专利摘要:
一種具高鹽類耐受性之抗微生物胜肽,其係經增加前述抗微生物胜肽胺基酸之官能基寬度或增加前述微生物胜肽胺基酸之官能基長度;以及一種提高抗微生物胜肽之鹽類耐受性的方法,其係透過增加前述抗微生物胜肽胺基酸之官能基寬度或增加前述微生物胜肽胺基酸之官能基長度。
公开号:TW201316999A
申请号:TW100138970
申请日:2011-10-26
公开日:2013-05-01
发明作者:Jya-Wei Cheng;Hui-Yuan Yu;His-Tsung Cheng;Kuo-Chun Huang
申请人:Nat Univ Tsing Hua;
IPC主号:C07K7-00
专利说明:
具高鹽類耐受性之抗微生物胜肽及其製造方法
一種具高鹽類耐受性之抗微生物胜肽及一種提高抗微生物胜肽之鹽類耐受性的方法,尤指透過前述抗微生物胜肽胺基酸之官能基寬度或增加前述微生物胜肽胺基酸之官能基長度而提高其鹽類耐受性。
由於對傳統抗生素產生抗藥性菌株的出現,促使了新治療試劑的研究,包括許多動物性來源的抗菌胜肽。目前這些抗菌胜肽已被發現在一些宿主與生俱來的防禦機制中扮演著相當重要的角色。包括植物、昆蟲、兩生類和哺乳動物中,可能都具有抗菌胜肽,該抗菌胜肽之抗生素特性可去對抗細菌、真菌,甚至一些病毒。此類抗菌胜肽會與脂質結合(大於百分之九十五),可迅速地分離脂雙層而破壞了膜的完整性。另一方面,也能夠在細菌平行的脂雙層上增加小而短暫的傳導,使得細胞質膜部分去極化而破壞原本的電位梯度。
此類抗菌胜肽在宿主防禦的保護功用,在果蠅實驗已被證實;當果蠅被微生物感染後,若抗菌胜肽的表現量減少,則會大大降低其存活率。而在哺乳動物中,肺囊胞性纖維症病人和小鼠的缺陷性細菌致死(defective bacterial killing)也可證實此類抗菌胜肽在宿主防禦的保護功能。
在哺乳動物中所發現的抗菌胜肽可被分類為富含半胱胺酸的防禦素(α、β防禦素)和多樣的卡色力西丁(cathelicidin)類。卡色力西丁類含有一段高度保留的訊號序列和前區域卡色林(cathelin),及位於C端區塊具變異性的抗菌序列。許多卡色力西丁在帶負電的卡色林區塊和帶正電的C端區塊之間含有獨特的彈性蛋白酵素切割作用位;此作用位的蛋白質水解反應在牛或豬的嗜中性淋巴球中都已被觀察到且為抗菌活性所必須。根據胺基酸成分及構造,卡色力西丁家族可再分類為三群:第一群具有親水脂的α-螺旋胜肽,比如LL-37、CRAMP、SMAP-29、PMAP-37,、BMAP-27和BMAP-28;第二類則是富含精胺酸/脯胺酸或色胺酸胜肽,如Bac5,Bac7,PR-39和吲哚力西丁(indolicidin);第三群則為含半胱胺酸胜肽,如波地金(protegrins)。
學界認為,非抗生素類的抗微生物用藥,如抗微生物胜肽一類,可能是未來抗微生物藥物的發展主軸,尤其是在抗生素抗藥性日益嚴重的今日而言,其醫療用途或使用在養殖漁業及畜產等產業,均有極佳的產業利用性,可望解決今日抗生素藥物氾濫隨之而來的可能隱憂。
抗微生物胜肽大多帶正電性,以分類上屬於α-螺旋胜肽類的P113為例,從圖2可以了解,其胜肽同時帶有親水端(12)跟疏水端(11),由親水端負責一開始對微生物表面的貼附,接著再以疏水端插入病原體,其入侵、破壞微生物表面之示意圖如圖1,P113從微生物體外(101),藉由插入表面來擾亂微生物的細胞膜(10)以及微生物細胞膜的膜內部(102)。
然而因為抗微生物胜肽為一生物性巨分子,由生物體的特定部位所製造、分泌,故對其所處的生理環境,如鹽濃度、pH值等,有一定的要求跟限制,如此便在無形中限制了其使用範疇跟療效。因此對這類胜肽之胺基酸進行適度的修飾,以提升其在高鹽環境下的療效,對於未來在醫療上、適用環境上、對劑型開發的廣泛適應性上,均可以有極大的幫助。本發明係關於開發一種耐高鹽類濃度之抗微生物胜肽及使抗微生物胜肽耐高鹽的方法,以解決目前抗微生物胜肽普遍面臨的問題。
有鑑於此,本發明主要目的為開發並提供一種可增加鹽類耐受度之抗微生物胜肽及其製造方法。
為達上述目的,本發明提供一種具高鹽類耐受性之抗微生物胜肽,其係經增加該抗微生物胜肽一疏水端胺基酸序列之官能基寬度或/和增加該疏水端胺基酸序列之官能基長度。
較佳地,前述增加前述抗微生物胜肽胺基酸之官能基寬度或增加前述微生物胜肽胺基酸之官能基長度係選用某特定巨大的芳香類人工或非人工胺基酸,透過胜肽的人工合成,將前述帶有原始官能基之胺基酸,改置換為具有較大的官能基的胺基酸。
較佳地,前述之具高鹽類耐受性之抗微生物胜肽,其中用於增加寬度之該芳香類胺基酸,係指該芳香類胺基酸官能基寬度介於4.659 -8.924 。
較佳地,前述之具高鹽類耐受性之抗微生物胜肽,其中用於增加官能基寬度之該芳香類胺基酸係選自由Trp(tryptophan/色胺酸)、1-Nal(β-(naphtha-1-yl)alanine/1-萘基丙胺酸)、Bal(β-(benzothien-3-yl)alanine/β-(3-苯并噻吩基)丙胺酸)、2-Nal(β-(naphtha-2-yl)alanine/2-萘基丙胺酸)、Ath(β-(anthracen-9-yl)alanine/β-(9-蒽基)丙胺酸)、Dip(β-diphenylalanine/β-雙苯丙胺酸)和Tbt[β-(2,5,7-tri-tert-butyl-indol-3-yl)alanine/β-(2,5,7-三叔丁基-3-吲哚)丙胺酸]所組成之群組。
較佳地,前述之具高鹽類耐受性之抗微生物胜肽,其中用於增加長度之該芳香類胺基酸,係指該芳香類胺基酸官能基長度介於5.4158.695較佳地,前述之具高鹽類耐受性之抗微生物胜肽,其中用於增加官能基長度之該芳香類胺基酸係選自由Trp(tryptophan/色氨酸)、2-Nal(β-(naphtha-2-yl)alanine/2-萘基丙胺酸)、Bip[β-(4,4’-biphenyl)alanine/β-(4-4’-二苯基)丙胺酸]和Tbt[β-(2,5,7-tri-tert-butyl-indol-3-yl)alanine/β-(2,5,7-三叔丁基-3-吲哚)丙胺酸]所組成之群組。
較佳地,前述之具高鹽類耐受性之抗微生物胜肽,係選自屬於一組胺酸(Histidine)蛋白家族之抗微生物胜肽,並於人工合成時經特定胺基酸的置換而得。
較佳地,前述之一組胺酸(Histidine)蛋白家族之抗微生物胜肽係為P-113胜肽。
較佳地,前述之P113胜肽,其序列為AKRHHGYKRKFH-NH2(SEQ ID NO: 1)。
較佳地,前述之P113抗微生物胜肽,為了增加其疏水端胺基酸序列之官能基寬度或長度,該P113需要被置換的疏水端胺基酸之官能基係為組胺酸。
較佳地,前述較大的官能基係來自一巨大芳香類人工或非人工胺基酸,如:表5內容所示。
本發明亦提供一種提高抗微生物胜肽之鹽類耐受性的方法,其係透過增加前述抗微生物胜肽疏水端胺基酸序列之官能基寬度或/和長度所達成。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,其中用於增加前述抗微生物胜肽疏水端胺基酸序列之官能基長度或寬度之胺基酸分子係為一芳香類胺基酸。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,該抗微生物胜肽係選自一組胺酸(Histidine)蛋白家族胜肽。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,該抗微生物胜肽係選自一組胺酸(Histidine)蛋白家族胜肽,其中組胺酸蛋白家族胜肽係選自P-113胜肽(SEQ ID NO: 1)。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,主要係針對P-113胜肽(SEQ ID NO: 1)的組胺酸,並對其進行置換,以增加其官能基的寬度或/及長度。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,所使用之芳香類胺基酸,若用於增加官能基寬度者,該芳香類胺基酸之官能基寬度可介於4.659-8.924 ,同時該芳香類胺基酸可為一人工合成或非人工合成之芳香類胺基酸。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,芳香類胺基酸官能基的寬度介於4.659-8.924 者,可為Trp、Bal、1-Nal、2-Nal、Dip、Ath和Tbt所組成之群組。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,所使用之芳香類胺基酸,若用於增加官能基長度者,該芳香類胺基酸之官能基長度可介於5.415-8.695 ,同時該芳香類胺基酸可為一人工合成或非人工合成之芳香類胺基酸。
較佳地,前述提高抗微生物胜肽之鹽類耐受性的方法,芳香類胺基酸官能基的長度介於5.415-8.695者,可為Trp、2-Nal、Bip和Tbt為所組成之群組。
綜上所述,本發明提供一種具高鹽類耐受性之抗微生物胜肽,並透過增加抗微生物胜肽胺基酸之官能基寬度或增加微生物胜肽胺基酸之官能基長度之法,進而達到使抗微生物胜肽之鹽類耐受性提高的效果。
本發明提供之抗微生物胜肽具有高度鹽類耐受性,且本發明提供提高抗微生物胜肽之鹽類耐受性的方法中,前述抗微生物胜肽可為各種習知之抗微生物胜肽,包括,但不限於具有富含組胺酸(histidine-rich)特徵的胜肽;該具有富含組胺酸(histidine-rich)特徵的胜肽係屬於一組胺酸(Histidine)蛋白家族,於最佳實施例中,前述之屬於一組胺酸(Histidine)蛋白家族之抗微生物胜肽係為P113,其序列為AKRHHGYKRKFH-NH2(SEQ ID NO: 1)。
本發明抗微生物胜肽係經胜肽的人工合成而得,選用帶有較大官能基的巨大芳香類人工或非人工胺基酸,在胜肽人工合成過程中,以取代帶有原始官能基的胺基酸,以增加原官能基之寬度或增加原官能基之長度,進而得以增加原官能基之面積或體積,前述帶有遠始官能基的胺基酸可為胜肽中疏水端上的各種胺基酸,於較佳實施例中,其為組胺酸。所增加之長度係介於5.415-8.695;所增加之寬度係介於4.659 -8.924 ,並且因為其長度或/及寬度的增加,而相對地導致官能基面積或體積的增加。為了滿足上述的長度、寬度條件,所置換之官能基係來自Trp(tryptophan/色胺酸)、Bal(β-(benzothien-3-yl)alanine/β-(3-苯并噻吩基)丙胺酸)、1-Nal(β-(naphtha-1-yl)alanine/1-萘基丙胺酸)、2-Nal(β-(naphtha-2-yl)alanine/2-萘基丙胺酸)、Dip(β-diphenylalanine/β-雙苯丙胺酸)、Ath(β-(anthracen-9-yl)alanine/β-(9-蒽基)丙胺酸)、Bip[β-(4,4’-biphenyl)alanine/β-(4-4’-二苯基)丙胺酸]以及Tbt(β-(2,5,7-tri-tert-butyl-indol-3-yl)alanine/β-(2,5,7-三叔丁基-3-吲哚)丙胺酸)等芳香類胺基酸。
本發明抗微生物胜肽具有高鹽類耐受性,即便在NaCl的鹽濃度範圍大於200mM以上時,仍保持著良好的抗微生物能力。
一般抗微生物胜肽為包含12-15個胺基酸之胜肽,以下實施例取P113,當P113疏水性端的組胺酸經過巨大的芳香類人工或非人工胺基酸的置換後,再測試其抗微生物之效果,以作為本發明之示例性表示。
實施例一、製備Phe-P113、Nal-P113及Bip-P113Phe-P113、Nal-P113及Bip-P113係自SynBioSci.
Corp.購得(商品化之胜肽人工合成),並以MALDI-TOF測試其純度大於95%。
如圖2所示,P113中位於疏水性端(11)的His4(4)、His5(5)及His12(6)之組胺酸,在胜肽之人工合成過程中,以Phe(Phenylalanine/苯丙胺酸)、2-Nal(2-Naphthylalanine/2-萘基丙胺酸)、Bip[β-(4,4’-biphenyl)alanine/β-(4-4’-二苯基)丙胺酸]進行置換,其中以經Phe置換所得之Phe-P113作為對照組,依序經2-Nal以及Bip置換所得之Nal-P113與Bip-P113作為實驗組。
其胜肽結構結果如圖3所示,此圖為模擬Nal-P113貼附微生物表面的圖示,其為Nal-P113的α-helix側面結構(3)之3D結構與其P113 a-helix縱向結構橫向頗面圖(31),橫線為微生物表面之細胞膜(10),橫線之上為微生物體外(101),亦為一親水環境,橫線之下為微生物細胞膜與膜內部(102),亦為一疏水環境,經胜肽的人工合成而將His4、His5、His12置換成巨大的芳香類人工或非人工胺基酸,如:2-Nal,並發現Nal-P113(圖3)相對於原始P113來說,可以更加深入地嵌於微生物的表面,並幫助其停留於微生物之表面,以增強其抗微生物之效果,而在日後各種不同鹽類濃度的環境下,Nal-P113的抗微生物效果更是優於原始的P113。
實施例二、Phe-P113、Nal-P113及Bip-P113之抗微生物能力測試
為測試Phe-P113、Nal-P113及Bip-P113在不同鹽類濃度之抗微生物能力,以抗微生物活性試驗(Antibacterial activity assay)進行測試,使用三種菌種:大腸桿菌Eschericha coli strains(ATCC 25922)、金黃色葡萄球菌Staphylococcus aureus strains(ATCC 25923,29213 and 19636,methicillin-resistant)和綠膿桿菌Pseudomonas aeruginosa strains(ATCC 27853 and 9027,ampicillin-resistant)。
以National Committee for Clinical Laboratory Standards(NCCLS)之微量稀釋法(microdilution method)測量最低抑制濃度(The minimal inhibition concentration,MIC)。以抑制90%或更多的微生物生長之最低胜肽濃度(minimal inhibition concentration)作為最低抑制濃度。
其中,微量稀釋法Microdilution method為1 μl的胜肽溶液(濃度在5000μg/ml至78.1μg/ml之範圍)與99 μl接種菌inoculums(5×10^5 CFU/ml)混合培養於聚丙烯之96井培養皿中。在37℃下培養16小時後,以ELISA plate reader(Thermo Max,Molecular Devices,Sunnyvale,CA)測量其在O.D.600之濁度。並分別以未加入胜肽之Muller-Hinton Broth(MHB)和inoculums懸浮物之讀值作為陰性對照組和陽性對照組。測出之MIC值為抑制菌株生長(等於或大於90%)之最低胜肽濃度。所有菌種皆測試3次。其結果如表1所示:
測試結果發現,P113的His經Nal及Bip置換後,比原本的P113有更顯著的抗菌效果。
實施例三、Phe-P113、Nal-P113及Bip-P113在不同NaCl濃度下之抗微生物能力測試
接著,在不同NaCl濃度下測試Phe-P113(以Phe表示)、Nal-P113(以Nal表示)及Bip-P113(以Bip表示)抗菌活性,其結果如表2所示:
以上微生物之各菌種皆使用LYM培養基培養,該LYM原為一低鹽培養基,主要在測試對鹽類耐受性較低的抗微生物胜肽之抑菌效果時使用,將LYM內含之NaCl濃度分為50mM、100mM、200mM、300mM四組,微生物經該四組LYM培養後稀釋至104 CFU/ml之菌液,接著以100μl之該菌液加入於96孔培養盤中並加入不同濃度的P113、Phe-P113、Nal-P113或Bip-P113之抗微生物胜肽,以測試在50mM、100mM、200mM、300mM的NaCl濃度下該不同抗微生物胜肽的抑菌效果。(註:該LYM培養基除NaCl的其他成分為5.4mM氯化鉀(KCl)、5.6 mM磷酸氫二鈉(Na2HPO4)、0.5 mM硫酸鎂(MgSO4)及1.0 mM檸檬酸鈉(sodium citrate)。此外,還含有0.4 mg/L的氯化鋅(ZnCl2)、2.0 mg/L的六水合三氯化鐵(FeCl3‧6H2O)、0.1 mg/L的五水合硫酸銅(CuSO4‧5H2O)、0.1 mg/L的一水合硫酸錳(MnSO4‧H2O)與0.1 mg/L的十水合四硼酸鈉(Na2B4O7‧10H2O),最後再加入來自RPMI-1640 Select-Amine Kit中的適量葡萄糖、胺基酸與維生素混合物。)
由以上結果可知,Nal-P113及Bip-P113在不同NaCl濃度下,仍保持適當活性,具有抗微生物之效果。
實施例四、Phe-P113、Nal-P113及Bip-P113在不同MgCl2濃度下之抗微生物能力測試
在不同MgCl2濃度下測試Phe-P113、Nal-P113及Bip-P113抗菌活性,其結果如表3所示:
實施例五、fluconazole、P113以及Nal-P113對真菌Candida spp.的敏感性測試
在典型LYM的培養基中,P113與Nal-P113對真菌造成的敏感性之作用濃度均相差不多,而Flu則作為低鹽環境下的控制組,在低於50mM的鹽環境下,Flu多需較P113與Nal-P113兩者為高的濃度始能對真菌造成敏感性。隨著NaCl濃度的上升,P113則需要更高的濃度才能對真菌的生長造成敏感性,此數據不管在In Vitro或HIV患者身上均可以看到Nal-P113的具體效果(如表4)。
實施例六、置換具有不同長度、寬度官能基之芳香類胺基酸
如實施例一~五所證實,P113之His置換為更寬或更長的官能基時,則可提高P113之耐鹽類濃度變化程度。本發明可使用之置換官能基為巨大芳香類人工或非人工胺基酸團基,其長度大於Trp團基且達到大於5.415 以上時,則被歸類為以增加長度為訴求的胺基酸。如表5長度欄位中之Trp、2-Nal、Bip、Tbt皆屬之。當巨大芳香類人工或非人工胺基酸團基的寬度大於Tryptophan團基且達到大於4.659 以上時,則被歸類為以增加寬度為訴求的胺基酸,如表5之寬度欄位所示之Trp、Bal、1-Nal、2-Nal、Dip、Ath、Tbt皆屬之。
由表5可知,有三個胺基酸可同時滿足長度上與寬度上的訴求,分別是Trp、2-Nal、Tbt。
綜上所述,本發明提供一種抗微生物胜肽,其具有高度鹽類耐受性,且提供提高抗微生物胜肽之鹽類耐受性的方法,以解決抗微生物胜肽不耐高鹽的問題。
10...細胞膜
101...微生物體外
102...膜內部
1...親水端與疏水端之分界
11...疏水端
12...親水端
2...P113 α-helix側面結構
21...P113 α-helix縱向結構
3...Nal-P113 α-helix側面結構
31...Nal-P113 α-helix縱向結構
4...His4
41...縱向His4
5...His5
51...縱向His5
6...His12
61...縱向His12
7...Nal
71...縱向Nal
8...Nal
81...縱向Nal
9...Nal
91...縱向Nal
圖1:抗微生物胜肽P113侵入微生物表面之示意圖,透過側面與縱向兩個角度呈現。
圖2:抗微生物胜肽P113之α-helix結構縱向剖面圖。
圖3:抗微生物胜肽Nal-P113侵入微生物表面之示意圖。
1...親水端與疏水端之分界
11...疏水端
12...親水端
4...His4
5...His5
6...His12
权利要求:
Claims (20)
[1] 一種具高鹽類耐受性之抗微生物胜肽,其係經增加該抗微生物胜肽一疏水端胺基酸序列之官能基寬度或/和增加該疏水端胺基酸序列之官能基長度。
[2] 如申請專利範圍第1項所述之具高鹽類耐受性之抗微生物胜肽,其中用於增加抗微生物胜肽疏水端胺基酸之官能基長度或寬度之胺基酸分子係為一芳香類胺基酸。
[3] 如申請專利範圍第2項所述之具高鹽類耐受性之抗微生物胜肽,其中用於增加寬度之該芳香類胺基酸,係指該芳香類胺基酸官能基寬度介於4.659 -8.924 。
[4] 如申請專利範圍第3項所述之具高鹽類耐受性之抗微生物胜肽,其中該芳香類胺基酸係選自由Trp、Bal、1-Nal、2-Nal、Dip、Ath和Tbt所組成之群組。
[5] 如申請專利範圍第2項所述之具高鹽類耐受性之抗微生物胜肽,其中用於增加長度之該芳香類胺基酸,係指該芳香類胺基酸官能基長度介於5.415-8.695。
[6] 如申請專利範圍第5項所述之具高鹽類耐受性之抗微生物胜肽,其中該芳香類胺基酸係選自由Trp、2-Nal、Bip和Tbt所組成之群組。
[7] 如申請專利範圍第2項所述之具高鹽類耐受性之抗微生物胜肽,其中該芳香類胺基酸係由人工合成或非人工合成之胺基酸。
[8] 如申請專利範圍第1項所述之抗微生物胜肽,其中前述抗微生物胜肽係為一組胺酸(Histidine)蛋白家族胜肽。
[9] 如申請專利範圍第8項所述之抗微生物胜肽,其中組胺酸蛋白家族胜肽係為P-113胜肽(SEQ ID NO: 1)。
[10] 如申請專利範圍第1項所述之具高鹽類耐受性之抗微生物胜肽,其中該疏水端胺基酸序列係指序列中之組胺酸。
[11] 一種提高抗微生物胜肽之鹽類耐受性的方法,其係透過增加前述抗微生物胜肽疏水端胺基酸序列之官能基寬度或/和長度所達成。
[12] 如申請專利範圍第11項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中用於增加前述抗微生物胜肽疏水端胺基酸序列之官能基長度或寬度之胺基酸分子係為一芳香類胺基酸。
[13] 如申請專利範圍第12項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中用於增加寬度之該芳香類胺基酸,係指該芳香類胺基酸官能基寬度介於4.659 -8.924 。
[14] 如申請專利範圍第13項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中該芳香類胺基酸係選自由Trp、Bal、1-Nal、2-Nal、Dip、Ath和Tbt所組成之群組。
[15] 如申請專利範圍第12項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中用於增加長度之該芳香類胺基酸,係指該芳香類胺基酸官能基長度介於5.415-8.695。
[16] 如申請專利範圍第15項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中該芳香類胺基酸係選自由Trp、2-Nal、Bip和Tbt所組成之群組。
[17] 如申請專利範圍第12項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中該芳香類胺基酸係由人工合成或非人工合成之胺基酸。
[18] 如申請專利範圍第11項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中前述抗微生物胜肽係選自一組胺酸(Histidine)蛋白家族胜肽。
[19] 如申請專利範圍第18項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中組胺酸蛋白家族胜肽係選自P-113胜肽(SEQ ID NO: 1)。
[20] 如申請專利範圍第11項所述之提高抗微生物胜肽之鹽類耐受性的方法,其中該抗微生物胜肽疏水端胺基酸序列係指序列中之組胺酸。
类似技术:
公开号 | 公开日 | 专利标题
Boparai et al.2020|Mini review on antimicrobial peptides, sources, mechanism and recent applications
Ma et al.2015|Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles
TWI489991B|2015-07-01|具高鹽類耐受性之抗微生物胜肽及其製造方法
Wu et al.2008|Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332
EP2518080B1|2016-05-18|Antibiotic peptides
Walkenhorst et al.2013|pH dependence of microbe sterilization by cationic antimicrobial peptides
Garcia et al.2013|Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics
Shamova et al.2009|ChBac3. 4: a novel proline-rich antimicrobial peptide from goat leukocytes
Moghaddam et al.2012|Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli
Berthold et al.2014|Cellular uptake of apidaecin 1b and related analogs in Gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides
Hou et al.2011|Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis
Harris et al.2011|Anionic antimicrobial peptides from eukaryotic organisms and their mechanisms of action
Bommineni et al.2010|A fowlicidin-1 analog protects mice from lethal infections induced by methicillin-resistant Staphylococcus aureus
ES2784484T3|2020-09-28|Péptido antimicrobiano
Ahn et al.2014|Poly-lysine peptidomimetics having potent antimicrobial activity without hemolytic activity
de la Fuente-Núñez et al.2015|Using anti-biofilm peptides to treat antibiotic-resistant bacterial infections
Zhao et al.2010|Research and application progress of insect antimicrobial peptides on food industry
Mohammadi et al.2018|Identification and characterization of novel antimicrobial peptide from hippocampus comes by In Silico and experimental studies
Dong et al.2018|Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides
Chou et al.2020|Peptides with triplet-tryptophan-pivot promoted pathogenic bacteria membrane defects
Sim et al.2019|A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin
Park et al.2012|Antibacterial action of new antibacterial peptides, Nod1 and Nod2, isolated from Nordotis discus discus
Mohtar et al.2014|Screening of novel acidified solvents for maximal antimicrobial peptide extraction from Zophobas morio fabricius
Hong et al.2018|Purification and cDNA cloning of the antimicrobial peptide apMolluscidin from the pen shell, Atrina pectinata
KR20190057486A|2019-05-29|돌돔 유래의 항균 펩타이드 및 그의 용도
同族专利:
公开号 | 公开日
TWI489991B|2015-07-01|
US9073967B2|2015-07-07|
US20130109834A1|2013-05-02|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
TWI593704B|2015-07-23|2017-08-01|沛進生命科學公司|具有抗病原菌功效的抗菌胜肽及其製藥用途|
US10093699B2|2015-11-05|2018-10-09|National Tsing Hua University|Peptides with antimicrobial, anticancer and/or wound-healing promoting activities, pharmaceutical compositions containing the same, and use of the peptides with antimicrobial, anticancer and/or wound-healing promoting activities|US5646119A|1991-11-01|1997-07-08|Periodontix, Inc.|D-amino acid histatin-based peptides as anti-fungal and anti-bacterial agents|
US6528488B2|1999-01-08|2003-03-04|Demegen, Inc.|Method for treating cystic fibrosis|TWI577697B|2013-11-28|2017-04-11|國立清華大學|耐高鹽及抗蛋白之抗菌胜肽及其製造方法|
US11174288B2|2016-12-06|2021-11-16|Northeastern University|Heparin-binding cationic peptide self-assembling peptide amphiphiles useful against drug-resistant bacteria|
CN110078799B|2018-07-03|2020-09-04|齐齐哈尔医学院|抗菌肽及其应用|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
TW100138970A|TWI489991B|2011-10-26|2011-10-26|具高鹽類耐受性之抗微生物胜肽及其製造方法|TW100138970A| TWI489991B|2011-10-26|2011-10-26|具高鹽類耐受性之抗微生物胜肽及其製造方法|
US13/471,688| US9073967B2|2011-10-26|2012-05-15|High salt-resistance antibacterial peptide and method for producing the same|
[返回顶部]