专利摘要:
A method of repairing a cylinder head of a water cooled internal combustion engine that has damage to the boundary wall between a cooling water passage and the combustion chamber. According to the method, the boundary wall B located between a cooling water passage and a combustion chamber and including a crack is cut away from a cylinder head until the cut reaches a depth of one half the cross section of the cooling water passage. Then, a half-pipe portion, having a semicircular cross section that is equal in size to one-half the cross section of the cooling water passage is fixed in the cylinder head from which the boundary wall B has been removed such that an inner surface of the half-pipe may serve to form a cooling water passage after repair. With the use of the above method, the repair operation is completed easily with a low cost because the boundary wall B has only to be cut away to a shallow depth. Further, the use of a half-pipe portion, together with the remainder of the original cooling water passage ensures that the cooling water passage will be restored to its original state.
公开号:US20010003970A1
申请号:US09/774,043
申请日:2001-01-31
公开日:2001-06-21
发明作者:Kazuo Azuma
申请人:TOEI ENGINEERING Co Ltd;
IPC主号:B23P6-02
专利说明:
[0001] 1. Field of the Invention [0001]
[0002] The present invention relates to a method of repairing a cylinder head of a water cooling type internal combustion engine, in particular, to a method of repairing a broken portion within the cylinder head located between a cooling water passage and the combustion chamber. [0002]
[0003] 2. Description of the Related Art [0003]
[0004] A water cooling type internal combustion engine usually has cooling water passages formed within a cylinder head which defines in itself a combustion chamber for the engine. It has been found that cracks, other damage and even broken portions within the cylinder head between the cooling water passage and the combustion chamber will occur after a long-period use of such internal combustion engine. [0004]
[0005] It is desirable to repair, rather than replace, damaged or broken portions. However, to make repair of the broken portions of a cylinder head of an internal combustion engine a viable option, it is required that the repairing process be accomplished easily, at a low cost and that a damaged cylinder head be restored to its original state and provide its predetermined performance after repairing. [0005]
[0006] It is an object of the present invention to provide a novel and useful method of repairing a cylinder head of an internal combustion engine, so as to satisfy and meet the above requirements. [0006] SUMMARY OF THE INVENTION
[0007] To achieve the above-described object of the present invention, the present invention provides an improved method for repairing a cylinder head of an internal combustion engine. The method comprises the steps of: cutting away the boundary walls including broken portions, preferably until the cut reaches a depth of one-half the cross section of the cooling water passage; fixing pipe portions, preferably half-pipes each having a semicircular cross section which is equal in size to one-half the cross section of the cooling water passage, in the cylinder head from which the boundary walls have been partially removed in a manner such that an inner surface of a half-pipe portion may serve to form a cooling water passage after repairing treatment. [0007]
[0008] By virtue of the method according to the present invention, the repair operation can be completed easily at a low cost because the cylinder head need only be cut away to a shallow depth. Further, at least a part of a cooling water passage is formed by the inner surface of a half-pipe having a semicircular cross section that is equal in size to one-half the cross section of the cooling water passage. As a result, the remaining portion of the original passage serves as a guide to ensure that the cooling water passage is restored to its original state. In this way engine performance is maintained. [0008]
[0009] In accordance with a preferred embodiment, prior to the step of fixing a half-pipe in a predetermined position, a guide member having an outer periphery surface that conforms to the corresponding cooling water passage without forming any clearance therebetween, is inserted in the cooling water passage to be repaired. In this way, the outer periphery surface of a guide member may serve as a positioning member for positioning a pipe portion so that the half-pipe may be attached at a correct position with precision. This step ensures easy attachment of each of the half-pipe portions. Moreover, when a half-pipe is being fixed in position by means of welding, the outer periphery surface of a guide member can serve to prevent molten metal from entering a cooling water passage. [0009] BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 is a cross sectional view of a part of a water cooling type internal combustion engine containing a cylinder head suitable to be repaired by the method according to one embodiment of the present invention. [0010]
[0011] FIG. 2 is an enlarged sectional view indicating an essential part of the cylinder head of FIG. 1. [0011]
[0012] FIG. 3 is a top plane view indicating the cylinder head of FIG. 1, when viewed from the combustion chamber. [0012]
[0013] FIG. 4 is a side view indicating a half-pipe. [0013]
[0014] FIG. 5 is a front view of the half-pipe. [0014]
[0015] FIG. 6 is an explanatory view indicating one step of the method according to one embodiment of the present invention. [0015]
[0016] FIG. 7 is an explanatory view indicating one step of the method according to one embodiment of the present invention. [0016]
[0017] FIG. 8 is an explanatory view indicating one step of the method according to one embodiment of the present invention. [0017]
[0018] FIG. 9 is a cross sectional view indicating a part of a cylinder head repaired by the method according to one embodiment of the present invention. [0018] DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0019] Referring to FIG. 1, a water cooling type internal combustion engine includes a cylinder [0019] 1, a cylinder head 2 secured on the cylinder 1, a piston 4 capable of reciprocating within the cylinder 1, a combustion chamber 3 defined by the cylinder 1 and the cylinder head 2 and the piston 4, an intake port 5 for intaking a mixed gas into the combustion chamber 3, and an exhaust port 6 for exhausting burned gas from the combustion chamber 3. The exhaust port 6 extends through the central portion of the cylinder head 2.
[0020] The cylinder head [0020] 2 contains a plurality of cooling fluid passages (cooling water passages) 7 each having a circular cross section and having an opening 7 a on the outer surface of the cylinder head 2. FIG. 3 is a top plane view indicating the cylinder head of FIG. 1, when viewed from the combustion chamber 3. As can be clearly seen from FIG. 3, the plurality of cooling water passages 7 are arranged to extend radially within the cylinder head 2. In this manner, the cooling fluid (the cooling water) flowing through these cooling water passages 7 cools the cylinder head 2. In one embodiment, the cooling water passages 7 are formed by boring in the direction shown by an arrow A in FIG. 1 from the outer surface of the cylinder head 2 prior to the assembling of the entire engine.
[0021] Referring to FIG. 2, in the cylinder head [0021] 2, it has been found that a boundary wall B, located between a cooling water passage 7 and the combustion chamber 3, is likely to be broken after a long period use of the internal combustion engine. The most frequently occurring phenomenon is a crack 12. In accordance with the present embodiment, a cylinder head 2 (see FIG. 3) having a plurality of cracks 12 corresponding to the plurality of cooling water passages 7 may be repaired according to a method that will be described in detail below.
[0022] To begin with, a damaged cylinder head [0022] 2 is removed from the cylinder 1. Then, as shown in FIG. 2, a boundary wall B including a crack 12 is cut down to a half depth of the cross section of a cooling water passage 7, with the use of a cutting machine such as a working lathe. Further, in the present embodiment, as shown in FIG. 2, an area represented by a broken line is about to be removed. Moreover, according to the present embodiment, when a plurality of cracks 12 are to be repaired at the same time, an annular portion between a circle C1 and a circle C2 is removed therefrom, as shown in FIG. 3. Once this annular portion is removed, an annular groove 13 continuously connected with the cooling water passage surfaces 7 b (see FIG. 9) each having a semicircular cross section, is formed on the inner surface 2 a of the combustion chamber 3 within the cylinder head 2.
[0023] Second, preferably, as shown in FIG. 2, a guide member [0023] 9 is inserted from the opening 7 a of the cooling water passage 7 inwardly to the interior of the cooling water passage 7. This guide member 9, as shown in FIGS. 6-9, has an outer periphery surface 9 a conformable with the cooling water passage 7 without forming any clearance.
[0024] Such guide member [0024] 9 is made of copper or brass. Preferably, the guide member 9 is formed of a material which is capable of preventing a molten metal such as a filler metal or base metal from adhering to the surface thereof. Further, the guide member 9 may be made of either a solid rod or a hollow pipe. With the guide member 9 inserted in the cooling water passage 7, as shown in FIG. 6, the outer periphery surface 9 a of the guide member 9 will be exposed in the groove 13.
[0025] Afterwards, each of the cooling water passages [0025] 7 is treated in the following manner. Namely, as shown in FIG. 8, a half-pipe 8 shown in FIGS. 4 and 5 is fixed within the groove 13 of the cylinder head 2 by means of welding such as TIG (Tungsten Inert Gas) arc welding, MIG (Metallic Inert Gas) arc welding or submerged arc welding, with the use of a filler metal 10. Under this condition, it is preferable that the welding operation be performed after welding portions have been preheated to a temperature of 100-150° C. with the use of a gas burner.
[0026] Each half-pipe [0026] 8, upon being fixed in position as shown in FIG. 9, has a semicircular cross section which is as large as the half of the cross section of a cooling water passage 7. Therefore, as shown in FIG. 5, the inner surface 8 a of each half-pipe 8 is the same as the half of a cooling water passage 7. Further, each half-pipe 8, as shown in FIG. 6, has a length which is equal to the width W (see FIG. 3) of a groove 13. In this way, as shown in FIG. 6, a half-pipe 8 is mounted on the guide member 9 so as to cover up the outer surface 9 a of the guide member 9, which was previously exposed in the groove 13. At this time, as shown in FIG. 9, the inner surface 8 a of the half-pipe 8, together with the inner surface 7 b of the cooling water passage 7 having a semicircular cross section, serve to define a cooling water passage 7 upon completion of the repairing of the engine.
[0027] In this way, with the use of the guide member [0027] 9, it is sure that the half-pipe 8 may be attached in position with a great ease and that such attachment will be accomplished with an improved accuracy.
[0028] Further, after the half-pipe [0028] 8 is welded into the cylinder head 2, the outer surface 9 a of the guide member 9 may serve to prevent molten metal from invading into the cooling water passage 7. Since the guide member 9 is made of a copper or a brass, a material capable of preventing adhesion of molten metal to the surface thereof, the guide member 9 can be easily pulled out of the cylinder head 2.
[0029] Referring again to FIGS. 4 and 5, in order to obtain a higher welding strength, each half-pipe [0029] 8 is preferred to be chamfered so that each end in its longitudinal direction is formed with a chamfer 8 b and that each edge portion in its lateral direction has a chamfer 8 c.
[0030] Preferably, the half-pipe [0030] 8 is made of the same metal material as the cylinder head 2. Alternatively, the half-pipe 8 is made of a metal material which has the same thermal expansion coefficient as the material for forming the cylinder head 2. More preferably, each half-pipe 8 may be made of a metal material having a higher durability than the material of the cylinder head 2.
[0031] After each half-pipe [0031] 8 has been attached to the cylinder head 2, the guide member 9 is pulled so as to be removed from the cooling water passage 7, and, as shown in FIG. 9, the groove 13 is filled with filler metal 11. In order to remove a welding stress, it is preferred to perform a shot peening, for example, on the surface of a first and a second layer of the filler metal.
[0032] Subsequently, the cylinder head [0032] 2 as a whole is introduced into an annealing furnace so as to receive an annealing treatment. Then, a final finishing treatment is performed to grind the surface of the filler metal 11 with the use of a grinding device such as a grinder, thereby rendering the inner surface 2 a of the cylinder head 2 to be restored to its original state.
[0033] With the use of the method according to the present embodiment, the cylinder head [0033] 2 has only to be cut off at a shallow depth, thereby rendering the repairing operation to be completed easily with a low cost. Further, since each of the cooling water passages is repaired to be restored to its original state, there would be no any unfavorable changes brought to the cooling effect which should be provided by the cooling water passages.
权利要求:
Claims (18)
[1" id="US-20010003970-A1-CLM-00001] 1. In a fluid cooled internal combustion engine of the type that includes a combustion chamber, cooling fluid passages having a circular cross section and a cylinder head that defines part of the combustion chamber and includes boundary walls located between the combustion chamber and the cooling fluid passages, a method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages, the method comprising the steps of:
cutting away the boundary walls of the cylinder head including the damaged portions until the cutting reaches a depth of one-half the cross section of the cooling fluid passage so that there is a remaining portion of the cooling fluid passage;
fixing a half-pipe that has a semicircular cross section that is equal in size to one-half the cross section of the cooling fluid passage to the cylinder head so that an inner surface of each half-pipe may serve to form, together with the remaining portion of the cooling fluid passage, a cooling fluid passage.
[2" id="US-20010003970-A1-CLM-00002] 2. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 1 , wherein before the step of fixing the half-pipe, a guide member, which has an outer periphery surface that conforms with the cooling fluid passage without forming any clearance therebetween, is inserted in the cooling fluid passage to form a guide for the half-pipe.
[3" id="US-20010003970-A1-CLM-00003] 3. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 2 , wherein the outer periphery surface of each guide member is formed of a metal material that is capable of preventing adhesion of a molten metal to said surface.
[4" id="US-20010003970-A1-CLM-00004] 4. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 2 , wherein the outer periphery surface of each guide member is formed of copper or a brass.
[5" id="US-20010003970-A1-CLM-00005] 5. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 1 , wherein each half-pipe is fixed to the cylinder head by means of welding and wherein each half-pipe is formed with chamfer portions on its end and edge areas.
[6" id="US-20010003970-A1-CLM-00006] 6. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 1 , wherein each half-pipe is fixed to the cylinder head by means of welding adjacent portions of the half-pipe and cylinder head and wherein the portions to be welded are preheated prior to the step of welding the half-pipe in the cylinder head.
[7" id="US-20010003970-A1-CLM-00007] 7. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 6 , wherein the portions to be welded are preheated to a temperature of 100-150° C.
[8" id="US-20010003970-A1-CLM-00008] 8. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 1 , wherein the half-pipe is formed of the same material as the cylinder head.
[9" id="US-20010003970-A1-CLM-00009] 9. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 1 , wherein the material forming the cylinder head has a predetermined thermal expansion coefficient and durability and the half-pipe is made of a metal material that has the same thermal expansion coefficient as the material forming the cylinder head, and has a higher durability than the material forming the cylinder head.
[10" id="US-20010003970-A1-CLM-00010] 10. In a water cooled internal combustion engine of the type that includes a combustion chamber, cooling fluid passages and a cylinder head that defines part of the combustion chamber and includes boundary walls located between the combustion chamber and the cooling fluid passages, a method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages, the method comprising the steps of:
cutting away the boundary walls of the cylinder head including the damaged portions so that there is a remaining portion of the cooling fluid passage;
fixing a pipe portion to the cylinder head so that an inner surface of each pipe portion may serve to form, together with the remaining portion of the cooling fluid passage, a cooling fluid passage.
[11" id="US-20010003970-A1-CLM-00011] 11. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 10 , wherein before the step of fixing the pipe portion, a guide member, which has an outer periphery surface that conforms with the cooling fluid passage without forming any clearance therebetween, is inserted in the cooling fluid passage to form a guide for the pipe portion.
[12" id="US-20010003970-A1-CLM-00012] 12. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 11 , wherein the outer periphery surface of each guide member is formed of a metal material that is capable of preventing adhesion of a molten metal to said surface.
[13" id="US-20010003970-A1-CLM-00013] 13. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 11 , wherein the outer periphery surface of each guide member is formed of copper or a brass.
[14" id="US-20010003970-A1-CLM-00014] 14. The method for repairing damaged portions of the boundary walls located between the combustion chamber and at least one of the cooling fluid passages according to
claim 10 , wherein each pipe portion is fixed to the cylinder head by means of welding and wherein each pipe portion is formed with chamfer portions on its end and edge areas.
[15" id="US-20010003970-A1-CLM-00015] 15. A cylinder head that defines at least part of a combustion chamber in a fluid cooling type internal combustion engine that has cooling fluid passages separated from the combustion chamber by boundary walls, wherein at least a part of a cooling fluid passage is formed by a pipe portion having an inner surface that together with a portion of the boundary wall forms the cooling fluid passage.
[16" id="US-20010003970-A1-CLM-00016] 16. The cylinder head of
claim 15 , wherein the pipe portion is a half pipe that has a semicircular cross section which is equal in size to a half cross section of the cooling fluid passage.
[17" id="US-20010003970-A1-CLM-00017] 17. A fluid cooled internal combustion engine that has a combustion chamber, a cylinder head and cooling fluid passages separated from the combustion chamber by boundary wall portions of the cylinder head, wherein at least a part of a cooling fluid passage is formed by a pipe portion having an inner surface that together with a portion of the boundary wall forms the cooling fluid passage.
[18" id="US-20010003970-A1-CLM-00018] 18. The fluid cooled internal combustion engine of
claim 17 , wherein the pipe portion is a half pipe that has a semicircular cross section which is equal in size to a half cross section of the cooling fluid passage.
类似技术:
公开号 | 公开日 | 专利标题
CN102056706B|2014-10-15|Method of reconditioning of cylinder head of an internal combustion engine
CN100467200C|2009-03-11|Method for repairing curved section of nozzle guide device
US8191529B2|2012-06-05|Method of manufacturing an engine block
US9316173B2|2016-04-19|Cylinder liner with bonding layer
EP2028342B1|2016-08-17|Method of repairing a turbine blade and corresponding combination of a turbine blade and a repair component
US6195886B1|2001-03-06|Method of repairing a cylinder head having cooling water passages
EP2739426B1|2016-10-12|Resistance weld repairing of casing flange holes
US20040216295A1|2004-11-04|Method for repairing a casting
US4967458A|1990-11-06|Process for renewing cylinder heads
US20050132569A1|2005-06-23|Method of repairing a part using laser cladding
US8714131B2|2014-05-06|Method of manufacturing an engine block
EP2106875B1|2011-02-23|Hole repair technique
US8468694B2|2013-06-25|Remanufactured cylinder liner flange replacement
JP2001025863A|2001-01-30|Welding method and assembly for welding
US5873163A|1999-02-23|Method for repairing corroded cylinder castings in water-cooled engine blocks
JP2011157973A|2011-08-18|Method of manufacturing piston with abrasion resistant ring for piston
US8833330B2|2014-09-16|Method of manufacturing an engine block
CN110449824A|2019-11-15|Diesel engine cylinder holes convex shoulder restorative procedure
JP2010096022A|2010-04-30|Piston abrasion-resistant ring, piston equipped with piston abrasion-resistant ring, and method of manufacturing the same
US20160356240A1|2016-12-08|Remanufactured cylinder block for internal combustion engine
JP2004036511A|2004-02-05|Cylinder block for internal combustion engine and its machining method
RU2173622C1|2001-09-20|Method for restoring head of cylinder unit of piston internal combustion engine
JP3419107B2|2003-06-23|Local strengthening method of aluminum alloy cylinder head
FI114111B|2004-08-13|Method and apparatus for reducing corrosion
同族专利:
公开号 | 公开日
KR100596983B1|2006-07-04|
JP2000130255A|2000-05-09|
TW374824B|1999-11-21|
SG105514A1|2004-08-27|
US6311652B2|2001-11-06|
JP4182571B2|2008-11-19|
US6195886B1|2001-03-06|
KR20000028543A|2000-05-25|
SG78342A1|2001-02-20|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
CN109746645A|2019-03-06|2019-05-14|山东职业学院|A kind of processing method of explosion overlength carbon dioxide fracturing pipe|US3449815A|1966-10-11|1969-06-17|Robert H Jones Jr|Method of reconstruction of diesel cylinder heads|
US3450575A|1968-01-17|1969-06-17|Alexander J Riscky|Method of repairing heat cracks on ferrous metal engines|
DE1955140A1|1969-11-03|1971-05-27|Maschf Augsburg Nuernberg Ag|Fluid-cooled cylinder liner for internal combustion engines|
DE3629672C2|1986-09-01|1990-02-15|Kloeckner-Humboldt-Deutz Ag, 5000 Koeln, De||
US5386805A|1991-06-06|1995-02-07|Toyota Jidosha Kabushiki Kaisha|Cooling system of an internal combustion engine|
JP2780518B2|1991-06-10|1998-07-30|トヨタ自動車株式会社|Internal combustion engine cooling system|
US5341554A|1992-08-05|1994-08-30|David Diperstein|Method for repairing a cracked metal part using repair plugs coated with a surface layer of zinc|
US5379505A|1993-06-16|1995-01-10|Lock-N-Stitch International|Method for repairing cracks|
JPH07197848A|1993-12-29|1995-08-01|Yamaha Motor Co Ltd|Cylinder head of multicylinder engine|
DE19838746C2|1998-08-26|2000-08-31|Daimler Chrysler Ag|Water-cooled internal combustion engine|US6748457B2|2000-02-03|2004-06-08|Realtime Data, Llc|Data storewidth accelerator|
US6652830B2|2001-02-16|2003-11-25|Battelle Memorial Institute|Catalysts reactors and methods of producing hydrogen via the water-gas shift reaction|
US8191529B2|2008-07-03|2012-06-05|Caterpillar Inc.|Method of manufacturing an engine block|
JP5909043B2|2011-01-31|2016-04-26|三菱重工業株式会社|Internal combustion engine cooling structure|
CN102962646B|2012-11-29|2016-07-06|唐山开滦广汇设备制造有限公司|A kind of aperture reduction process of deep-hole cylinder tube|
US9364924B2|2013-10-11|2016-06-14|Kennieth Neal|Method and apparatus for repairing a cylinder head|
US20150068485A1|2014-11-18|2015-03-12|Caterpillar Inc.|Cylinder head having wear resistant laser peened portions|
CN106141562B|2016-06-23|2018-06-22|中国人民解放军第五七一九工厂|The restorative procedure and its prosthetic device in the cellular embedded block inner mold face of engine inner wall|
CN106392153B|2016-11-16|2018-06-12|中国人民解放军第五七一九工厂|A kind of honeycomb of engine shape embedded block inner mold face prosthetic device and its restorative procedure|
法律状态:
2001-01-31| AS| Assignment|Owner name: TOEI ENGINEERING CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AZUMA, KAZUO;REEL/FRAME:011524/0922 Effective date: 19990122 |
2005-05-06| FPAY| Fee payment|Year of fee payment: 4 |
2009-05-18| REMI| Maintenance fee reminder mailed|
2009-11-06| LAPS| Lapse for failure to pay maintenance fees|
2009-12-07| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
2009-12-29| FP| Expired due to failure to pay maintenance fee|Effective date: 20091106 |
优先权:
申请号 | 申请日 | 专利标题
JP10-299637||1998-10-21||
JP299637/1998||1998-10-21||
JP29963798A|JP4182571B2|1998-10-21|1998-10-21|Cylinder cover bore cool hole repair method|
US09/239,765|US6195886B1|1998-10-21|1999-01-29|Method of repairing a cylinder head having cooling water passages|
US09/774,043|US6311652B2|1998-10-21|2001-01-31|Method of repairing a cylinder head having cooling water passages|US09/774,043| US6311652B2|1998-10-21|2001-01-31|Method of repairing a cylinder head having cooling water passages|
[返回顶部]