专利摘要:
本發明揭示超高效單及多接面薄膜太陽能電池。本發明亦係關於一種無基板損傷之磊晶剝離(「ELO」)處理,其對基板採用無黏合劑、可靠且輕質冷焊接合,諸如接合至形成複合式拋物線金屬箔聚能器之塑料或金屬箔。如本文所述,藉由組合低成本太陽能電池製造及形成整合收集器之箔基板上之超高效太陽能強度集中式薄膜太陽能電池,可降低模組成本,且明顯降低基礎結構成本。
公开号:TW201320369A
申请号:TW101124535
申请日:2012-07-06
公开日:2013-05-16
发明作者:Stephen R Forrest;Christopher Kyle Renshaw;Michael Slootsky
申请人:Univ Michigan;
IPC主号:H01L31-00
专利说明:
使用磊晶剝離之整合太陽能收集器及冷焊接合之半導體太陽能電池
本發明係關於一種超高效單及多接面薄膜太陽能電池。本發明亦係關於一種無基板損傷之磊晶剝離(「ELO」)處理,其對基板採用無黏合劑、可靠且輕質冷焊接合,諸如接合至形成複合式抛物線金屬箔聚能器之塑料或金屬箔。
本申請案主張2011年7月6日申請之美國臨時申請案第61/505,014號之權利,該案之全文以引用方式併入本文中。 聯合研究協議
所主張發明製作、代表及/或相關於聯合大學-公司研究協議之以下成員中一或多者:密西根大學及環球光能公司(Global Photonic Energy Corporation)。該協議於本發明製作之日及之前生效,且所主張發明係在本協議範圍內實施的行為結果。
光電裝置依賴材料之光學及電子特性,以在電子方式上產生或檢測電磁輻射,或由周圍電磁輻射發電。
光敏光電裝置將電磁輻射轉化為電。太陽能電池(亦稱光伏打(PV)裝置)係一類特定用以產生電能之光敏光電裝置。由除陽光外之光源可產生電能之PV裝置可用以驅動用電負荷,以提供(例如)光、熱,或供能給電子電路或裝置(諸如計算器、收音機、電腦或遙控或通訊設備)。該等發電應用通常亦涉及電池或其他能量存儲裝置之充電,以使當來自太陽或其他光源之直接照明不可獲得時,操作可繼續進行,或平衡具有特定應用需求之PV裝置之電能輸出。如本文所用,術語「電阻性負載」指任何用電或儲電電路、裝置、設備或系統。
另一類光敏光電裝置係光導體電池。在此作用中,訊號檢測電路監控裝置電阻以檢測光吸收所引起之變化。
另一類光敏光電裝置係光偵測器。在操作中,使光偵測器與電流檢測電路結合使用,電流檢測電路測量光偵測器曝露於電磁輻射時所產生之電流,且可具有外加偏電壓。如本文所述之檢測電路可提供光偵測器偏電壓,並測量該光偵測器對電磁輻射之電子反應。
該等三類光敏光電裝置表徵可根據是否存在如下定義之整流接面及亦根據該裝置是否藉由外加電壓(亦稱為偏壓或偏電壓)操作。光導體電池不具有整流接面且一般藉由偏壓操作。PV裝置具有至少一整流接面且不藉由偏壓操作。光偵測器具有至少一整流接面且通常但不總是藉由偏壓操作。一般而言,光伏打電池供能給電路、裝置或設備,但並不提供訊號或電流以控制檢測電路,或該檢測電路之資訊輸出。相對地,光偵測器或光導體提供訊號或電流以控制檢測電路,或該檢測電路之資訊輸出,但不供能給電路、裝置或設備。
傳統上,光敏光電裝置已構件諸多無機半導體,例如結晶矽、多晶矽及非晶矽、砷化鎵、碲化鎘及其他。本文術語「半導體」指當電荷載子係由熱或電磁激發所誘導時可導電之材料。術語「光導」通常係關於電磁輻射能被吸收,且由此轉化為電荷載子之激發能,以使該等載子可於材料中傳導(即傳輸)電荷之方法。本文所用之術語「光導體」及「光導材料」指由於其吸收電磁輻射以產生電荷載子之性質而選擇之半導體材料。
PV裝置之特徵在於其可將入射太陽能轉化為有用電能之效率。利用結晶矽或非晶矽之裝置主導商業應用,且一些已達到23%或更高之效率。然而,由於生產不具有明顯降低效率缺陷之大晶體所固有的問題,故基於結晶之高效裝置(尤其具有大表面積)難以生產且製造昂貴。另一方面,高效非晶矽裝置仍然受到穩定性的困擾。目前市售非晶矽電池具有4至8%之穩定效率。最近精力集中於使用有機光伏打電池,以在經濟生產成本下達到可接受之光伏打轉化效率。
可優化PV裝置以在標準照明條件下(即1000 W/m2,AM1.5光譜照明之標準測試條件)最大化發電量,以最大化光電流與光電壓之乘積。此種電池在標準照明條件下之能量轉化效率取決於以下三個參數:(1)在零偏壓下之電流,即短路電流I sc(安培)(2)在開路條件下之光電壓,即開路電壓Voc(伏特)以及(3)填充係數(ff)。
PV裝置連接負載並受光照射時,產生光生電流。當在無限負載下照射時,PV裝置產生其最大的可能電壓,V開路或Voc。當在其電接點短路下照射時,PV裝置產生最大可能電流,I短路或Isc。當實際上用以發電時,將PV裝置連接至有限電阻負載,功率輸出為電流與電壓之乘積(I×V)。PV裝置所產生之最大總功率本質上不可能超過ISC×VOC之乘積。當優化負載值以使功率提取最大化時,電流及電壓分別具有I最大及V最大之數值。
PV裝置之性能指數為填充係數,ff,定義為:ff={I最大V最大}/{ISCVOC} (1)
其中ff總小於1,因為在實際應用中ISC及VOC從不同時得到。但是,當ff接近1時,該裝置具有較小串聯電阻或內電阻,且因此在最佳條件下將ISC及VOC之乘積之更大百分比遞送給負載。當Pinc為裝置之入射功率時,裝置功率效率=γP可藉由下式計算:γP=ff*(ISC*VOC)/Pinc
當具有適當能量之電磁輻射入射至半導體有機材料(例如有機分子晶體(OMC)材料)或聚合物時,可吸收光子以產生分子激發態。此用符號表示為S0+hv S0*。此處S0及S0*分別表示分子基態及分子激發態。該能量吸收與電子自HOMO能階中之束縛態(可為B鍵結)升至LUMO能階(可為B*鍵結)相關,或相當於電洞自LUMO能階升至HOMO能階。在有機薄膜光導體中,據信,所產生之分子態為激子,即以準粒子傳輸之束縛態之電子電洞對。激子在成對重組前可具有相當可觀之壽命,其指原始電子及電洞相互重組之過程,而非與來自其他對之電洞或電子重組。為產生光電流,電子-電洞對通常在兩種不同接觸有機薄膜間之供體-受體界面處分離。若電荷不分離,其等可以成對重組法(亦稱為淬火)重組,或以輻射方式藉由發射能量低於入射光之光,或以非輻射方式藉由產生熱量。任一種結果在光敏光電裝置中皆不受歡迎。
電場或接點不均一性可導致激子淬火而非供體-受體界面處解離,導致對電流之非凈貢獻。因此,需使光生激子遠離接點。此舉將激子之擴散限制在接面周圍區域,以使相關電場增加分離由接面周圍激子解離所釋放之電荷載子之機會。
為產生佔據大部份體積之內生電場,慣用方法係並置兩層具有適當選擇導電特性之材料,尤其針對分子量子能態之分佈而言。該等兩種材料之界面稱為光伏打異質接面。在傳統半導體理論中,形成PV異質接面之材料通常指n或p型。此處n型表示多數載子類型為電子。此可視為該材料具有諸多呈相對自由能態之電子。P型表示多數載子類型為電洞。此種材料具有諸多呈相對自由能態之電洞。背景類型(即非光生),多數載子濃度主要取決於無法避免摻雜缺陷或雜質。雜質之類型及濃度決定最高佔用分子軌域(HOMO)能階與最低未佔用分子軌域(LUMO)能階之能隙(稱為HOMO-LUMO能隙)中費米能量值或水平。費米能量表徵分子量子能態之統計學佔據,以佔有概率等於½之能量值表示。靠近LUMO能階之費米能量表明電子係主要載子。靠近HOMO能階之費米能量表明電洞係主要載子。因此,費米能量係傳統半導體之主要表徵特性,且原型PV異質接面傳統上為p-n界面。
術語「整流」表示(尤其)界面具有不對稱傳導特性,即該界面較佳在一個方向上支持電子電荷傳輸。整流通常與適當選擇材料間之異質接面發生之內建電場相關。
如本文所用,且如熟習此項技術者通常所理解,若第一能階更接近真空能階,則第一「最高佔用分子軌域」(HOMO)或「最低未佔用分子軌域」(LUMO)能階「大於」或「高於」第二HOMO或LUMO能階。由於游離電位(IP)係以相對於真空能階之負能量測定,故較高HOMO能階對應具有較小絕對值之IP(IP負值較小)。同樣,較高LUMO能階對應具有較小絕對值之電子親和力(EA)(EA負值較小)。在習知能階圖中,真空能階位於頂部,一種材料之LUMO能階高於同種材料之HOMO能階。「較高」HOMO或LUMO能階顯示出比「較低」HOMO或LUMO能階更靠近該圖頂部。
在有機材料之情況下,術語「供體」及「受體」指兩種接觸但不相同有機材料之HOMO及LUMO能階之相對位置。此與無機情況中使用之術語相反,其中「供體」及「受體」可分別指可用以產生無機n-及p-型層體之摻雜劑之類型。在有機情況中,若與另一材料接觸之一種材料之LUMO能階較低,則該材料為受體。否則為供體。在不存在外部偏壓下,在能量上利於供體-受體接面電子遷入受體材料,及電洞遷入供體材料。
有機半導體之一重要特性係載子遷移率。遷移率衡量電荷載子回應於電場穿過導體材料之容易性。在有機光敏裝置情況中,包括一種由於高電子遷移率而優先傳導電子的材料之層可稱作電子傳輸層或ETL。包括一種由於高電洞遷移率而優先傳導電洞的材料之層可稱作電洞傳輸層或HTL。較佳地,但非必要地,受體材料為ETL而供體材料為HTL。
習知無機半導體PV電池採用p-n接面以構建內電場。早期有機薄膜電池(諸如由Tang報導之Appl.PhysLett. 48,183(1986))包含類似於習知無機PV電池所採用之異質接面。然而,現在認識到,除構建p-n型接面外,異質接面之能階偏移亦起重要作用。
據信,有機D-A異質接面之能階偏移對有機PV裝置之操作很重要,因為有機材料中光生過程之基本性質。當有機材料發生光激發時,產生局部弗侖克(Frenkel)或電荷傳輸激子。為進行電檢測或產生電流,束縛激子必須解離成其組成電子及電洞。此種過程可由內建電場誘導,但發現有機裝置中電場效率(F~106 V/cm)通常很低。有機材料中最高效之激子解離發生在供體-受體(D-A)界面。在此類界面處,具有低游離電位之供體材料與具有高電子親和力之受體材料形成異質接面。取決於供體及受體材料之能階對準,於此類接面解離激子在能量上變得有利,導致受體材料中之自由電子極化子及供體材料中之自由電洞極化子。
當與傳統以矽為主之裝置相比,有機PV電池具有諸多潛在優勢。有機PV電池質輕,使用材料經濟,且可沉積於低成本基板(諸如可撓性塑料箔)上。然而,有機PV裝置通常具有約1%或更低之相對低量子產量(所吸收光子/所產生載子對或電磁輻射/電轉化效率之比率)。一定程度上認為係由於本質光導過程之二階性質。即載子產生需激子產生、擴散及電離或收集。效率γ與每一該等過程相關。下標可如下使用:P為功率效率,EXT為外部量子效率,A為光子吸收,ED為擴散,CC為收集,及INT為內部量子效率。使用此表示法:γPEXTAEDCC γEXTAINT
激子之擴散長度(LD)通常遠小於(LD~50△)光學吸收長度(~500△),故需權衡使用厚且因此電阻強之具有多折叠或高度折叠界面之電池,還是使用具有低光學吸收效率之薄電池。
穿過同質吸收介質之電磁輻射之入射通量之強度降低通常由I=Ioe-αx給出,其中Io為初始位置(X-0)之強度,α為吸收常數,及x為距離x=0之深度。因此,當通量逐步穿過介質時,強度呈指數減弱。因此,吸收介質厚度越厚或若增大吸收常數,則吸收更多光。一般而言,給定光導介質之吸收常數係不可調整的。對於特定光導材料(例如3,4,9,10苝四甲酸-雙-苯并咪唑(PTCBI),或酞菁銅(CuPc)),極厚層體因高體電阻率而並非所需。
藉由適當地使光線多次經給定光導材料薄膜再反射或再循環,可實質上增加給定光導材料之光程而不引起實質上額外之體電阻。需要一種溶液,該溶液有效使電磁通量收集並傳遞至含光導材料之空腔,同時亦將傳遞通量局限於該腔室以使其被吸收。
尋求到光生功率之更廉價且更有效裝置以使得太陽能可與當前較廉價化石燃料相競爭。有機光導體(諸如CuPc及PTCBI),由於成本節約潛力,已作為有機光伏打裝置(OPV)之材料。上述高體電阻率使其宜採用該等材料之相對薄膜。然而,使用極薄有機光敏層呈示製造高效裝置面臨的其他阻礙。如上所述,極薄光敏層體吸收小部份入射輻射,因此降低外部量子效率。
另一問題在於,極薄膜苦於諸如電極材料入侵短路之缺陷。以引用方式併入本文之美國專利第6,333,458號,描述合併一種或多種激子阻擋層之光敏異質結構,來解決極薄膜OPV所具有之問題。然而,無論有機或無機光導體膜,皆需其他解決方案來解決極薄膜之低光吸收問題。
在太陽能轉化領域普遍使用光學聚能器(稱為溫士頓收集器)。該等聚能器主要用於需高熱梯度之熱太陽能收集裝置。至少,將其用於光伏打太陽能轉化裝置。然而,認為此等應用針對於當光線初始入射於活性光導介質時期望發生光吸收的裝置。若使用極薄光導體層,多數聚集輻射可能將無法吸收。可能反射回裝置環境中,被基板吸收或基板透明的話只是穿過該基板。因此,單獨使用聚能器不能解決薄光導層之低光吸收問題。用於輻射檢測之光學聚能器亦與光電倍增(「PM」)管用於檢測契忍可夫(Cerenkov)輻射或其他輻射。PM管以完全不同於固態偵測器(諸如本發明之OPV)之原理工作,即光電效應。在PM管中,光吸收介質(即金屬電極)之低光吸收並不是問題,但PM管與本文揭示之OPV不同,需高操作電壓。
光聚焦及光捕獲係增強薄膜光伏打太陽能電池及光偵測器性能之重要途徑。然而,此等方案中常用之反射鏡使用金屬,諸如銀或金,其可因該反射鏡之光譜吸收作用導致入射光子之大量損失。因此,宜提供一種結構以增加薄膜光伏打太陽能電池或光偵測器之光捕獲,減少大光譜範圍之損失。
本發明人最近已示範透過分子束磊晶(MBE)生長高效的薄III-V半導體太陽能電池,在磊晶生長之後將其自昂貴的母基板剝離。此種方法與過去二十年來所採用之習知ELO技術之明顯不同處在於,「保護層」係圍繞「ELO犧牲層」生長,ELO犧牲層通常被蝕刻掉以使主動裝置磊晶(~2 μm厚)自母基板分離。該方法描述於美國專利申請案第13/099,850中,該案之全文以引用方式併入本文中。如圖1中所示,藉由使用複合保護層結構,可消除母晶圓之化學及表面形態退化問題。
因此,可使經處理晶圓之表面比初始晶圓更光滑,且其表面化學亦保持不變,因此在再次用於生長額外亦及最終可移除之磊晶層之前,消除對晶圓再拋光之需求。因此,由於原始母晶圓在該過程中未被消耗或改變,故母晶圓可無限地再利用。事實上,僅將包括薄膜、單晶、高效太陽能電池主動區域之主動磊晶層自整個晶圓表面移除,且隨後冷焊(不使用會增加成本、重量及可能失效之黏合劑)至第二薄膜「主體」基板。
由於基板係該方法中所用的最昂貴的材料,故多次再利用策略移除晶圓作為材料成本,並將其獲得轉化為資本費用,從根本上改變以單晶III-V為主之太陽能電池之成本結構。若亦將太陽能電池之極薄主動磊晶層接合至金屬或金屬化塑料箔而不使用黏合劑,則所得模組之成本、重量及形式因素亦受到有利影響。
為解決上述至少一些需求,揭示一種超高效、單及多接面薄膜太陽能電池。本發明亦係關於一種無基板損傷之磊晶剝離(「ELO」)處理,其對基板採用無黏合劑、可靠且輕質冷焊接合,諸如接合至形成複合式抛物線金屬箔聚能器之塑料或金屬箔。本發明人發現,低成本太陽能電池製造及形成整合收集器之箔基板上之超高效太陽能強度集中式薄膜太陽能電池之組合,可降低模組本身成本,亦可以於箔上之超輕質電池替代重模組來明顯降低基礎結構成本(包括低成本整合聚能器),功率密度超過6 W/gm。
在一實施例中,本發明係關於一種薄膜太陽能電池,其包括一第一基板;一接合至該第一基板之金屬接點;一接合至該金屬接點之主動光伏打區域;一或多個第一保護層;一AlAs層;一或多個第二保護層;及一第二基板,其中該第二基板包括至少一種選自GaAs及InP之化合物。
在另一實施例中,本發明係關於一種薄膜太陽能電池,其包括一第一基板;一接合至該第一基板之金屬接點;一接合至該金屬接點之主動光伏打區域;一或多個第一保護層,其中該等第一保護層中至少一者包括至少一種選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;一AlAs層;一或多個第二保護層,其中該等第二保護層中至少一者包括至少一種選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;及一第二基板,其中該第二基板包括至少一種選自GaAs及InP之化合物。
在另一實施例中,本發明係關於一種進行磊晶剝離處理之方法,其包括使一或多個第一保護層於第一基板上生長;使AlAs層生長;使一或多個第二保護層生長;將至少一主動光伏打電池層沉積於該第二保護層頂部;以一種金屬塗佈頂部之該主動光伏打電池層;以一種金屬塗佈一第二基板;將兩金屬表面壓制在一起以形成冷焊接合;及以選擇性化學蝕刻劑移除AlAs層。
在另一實施例中,本發明係關於一種進行磊晶剝離處理之方法,其包括使一或多個第一保護層於第一基板上生長,其中該等第一保護層中至少一者包括選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;使AlAs層生長;使一或多個第二保護層生長,其中該等保護層中至少一者包括選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;將至少一主動光伏打電池層沉積於該第二保護層頂部;以一種金屬塗佈頂部之該主動光伏打電池層;以一種金屬塗佈一第二基板;將兩金屬表面壓制在一起以形成冷焊接合;及以一種選擇性化學蝕刻劑移除AlAs層。
除上述內容外,本發明還包括諸多其他示例性特徵,諸如彼等下文所闡明者。應瞭解,先前描述及以下描述皆僅具示例性。
將附圖併入該說明書中,並構成其部份。
圖1顯示ELO處理之一實施例。首先,磊晶生長化學性質截然不同之由InGaAs及InP組成之薄「保護層」、AlAs犧牲層、第二組InP及InGaAs保護層及最終之主動光伏打電池層。然後,以Au塗佈頂部磊晶層,如極薄塑料(例如KaptonTM,DuPont標識之聚醯亞胺膜)主體基板。藉由僅在幾kPa壓力下將兩光潔Au表面壓在一起,形成電連續性及永久性之無黏合劑冷焊接合,其特性與單整體Au膜難以區別。
接合至塑料握把後,晶圓準備用於ELO。冷焊接合不僅用於ELO處理(磊晶層於剝離前永久地附著於箔基板,剝去母基板以最後再次使用),而且作為其上最終安裝太陽能電池之新主體基板之黏合劑。
以冷焊替代剝離習用之黏合劑具有若干益處:(i)易於附著至箔基板且為製造順序之組成部份,(ii)由於完全避免黏合劑層而輕質,(iii)熱及電「透明」,此係因為冷焊界面與膜主體難以區別之故,及(iv)堅固且不易失效。將選擇性化學蝕刻劑(諸如HF:H2O,1:10)用於移除4 nm至10 nm厚AlAs犧牲ELO層,使整個晶圓自光伏打磊晶層分離,曝露保護層。最接近AlAs ELO層之保護層(在此情況中為InP)之目的係提供>108:1之蝕刻選擇率,並藉由第二濕蝕刻(HCl:H3PO4,3:1)自基板及分離之磊晶層移除,該蝕刻於InGaAs保護層表面終止。第二保護層之需求在於,可藉由濕蝕刻劑移除,於InP基板突然終止。利用H2SO4:H2O2:H2O(1:1:10),隨後利用C6H8O7:H2O2(20:1)自晶圓移除InGaAs層,二者皆對InP基板、InP緩衝區及磊晶層具有高度選擇性,且有助於移除先前蝕刻後遺留的任何碎屑或凸起體。將太陽能電池製造於磊晶層上,磊晶層藉由濺鍍氧化銦錫(ITO)肖特基(Schottky)接點附著於KaptonTM握把。圖2顯示所得可撓性InP-ITO肖特基太陽能電池,其在標準太陽(1 sun)照射AM1.5G下具有~15%效率。將該等接合磊晶薄層反複循環至>200℃而並不分層。
於後續生長前,用溶劑清洗基板,經由曝露至UV/臭氧生長有意氧化物,然後返回至生長箱。單一基板多次採用該處理,證實InP晶圓重複使用而並不退化,且如圖3中所示,可改良表面平滑度,優於起初所用之商業即開即用晶圓,原則上可無限重複使用。
本發明人最近將該無損傷再生長方法推廣至於母晶圓上安裝之GaAs基單一p-n接面光伏打電池,所得效率為23.9%。圖4為一該種電池之示意圖。該剝離方法與InP電池所用方法類似,但以三層(InGaP/GaAs/InGaP)完全晶格匹配(AlAs犧牲層)系統取代InP所用之兩保護層方案。此可改良層體間之蝕刻選擇性,同時消除ELO處理中所引起之碎屑或粗糙表面。於HF中移除AlAs層,隨後分別利用HCl:H3PO4(1:1)及H3PO4:H2O2:H2O(3:1:25)移除InGaP及GaAs保護層。
該方法後,於母晶圓上生長第二電池,效率達到22.8%。第一與第二生長間之功率轉換效率略微(1%)下降係由於選擇乾凸型隔離蝕刻方法,故導致填充係數之略微下降(見圖4)。而且,如圖5所示,抗反射塗層厚度並不理想,從而降低外部量子效率及短路電流。然而,當優化塗層厚度時,有望達到甚至更高效率,例如高於25%。
在一實施例中,可使用基於完全晶格匹配之InGaP/GaAs/InGaP三層體之保護層方案。該三層體提供層體間所需選擇率足以可再現地移除保護層及曝露原始(無物理及化學損傷)表面之蝕刻化學。在一實施例中,再生薄膜電池經由冷焊接合至Au塗佈之塑料(KaptonTM)基板。已顯示,第一生長晶圓可達PCE=23.9%,及再次利用晶圓可達PCE=22.8%,超過下一代光伏打II之20%測量值(參見圖5)。圖6顯示現行ELO處理裝置及方法之描述。
每次重複利用後,可深入研究母晶圓及剝離磊晶層之損傷或微弱退化情況。該等方法包括測定生長及再生長表面之化學變化之x-射線光電子光譜學(XPS),測定表面形態變化之原子力顯微術、掃描式電子顯微術及表面輪廓測定法,檢測磊晶主體內所引起之缺陷之橫斷面透射電子顯微術,及利用次級離子質譜分析(SIMS)之組成深度剖面。
亦可使用標準照明條件(AM1.5G太陽光譜)對電池成品(包括抗反射塗層)進行電測試。待測量參數包括PCE、填充係數(FF)、開路電壓(Voc)、短路電流(Jsc)、串聯及並聯電阻。
已發現,將含Ga化合物(即GaAs,且至少而言,InGaP)延長曝露(>2天)至HF,導致難以移除之表面污染。然而,不存在將InP表面曝露至HF超過7天之該反應。在一實施例中,如圖7所示,恰位於AlAs犧牲層下之InP應變薄層將改良表面保真度。
限制InP厚度以防止應變鬆弛,其可降低後續生長之PV層之品質。GaAs上InP之臨界厚度為5至6個單層,對應~1.7 nm。在此情況中,保護層方案將包括InGaP/GaAs/InP或InGaP/GaAs/InGaP/InP,其中後者結構中之額外InGaP層改良對GaAs之保護。
在另一實施例中,藉由使用額外材料組合進行蝕刻選擇性及已購得晶圓品質之保留,例如藉由取代鄰近InAlP之InGaP層。InAlP/InGaP/GaAs/InAlP結構有利,因為可用HCl:H2O(1:5)蝕刻InAlP,其於GaAs突然終止(蝕刻率>400:1),然而,用於蝕刻InGaP之HCl:H3PO4(1:1)緩慢侵蝕GaAs,導致粗糙問題。藉由將InAlP鄰近AlAs層放置,InAlP受HF侵蝕,並減少可減緩剝離過程之五氧化二砷之累積。同樣,InGaP亦可用作GaAs蝕刻(H3PO4:H2O2:H2O,3:1:25)之蝕刻終止,以確保下部InAlP層僅在最終蝕刻步驟中被移除。
藉由接合至金屬箔基板(諸如Au塗佈之Cu箔)、使用廉價金屬進行冷焊(例如使用Ag而非Au)、減少HF消耗、降低保護層厚度及加快剝離過程可減少額外成本。長期曝露於溶解AlAs犧牲層之HF限制可採用之金屬主體基板之選擇。在一實施例中,將可用於冷焊之Cu箔用於增強曝露至HF之耐性,因為與塗佈諸如Au之貴金屬之箔片相比,其更易於使用。使用Cu箔之額外益處在於其高導熱性(~4W cm-1-1),可對其加以採用以自集中式電池提取熱量。
亦揭示極高效多接面(GaAs/InGaP)太陽能電池,依據在圖8中所示之兩種電池實例結構。
此設計相對於習知多接面電池生長順序而翻轉,以適應無黏合劑冷焊方法中所用之「倒置」接合幾何結構;該結構包括25%GaAs電池架構。在此情況中,GaAs電池厚度減少至2 μm(50%習知基於基板之電池),因為反射性之全覆蓋歐姆接觸使得入射光線可兩次穿過裝置主動區域。優先考慮優化串聯PV結構,使效率最大化,其包括InGaP電池設計(層體厚度、窗層、層體組成等),改良堆疊中元件間之寬隙穿隧接面(TJ),及完善遍佈該多接面電池大部份區域之多剝離方法。
用n-型材料將太陽能電池生長於p-型層體頂部,而穿隧接面生長具有相反極性。該等電池可將碳摻雜於所有或若干p-型層體中,因為碳並不會如習知p-摻雜劑(Be)一樣易遷移至生長表面。由於串聯電池通常受限於GaAs電池中之電流,故需調整InGaP電池厚度以使InGaP及GaAs電池電流匹配;預期InGaP層之厚度為0.55至0.80 μm。
高效穿隧接面(TJ)對於高性能串聯電池至關重要。需要其電壓及吸收能力幾乎不損失。MJ電池宜使用InGaP TJ以避免可能高達3%之GaAs TJ吸收。習知之TJ係一種P+/N+陡接面,其中電子可直接從n-型側之傳導帶穿隧至p-型側之價帶(圖9(a))。儘管對MBE生長之寬隙TJ進行的研究極少,但已報告,使用MBE,足夠高而可運輸在1日照(sun illumination)下所產生之電流的摻雜水平。
一實施例係關於InGaP穿隧接面,其在1日照下具有幾十mV之電壓降。研究顯示Be及Si係合適的摻雜劑(密度分別達到3.7×1019及1.8×1019 cm-3)。然而,若需降低穿隧電阻,則可在P+/N+界面處使用工程缺陷,諸如藉由將ErAs添加至GaAs穿隧接面。在此情況中,可如圖9b所示使用ErP或LuP。ErP或LuP於~4單層厚的金屬半導體表面上形成磊晶島,並將穿隧製程分成兩步,得到明顯更高之穿隧概率。藉由在TJ中採用ErP,可導致穿隧電流之若干數量級之增加,且導致所製造PV電池中所預期電流之亞-mV範圍內之電壓降。
如於單接面電池之情況中,在生長-ELO-再次利用循環之每次迭代後,可對多接面電池進行顯微及化學檢測。可使用標準照明條件(AM1.5G太陽光譜)對電池成品(包括抗反射塗層)進行電測試,但在高達10日照強度範圍內測試。測量參數包括PCE、填充係數、開路電壓、短路電流、串聯及並聯電阻,如單接面電池情況。
接合至反射性及可撓性基板上之薄膜多接面電池提供難得的機會來整合太陽能收集器及薄膜電池而不帶來大量額外成本。圖10顯示由ELO多接面電池組成之條帶,其接合至較大之可撓性反射膜之中央。然後將該膜模塑(藉由置於導熱性或強制冷卻預形體中)成複合抛物線收集器(例如CPC或溫士頓收集器)形狀。該幾何形狀將平行太陽光線聚集於電池帶焦點上,亦收集接收角內之漫射光。
圓柱溫士頓型收集器中常用之低水平聚集(4-10X)使聚能器高效,並將大量漫射光導入電池中。收集效率為CEff=TCPCγ,其中TCPC係CPC之有效透射率,包括常見反射器材料之~2%多次反射損失。漫射光之校正為γ=1-(1-1/C)Gdiff/Gdir,其中C為預期濃度,及Gdiff/Gdir為射光與總入射光之分數。通常,低溫多雲天之Gdiff/Gdir為~0.11。在AM1.5G下,C=4,γ=90%,相當於AM1.5D下可得功率。
對於4X CPC,且假定太陽能電池帶寬度1 cm,則孔隙寬4 cm寬×深10 cm,提供與單家庭住宅所使用之面板相容之實用格式參數。在較高聚光下,聚能器之尺寸將大幅提升。例如,同一1 cm寬電池帶所用之10X聚光需具有~55 cm深之10 cm孔隙。在對聚光效率之影響可忽略不計下,深度可減少至~40 cm。[25]所需反射性物質之量對4X聚光而言增加4-5倍,對10X聚光而言增加8-11倍。
所用小幅聚光之額外益處包括,允許使用單軸跟蹤(晝夜或季節性,取決於收集器之取向),及比大幅聚光所需之被動式冷卻更簡單。事實上,所用極薄基板極大簡化熱傳遞:計算表明,在10X聚光下及靠向被動式冷卻Cu散熱器之25 mm厚KaptonTM基板,僅導致溫度上升5-20℃,消除對更好冷卻方法之需求。
注意,亦可將ELO電池技術應用於具有大集中係數之系統;然而,本發明僅專注於較小聚光,導致可應用於住宅系統之簡單及經濟設計。該整合之太陽能收集器+ELO多接面聚能器電池組件之成本減少有望從根本上降低聚能系統之成本,及其佔據面積(由於PCE較高)
除非另有說明,否則說明書及申請專利範圍所用的表示成份量、反應條件等之所有數值,皆應理解為在任何情況下由術語「約」修飾。因此,除非另有說明,否則以下說明書及附加申請專利範圍中所列出之數值參數為近似值,可依據本發明所致力達到之所需特性而有所變化。
藉由考慮本說明書之說明及實施,本發明之其他實施例對熟習此項技術者顯而易見。希望本說明書及實例僅被視為示範性的,本發明之真實範圍藉由以下申請專利範圍指出。
圖1為一示意圖,顯示用於Inp基太陽能電池之根據本發明之ELO處理。
圖2為剝離並接合至覆-Au Kaption薄片之兩英寸Inp磊晶層之照片。ITO接點形成Schotty太陽能電池。
圖3為原始即開即用Inp基板及在第一及第二ELO處理(使用及未使用保護層)後所回收表面之原子力顯微鏡圖像。
圖4為顯示電池參數之測試數據及一代表性GaAs PV電池層結構。
圖5為測試數據,其顯示在重複利用晶圓上所生長之23.9%效率第一次生長電池及22.8%效率電池之第四象限電流電壓及外部量子效率(嵌入)。
圖6為一簡圖,顯示根據本發明施用至InP材料之ELO處理。
圖7為一具有AlAs層及AlAs剝離層之三層保護方案之簡圖。
圖8為一根據本發明所建議之多接面電池結構之簡圖。
圖9為一顯示穿隧障壁有所減少之(a)習知N/P穿隧接面及(b)N/ErP/P接面之簡圖。
圖10為一具有冷焊接合之ELO多接面電池之整合反射器之簡圖。
权利要求:
Claims (17)
[1] 一種薄膜太陽能電池,其包括:第一基板;接合至該第一基板之金屬接點;接合至該金屬接點之主動光伏打區域;一或多個第一保護層,其中該等第一保護層中至少一者包括至少一種選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;AlAs層;一或多個第二保護層,其中該等第二保護層中至少一者包括至少一種選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;及第二基板,其中該第二基板包括至少一種選自GaAs及InP之化合物。
[2] 如請求項1之薄膜太陽能電池,其中該薄膜太陽能電池包括兩個第一及/或第二保護層。
[3] 如請求項1之薄膜太陽能電池,其中該薄膜太陽能電池包括三個第一及/或第二保護層。
[4] 如請求項1之薄膜太陽能電池,其中該第一基板包括塑料或金屬箔。
[5] 如請求項4之薄膜太陽能電池,其中該第一基板包括聚醯亞胺膜。
[6] 如請求項1之薄膜太陽能電池,其中該金屬接點包括至少一種選自Au、Ag及Cu之金屬。
[7] 如請求項6之薄膜太陽能電池,其中該金屬接點包括Au。
[8] 如請求項6之薄膜太陽能電池,其中該金屬接點包括Cu。
[9] 如請求項1之薄膜太陽能電池,其中將該薄膜太陽能電池整合於太陽能收集器中,其中將該太陽能收集器模製成選自複合抛物線收集器或溫士頓收集器(Winston collector)之形狀。
[10] 一種實施磊晶剝離處理之方法,其包括:於第一基板上生長一或多個第一保護層,其中該等保護層中至少一者包括選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;生長AlAs層;生長一或多個第二保護層,其中該等保護層中至少一者包括選自InGaP、GaAs、InGaAs、InP及InAlP之化合物;將至少一個主動光伏打電池層沉積於該第二保護層頂部;將該頂部主動光伏打電池層塗佈一金屬;將第二基板塗佈一金屬;將該兩金屬表面壓在一起以形成冷焊接合;及採用選擇性化學蝕刻劑移除該AlAs層。
[11] 如請求項10之方法,其中使用選擇性化學蝕刻劑來移除各額外保護層。
[12] 如請求項11之方法,其中該第一基板係經溶劑清洗及處理以形成氧化物層。
[13] 如請求項10之方法,其中該第二基板係選自塑料或金屬箔。
[14] 如請求項13之方法,其中該第二基板係選自聚醯亞胺膜。
[15] 如請求項10之方法,其中該金屬接點包括至少一種選自Au、Ag及Cu之金屬。
[16] 如請求項15之方法,其中該金屬接點包括Au。
[17] 如請求項15之方法,其中該金屬接點包括Cu。
类似技术:
公开号 | 公开日 | 专利标题
US20220013672A1|2022-01-13|Integrated Solar Collectors Using Epitaxial Lift Off and Cold Weld Bonded Semiconductor Solar Cells
Essig et al.2015|Wafer-bonded GaInP/GaAs//Si solar cells with 30% efficiency under concentrated sunlight
US8927319B2|2015-01-06|Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth
Razykov et al.2011|Solar photovoltaic electricity: Current status and future prospects
AU2007200659B2|2011-12-08|Cascade Solar Cell with Amorphous Silicon-based Solar Cell
Veinberg-Vidal et al.2016|Manufacturing and characterization of III-V on silicon multijunction solar cells
TW201432967A|2014-08-16|激子能量轉移以提升無機太陽能電池效率
Paire et al.2013|Thin-film microcells: a new generation of photovoltaic devices
EP2700114A1|2014-02-26|Light trapping architecture for photovoltaic and photodetector applications
JP2013537366A|2013-09-30|無機太陽電池のための窓層としての有機半導体
JP2017510085A|2017-04-06|非トラッキングミニ複合放物面集光器と集積化されたエピタキシャルリフトオフ処理されたGaAs薄膜太陽電池
Li et al.2020|Silicon heterojunction-based tandem solar cells: past, status, and future prospects
Shahrjerdi et al.2013|Flexible InGaP/| GaAs tandem solar cells with very high specific power
US20190355867A1|2019-11-21|Engineered substrate
Abid et al.2021|Solar Cell Efficiency Energy Materials
同族专利:
公开号 | 公开日
WO2013006803A8|2013-06-06|
KR20140043805A|2014-04-10|
AU2012280933A1|2014-01-23|
CN106098842A|2016-11-09|
KR101996607B1|2019-10-01|
JP6312257B2|2018-04-18|
JP2014523132A|2014-09-08|
US20160141431A1|2016-05-19|
EP2729968B1|2020-09-02|
CN103890974A|2014-06-25|
WO2013006803A3|2013-05-10|
EP2729968A2|2014-05-14|
US20130037095A1|2013-02-14|
TWI693722B|2020-05-11|
AU2016200455A1|2016-02-18|
ES2834435T3|2021-06-17|
CA2840968A1|2013-01-10|
WO2013006803A2|2013-01-10|
CN106098842B|2018-12-18|
US20220013672A1|2022-01-13|
HK1197315A1|2015-01-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
TWI660520B|2014-01-15|2019-05-21|美國密西根州立大學|經由印刷方法整合磊晶剝離太陽能電池與小型拋物線集光器陣列|US5324365A|1991-09-24|1994-06-28|Canon Kabushiki Kaisha|Solar cell|
US5288337A|1992-06-25|1994-02-22|Siemens Solar Industries, L.P.|Photovoltaic module with specular reflector|
JP3467153B2|1996-08-30|2003-11-17|株式会社リコー|半導体素子|
US6440769B2|1999-11-26|2002-08-27|The Trustees Of Princeton University|Photovoltaic device with optical concentrator and method of making the same|
US6333458B1|1999-11-26|2001-12-25|The Trustees Of Princeton University|Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator|
CN2613726Y|2003-04-17|2004-04-28|北京工业大学|复合抛物面聚光热电综合利用装置|
DE102004023856B4|2004-05-12|2006-07-13|Rwe Space Solar Power Gmbh|Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode|
HRPK20050434B3|2005-05-16|2008-06-30|Urli Natko|Stacionarni fotonaponski modul s malim stupnjem koncentracije sunčevog zračenja|
US7638708B2|2006-05-05|2009-12-29|Palo Alto Research Center Incorporated|Laminated solar concentrating photovoltaic device|
US20100047959A1|2006-08-07|2010-02-25|Emcore Solar Power, Inc.|Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells|
US20110108081A1|2006-12-20|2011-05-12|Jds Uniphase Corporation|Photovoltaic Power Converter|
JP5576273B2|2007-07-03|2014-08-20|マイクロリンクデバイセズインコーポレイテッド|Iii−v化合物薄膜太陽電池の加工方法|
WO2009108896A1|2008-02-27|2009-09-03|Brilliant Film, Llc|Concentrators for solar power generating systems|
US20090283133A1|2008-05-14|2009-11-19|3M Innovative Properties Company|Solar concentrating mirror|
GB0816113D0|2008-09-04|2008-10-15|Clive Barry M|Photvoltaic cell apparatus|
US9523516B2|2008-12-30|2016-12-20|3M Innovative Properties Company|Broadband reflectors, concentrated solar power systems, and methods of using the same|
IN2012DN03051A|2009-09-10|2015-07-31|Univ Michigan||
JP5170073B2|2009-12-24|2013-03-27|セイコーエプソン株式会社|接合体の形成方法、接合体およびインクジェット記録ヘッド|
JP5215284B2|2009-12-25|2013-06-19|シャープ株式会社|多接合型化合物半導体太陽電池|
CN102082195B|2010-09-30|2012-03-07|南通大学|自动跟踪双抛物面聚光发电供热系统|US10741712B2|2012-02-15|2020-08-11|Alta Devices, Inc.|Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof|
US9087905B2|2012-10-03|2015-07-21|International Business Machines Corporation|Transistor formation using cold welding|
TWI665721B|2013-11-11|2019-07-11|美國密西根州立大學|用於磊晶剝離方法之熱輔助冷焊接合|
WO2015081320A1|2013-11-29|2015-06-04|Forrest Stephen R|Autonomous solar tracking in flat-plate photovoltaic panels using kirigami-inspired microstructures|
TWI681565B|2014-01-15|2020-01-01|美國密西根州立大學|利用超晶格磊晶層對磊晶剝離薄膜裝置行非破壞性晶圓回收|
JP2017510085A|2014-04-04|2017-04-06|ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン|非トラッキングミニ複合放物面集光器と集積化されたエピタキシャルリフトオフ処理されたGaAs薄膜太陽電池|
US10141465B2|2014-04-04|2018-11-27|The Regents Of The University Of Michigan|Epitaxial lift-off processed GaAs thin-film solar cells integrated with non-tracking mini-compound parabolic concentrators|
US20170033247A1|2014-04-29|2017-02-02|The Regents Of The University Of Michigan|Flexible antenna integrated with an array of solar cells|
KR20170128777A|2015-03-18|2017-11-23|더 리젠츠 오브 더 유니버시티 오브 미시간|사전 패터닝된 메사들을 통한 스트레인 경감 에피택셜 리프트-오프|
KR101743017B1|2015-05-19|2017-06-05|한국과학기술연구원|고속 에피택셜 리프트오프와 iii-v족 직접 성장용 템플릿을 이용한 반도체 소자의 제조 방법 및 이에 의해 제조된 반도체 소자|
MX2018003586A|2015-09-24|2018-07-06|Hee Solar Llc|Sistema y metodo para probar la degradacion del dispositivo fotosensible.|
FR3047350B1|2016-02-03|2018-03-09|Soitec|Substrat avance a miroir integre|
KR20190109097A|2018-03-16|2019-09-25|엘지전자 주식회사|화합물 반도체 태양전지의 제조 방법|
DE102018002426A1|2018-03-26|2019-09-26|Azur Space Solar Power Gmbh|Stapelförmiges III-V-Halbleiterzeug und Herstellungsverfahren|
KR20200021772A|2018-08-21|2020-03-02|엘지전자 주식회사|화합물 반도체 태양전지 및 이의 제조 방법|
KR20200023068A|2018-08-24|2020-03-04|엘지전자 주식회사|화합물 반도체 태양전지의 제조 방법|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
US201161505014P| true| 2011-07-06|2011-07-06||
US61/505,014||2011-07-06||
[返回顶部]