal affects the overall communication system. [0005] [0006] Now, with reference to FIG. 1, a description will be made of a procedure for detecting the RSSI in the satellite communication terminal. [0006] [0007] FIG. 1 illustrates the structure of an RSSI detector according to the prior art. Referring to FIG. 1, when a signal is received at the satellite communication terminal, the received signal is applied to an analog-to-digital (A/D) converter [0007] 111 after going through a normal demodulation process which includes a successive processing of low-noise amplification (LNA), filteration, and amplification. [0008] The A/D converter [0008] 111 converts an input analog signal to a digital signal. A filter 113 filters the digital signal output from the A/D converter 111, and an average power detector 115 detects an average power of the filtered signal output from the filter 113. A dBm converter 117 then converts the average power detected by the average power detector 115 to a dBm value, and provides the converted dBm value to an RSSI mapper 119. Upon receiving the dBm value output from the dBm converter 117, the RSSI mapper 119 detects an RSSI matching the outputted dBm value and provides the detected RSSI to a subsequent demodulation stage. [0009] In the above RSSI detection process, the received signal will be affected by the internal temperature and/or ambient temperature of the satellite communication terminal as the received signal travels through a low noise amplifier (LNA), a filter, and an amplifier. This is because the LNA, the filter and the amplifier components are very susceptible to the temperature. To solve this problem, it is necessary to use components that are not affected by the temperature. However, the implementation of such components will increase the manufacturing cost. Moreover, even when such components are used, it will be difficult to detect an accurate RSSI value. [0009] SUMMARY OF THE INVENTION [0010] It is, therefore, an object of the present invention to provide an apparatus and method for adjusting setting of the received signal strength indicator (RSSI) according to a temperature variation. [0010] [0011] To achieve the above and other objects, there is provided an apparatus for compensating a received signal strength (RSSI) according to temperature variation. The average power detector detects the average power of a received signal. An RSSI compensation value detector detects the internal temperature of the RSSI compensation apparatus and obtains an appropriate RSSI compensation value according to the detected temperature. To this end, the RSSI detector detects an RSSI by adding the average power value to the RSSI compensation value. [0011] BRIEF DESCRIPTION OF THE DRAWINGS [0012] The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which: [0012] [0013] FIG. 1 is a block diagram illustrating a structure of an RSSI detector according to the prior art; [0013] [0014] FIG. 2 is a block diagram illustrating the apparatus for compensating the RSSI value based on a temperature variation according to an embodiment of the present invention; [0014] [0015] FIG. 3 is a block diagram illustrating a device for detecting an RSSI compensation value according to temperature, as shown in FIG. 2; and [0015] [0016] FIG. 4 is a temperature table according to the embodiment of the present invention. [0016] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT [0017] A preferred embodiment of the present invention will be described herein below with reference to the accompanying drawings. For the purpose of clarity, well-known functions or constructions are not described in detail as they would obscure the invention in unnecessary detail. [0017] [0018] FIG. 2 illustrates an apparatus for compensating an RSSI depending on a variation of temperature according to an embodiment of the present invention. Referring to FIG. 2, the RSSI compensation apparatus includes an average power detector [0018] 200 for detecting the average power of a received signal; an RSSI compensation value detector 250 for detecting the internal temperature of the RSSI compensation apparatus and obtaining an RSSI compensation value according to the detected temperature; and, an RSSI detector 270 for generating the adjusted RSSI by adding the average power value to the RSSI compensation value. [0019] The average power detector [0019] 200 includes an A/D converter 211, a filter 213, an average power detecting unit 215, and a dBm converter 217. The RSSI compensation value detector 250 includes a temperature detector 221, an A/D converter 223, a power error detector 225, and a dBm converter 227. The RSSI detector 270 includes an adder 219 and an RSSI mapper 229. [0020] Operation begins when an analog signal input to the RSSI compensation apparatus is applied to the A/D converter [0020] 211, which converts where the analog input signal to a corresponding a digital signal. The converted digital signal is filtered by the filter 213 and then applied to the average power detecting unit 215. The average power detecting unit 215 detects the average power of the digital signal received therein and forwards the detected average power to the dBm converter 217. The dBm converter 217 converts the detected average power to a dBm value and forwards the converted dBm value to the adder 219. [0021] Meanwhile, the temperature detector [0021] 221 detects the internal temperature of the RSSI compensation apparatus and generates a voltage value corresponding to the detected temperature. The AID converter 223 converts the temperature-associated voltage value provided from the temperature detector 221 to a digital signal. The power error detector 225 searches a predetermined compensation table for the converted digital signal outputted from the A/D converter 223 to detect the corresponding power error. The procedure for detecting the power error by searching the compensation table will be described later with reference to FIG. 3. [0022] The power error detected by the power error detector [0022] 225 is forwarded to the dBm converter 227. The dBm converter 227 then performs dBm conversion on the power error outputted from the power error detector 225 and forwards the converted power error to the adder 219. The adder 219 adds the dBm value outputted from the dBm converter 217 to the dBm value outputted from the dBm converter 227, and forwards the resulting output to the RSSI mapper 229. The RSSI mapper 229 then maps the added dBm value output from the adder 219 to a preset RSSI. [0023] FIG. 3 illustrates a detailed structure of the RSSI compensation value detector [0023] 250 of FIG. 2, and FIG. 4 illustrates a temperature, by way of example, table according to embodiment of the present invention. [0024] Referring to FIGS. 3 and 4, the temperature detector [0024] 221 is comprised of a thermistor Rth whose one end is connected to a power supply voltage Vcc, and a normal resistor R1 connected between the other end of the thermistor Rth and the ground. A voltage drop on a junction between the thermistor Rth and the register R1 is applied to the A/D converter 223. The A/D converter 223 converts the voltage output from the temperature detector 221 to a digital signal, and forwards the converted digital signal to a temperature table mapper 311. The temperature table, as shown in FIG. 4, is included in the power error detector 225 of FIG. 2. [0025] With reference to FIG. 4, by way of example. In FIG. 4, if a digital signal output from the A/D converter [0025] 223 is “1111000000”, it means that the detected temperature 25° C. FIG. 4 depicts an exemplary temperature table and shows the temperature set in the receiver of the satellite communication terminal that ranges from −10° C. to +55° C. Hence, and the voltage values output from the temperature detector 221 are mapped to the corresponding digital values. [0026] Upon receiving the digital signal output from the A/D converter [0026] 223, the temperature table mapper 311 detects a temperature corresponding to the received digital data, and searches a predetermined compensation table for detecting a power error matching to the detected temperature. [0027] In the compensation table, the power error values are stored in digital values that associate different temperatures ranges. The detected temperature-associated power error value is forward to the dBm converter [0027] 227 and used to adjust the level of compensate the RSSI according to the temperature, variation in the terminal. [0028] For example, if the internal temperature of the satellite communication terminal is below the lower limit temperature, i.e., below −10° C., an amplification factor of the receiver will increase, so that the average power of the received signal becomes higher than its original power. Hence, by adjusting the power error according to the temperature variation according to the present invention, it is possible to output a more accurate RSSI value. [0028] [0029] As described above, the present invention adjusts the level of the RSSI by detecting the power error responsive to a variation in the internal temperature of the satellite communication terminal, thereby making it possible to accurately detect the RSSI. As consequence, it is possible to accurately demodulate the received data compared to the prior art. Furthermore, the receiver is equipped with in the present invention, thus reducing the manufacturing cost. [0029] [0030] While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and the scope of the invention as defined by the appended claims. [0030]
权利要求:
Claims (11) [1" id="US-20010004586-A1-CLM-00001] 1. An apparatus for adjusting the level of a received signal strength (RSSI) according to temperature variation in a communication terminal, comprising: an average power detector for detecting an average power of a received signal; an RSSI compensation value detector for detecting an internal temperature of the RSSI compensation apparatus and detecting an RSSI compensation value according to the detected temperature; and an RSSI detector for detecting an RSSI by adding the average power to the RSSI compensation value. [2" id="US-20010004586-A1-CLM-00002] 2. The apparatus as claimed in claim 1 , wherein the average power detector comprises: an analog-to-digital (A/D) converter for converting an analog input signal to a digital signal; a filter for filtering a signal output from the A/D converter; an average power detecting unit for detecting average power of the filtered signal; and a dBm converter for converting the detected average power to a dBm value. [3" id="US-20010004586-A1-CLM-00003] 3. The apparatus as claimed in claim 1 , wherein the RSSI compensation value detector comprises: a temperature detector for detecting a voltage corresponding to the internal temperature of the RSSI compensation apparatus; an A/D converter for converting the detected voltage to a digital signal; a power error detector for detecting a power error corresponding to the converted digital signal; and a dBm converter for converting the detected power error to a dBm value. [4" id="US-20010004586-A1-CLM-00004] 4. The apparatus as claimed in claim 3 , wherein the temperature detector comprises a thermistor. [5" id="US-20010004586-A1-CLM-00005] 5. The apparatus as claimed in claim 3 , wherein the power error detector comprises a compensation table in which RSSI compensation values are mapped according to the temperature. [6" id="US-20010004586-A1-CLM-00006] 6. The apparatus as claimed in claim 1 , wherein the RSSI detector comprises: an adder for adding the average power to the RSSI compensation value; and an RSSI mapper for mapping the RSSI corresponding to the added value. [7" id="US-20010004586-A1-CLM-00007] 7. A method for compensating an RSSI according to temperature, comprising the steps of: detecting average power of a received signal; detecting an internal temperature of an RSSI compensation apparatus and detecting an RSSI compensation value according to the detected temperature; and detecting an RSSI by adding the average power to the RSSI compensation value. [8" id="US-20010004586-A1-CLM-00008] 8. The method as claimed in claim 7 , wherein the average power detecting step comprises the steps of: converting an analog input signal to a digital signal; filtering the converted digital signal to detect average power; and converting the detected average power to a dBm value. [9" id="US-20010004586-A1-CLM-00009] 9. The method as claimed in claim 7 , wherein the RSSI compensation value detecting step comprises the steps of: detecting a voltage corresponding to the internal temperature of the RSSI compensation apparatus; converting the detected voltage to a digital signal; detecting a power error corresponding to the converted digital signal; and converting the detected power error to a dBm value. [10" id="US-20010004586-A1-CLM-00010] 10. The method as claimed in claim 9 , wherein the power error is detected from a compensation table in which RSSI compensation values are mapped according to the temperature. [11" id="US-20010004586-A1-CLM-00011] 11. The method as claimed in claim 7 , wherein the RSSI detecting step comprises the steps of: adding the average power to the RSSI compensation value; and mapping the RSSI corresponding to the added value.
类似技术:
公开号 | 公开日 | 专利标题 US6546234B2|2003-04-08|Apparatus and method for compensating received signal strength indicator according to temperature EP1110310B1|2002-11-06|System for improving the dynamic range of transmitter power measurement in a cellular telephone US7397868B2|2008-07-08|Direct conversion RF transceiver for wireless communications US6999012B2|2006-02-14|Temperature compensation device for automatic gain control loop KR100292907B1|2001-06-15|Variable-gain controller and receiver including the same, and variable-gain control method CN101019314A|2007-08-15|RF power sensing circuit WO1997014212A1|1997-04-17|An intermediate frequency amplifier and a method of producing a received signal strength indicator signal JP3350931B2|2002-11-25|Automatic gain control method and apparatus for receiving circuit US7684772B2|2010-03-23|Tuner for compensating for take-over point depending on temperature JP2003234628A|2003-08-22|Radio base station EP0687080B1|2004-03-17|Receive signal level detection system JP2002094346A|2002-03-29|Receiver provided with variable gain amplifier, and its control method US20060030272A1|2006-02-09|Transceiver and receiver US20030153287A1|2003-08-14|Method and apparatus for sensing operating temperature in a power amplifier US6628731B2|2003-09-30|Method and apparatus for controlling signal level in digital receiver JP2001068943A|2001-03-16|Temperature compensation circuit, temperature compensated logarithmic conversion circuit and optical receiver US6931242B2|2005-08-16|Down converter using C/N ratio correcting circuit of base station for mobile communication network JP3806476B2|2006-08-09|Receiver circuit for digital broadcasting JP3005475B2|2000-01-31|Temperature correction device and temperature correction method for portable wireless device JP3005472B2|2000-01-31|Receiving machine JPH06338796A|1994-12-06|Receiver JP3937397B2|2007-06-27|Communication equipment having offset compensation function for transmission power detection circuit KR100299027B1|2001-09-22|Apparatus and method for detecting output power in cordless phone KR100703363B1|2007-04-03|Method for contorling bias of active devices in accordance with receiving power in mobile wireless phone JP2000312182A|2000-11-07|Optical receiver
同族专利:
公开号 | 公开日 KR20010064868A|2001-07-11| US6546234B2|2003-04-08| KR100342536B1|2002-06-28|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20030236067A1|2002-06-20|2003-12-25|Abraham Hasarchi|Repeater with digital channelizer| US20040014438A1|2002-06-20|2004-01-22|Abraham Hasarchi|System and method for excluding narrow band noise from a communication channel| US20060019604A1|2002-06-20|2006-01-26|Dekolink Wireless Ltd.|System and method for excluding narrow band noise from a communication channel| EP2096773A1|2008-02-28|2009-09-02|Fujitsu Limited|Data sending and receiving apparatus and method| US20130106653A1|2011-10-28|2013-05-02|Maxime Leclercq|Method and system for indoor global navigation satellite system detection utilizing low-earth orbit satellite signals| US20140327449A1|2013-05-01|2014-11-06|Elster Solutions, Llc|Electricity meter hot socket detection| CN105375939A|2014-07-31|2016-03-02|展讯通信(上海)有限公司|Receiving signal compensation method| CN106100768A|2016-06-08|2016-11-09|北京空间飞行器总体设计部|Satellite TT uplink received power evaluation methods based on temperature step-on testing data| CN106468601A|2016-09-14|2017-03-01|上海为准电子科技有限公司|A kind of method and device of temperature correction|US4578820A|1984-03-05|1986-03-25|General Electric Company|Received signal strength indicator| US5659884A|1995-02-10|1997-08-19|Matsushita Communication Industrial Corp. Of America|System with automatic compensation for aging and temperature of a crystal oscillator| US5697081A|1995-09-12|1997-12-09|Oki Telecom, Inc.|Intermodulation distortion reduction circuit utilizing variable attenuation| US5790943A|1995-10-06|1998-08-04|Philips Electronics North America Corporation|Dynamic range extension of a log amplifier with temperature and process compensation| KR19980063123A|1996-12-31|1998-10-07|유기범|Temperature Compensation Automatic Gain Controller of Microwave Amplifier for Satellite Communication| KR100212576B1|1997-01-31|1999-08-02|윤종용|Method for controling transmiting power of radio signal in accordance with variation of frequence and tenperatas in paging trans mitter| US5802114A|1997-06-04|1998-09-01|Ericsson Inc.|Method and apparatus for modulation differentiation| US6215990B1|1997-12-12|2001-04-10|Ericsson Inc.|Method and apparatus for minimizing initial frequency errors during transceiver power up| KR100319275B1|1999-03-20|2002-01-09|윤종용|Method for calculating codes for power control in accordance with temperature in wireless telephone set|KR100498330B1|2002-10-07|2005-07-01|엘지전자 주식회사|Receive power compensation method for frequencies of mobile communication device| US7463674B2|2003-04-09|2008-12-09|Avago Technologies Fiber IpPte. Ltd.|Tables for determining the signal strength of a received signal in a fibre optics transceiver| KR100690788B1|2005-02-26|2007-03-09|엘지전자 주식회사|Power compensation method for mobile communication terminal| US8634766B2|2010-02-16|2014-01-21|Andrew Llc|Gain measurement and monitoring for wireless communication systems| CN103715984B|2012-09-28|2016-08-17|富士通株式会社|The temperature compensation of a kind of received signal strength indicator and device|
法律状态:
2000-12-15| AS| Assignment|Owner name: SAMSUNG ELECTRONIC CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOE, CHIN-SOB;LEE, KYUNG-MIN;REEL/FRAME:011384/0558 Effective date: 20001030 | 2006-09-15| FPAY| Fee payment|Year of fee payment: 4 | 2010-11-15| REMI| Maintenance fee reminder mailed| 2011-04-08| LAPS| Lapse for failure to pay maintenance fees| 2011-05-09| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2011-05-31| FP| Expired due to failure to pay maintenance fee|Effective date: 20110408 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 KR1019990059246A|KR100342536B1|1999-12-20|1999-12-20|Apparatus for compensating received signal strength indicator according to temperature and method thereof| KR99-59246||1999-12-20|| KR1999-59246||1999-12-20|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|