专利摘要:
本發明有關2’-氟-6’-亞甲基碳環核苷類、含該等核苷類之醫藥組成物及彼等於治療或預防許多病毒感染及其續發性疾病狀態及病況(特別包括B型肝炎病毒(HBV)及其續發性疾病狀態及病況(硬化及肝癌)、C型肝炎病毒(HCV)、單純疱疹病毒I及II(HSV-1及HSV-2)、細胞巨大病毒(CMV)、水痘帶狀皰狀病毒(VZV)及艾伯斯坦-巴爾病毒(Epstein-Barr virus,EBV)及彼等所發生之續發性癌症(淋巴瘤、鼻咽癌,包括抗藥性(特別是包括拉米呋啶及/或阿德福韋抗性)及該等病毒之其他突變形式)之用途。
公开号:TW201311691A
申请号:TW101116853
申请日:2012-05-11
公开日:2013-03-16
发明作者:Chung K Chu;Jia-Ning Wang
申请人:Univ Georgia;
IPC主号:C07H19-00
专利说明:
2’-氟-6’-亞甲基碳環核苷類及治療病毒感染之方法
本發明有關2’-氟-6’-亞甲基碳環核苷類、含該等核苷類之醫藥組成物及彼等於治療或預防許多病毒感染及其續發性疾病狀態及病況(包括B型肝炎病毒(HBV)及其續發性疾病狀態及病況(硬化及肝癌),包括肝癌,C型肝炎病毒(HCV)、單純疱疹病毒I及II(HSV-1及HSV-2)、細胞巨大病毒(CMV)、水痘帶狀皰狀病毒(VZV)及艾伯斯坦-巴爾病毒(Epstein-Barr virus,EBV),包括抗藥性(尤其包括拉米呋啶(lamivudine)及/或阿德福韋(adefovir)抗性)及該等病毒之其他突變體形式。2’-氟-6’亞甲基-碳環核苷(FMCA,化合物15/18)及其單磷酸酯前藥(胺基磷酸酯(phosphoramidate))(化合物15P)之使用呈現抗HBV之極佳活性且特別是HBV之耐藥性形式,尤其耐拉米呋啶及/或阿德福韋抗-HBV劑之HBV。特別是意外發現前藥形式抗HBV之耐藥性形式的異常活性。 優先權和政府權利之主張
本申請案主張2011年2月13日提出申請之美國申請案號13/107,713的優先權,該申請案標題為“2’-氟-6’-亞甲基碳環核苷類及治療病毒感染之方法”,其整體內容以引用方式併入本文。
本專利申請的工作由國家過敏研究所(the National Institute of Allergy)的美國公共健康研究授權(U.S.Public Health Search Grant)第AI25899號支援。因此,政府保留本發明的某些權利。
B型肝炎病毒(HBV)感染為全球主要的健康問題之一1。雖然大多數成人中的原發性HBV感染受到自限,但是3-5%之病患沒有消退且發展成慢性感染,而此比例在HBV感染的年輕孩童中更高2。慢性B型肝炎(CHB)帶源者的預估人數在全世界約為3.5-4億人,每年超過1百萬人因肝硬化、肝功能衰竭和肝細胞癌而死亡2
現用有效於治療HBV感染之劑可分成兩種主要類別:免疫調節劑和核苷/核苷酸類似物。雖然已經由許多研究建立INF α(一種代表性免疫調節劑)的效力,但是INF α的臨床應用卻受到低的整體反應率、副作用和高成本所累3,4。核苷/核苷酸類似物一方繼續主導抗-HBV療法。有至少6種於臨床上使用的核苷類/核苷酸類,包括拉米呋啶(lamivudine)(Epivir-HBV®,GlaxoSmithKline)、阿德福韋酯(adefovir dipivoxil)(Hepsera®,Gilead)、恩替卡韋(entecavir)(Baraclude®,Bristol-Myers Squibb)、替比夫定(telbivudine)(Tyzeka®,Idenix/Novartis)、克拉夫定(clevudine)(在南韓的Levovir®,在美國的第III期,Bukwang/Pharmasset)和最新的泰諾福韋(tenofovir)(Viread®,Gilead)(圖1)。該等劑顯著地抑制HBV DNA的複製至最低可能程度,此導致有利的臨床結果且預防晚期肝後遺症。事實上,該等口服核苷類/核苷酸類的引進為抗-HBV療法的突破。據報導在美國登記肝移植的病患人數已降低30%,因為核苷抗-HBV劑的廣泛應用5
沒有確鑿的證據是現用的核苷類/核苷酸類治療對HBV共價閉合之環狀DNA(cccDNA)有直接的效果,該HBV共價閉合之環狀DNA具有長的半衰期且咸信其適合作為轉錄模板,只要終止治療6,導致病毒DNA反彈。因此,可能需要長期非常有效的抗病毒治療,以避免治療停止後的病毒復發7。不幸地,長期的核苷類/核苷酸類治療總與顯著地危及效力的耐藥突變體之發展有關聯。與高複製率結合的HBV聚合酶之性質導致HBV突變體的出現,其在某些抗病毒劑的存在下具有生存優勢8。目前使用的拉米呋啶(第一個被批准的抗-HBV核苷)受到高頻率的拉米呋啶耐藥性(最常為rtL180M±rtM204V/I)之限制。試管內研究表明rtL180M+rtM204V/I突變造成病毒對拉米呋啶的易感性降低1000倍以上,而沒有顯著的聚合酶功能損害9,10。在臨床實施中,拉米呋啶的近似耐藥率在1年結束時約為20%及在5年治療後為70% 11-14。替比夫定(另一種L-核苷)對在YMDD基序變異(motif)上以rtM204I代表之主要的拉米呋啶突變具有交叉耐藥性。此與在1年治療後與比拉米呋啶相比而更低的耐藥性(在HBeAg陽性病患中約5%)有關聯,而在2年後的耐藥率跳升至22% 15。該等數據可表明在更長的替比夫定治療期可能有高耐藥性。阿德福韋屬於非環狀膦酸酯。攜有不同的非環狀糖部分使此核苷對L-核苷不具交叉耐藥性。然而,有兩個主要的阿德福韋耐藥突變在181位密碼子(rtA181T)和236位密碼子(tN236T)上,其造成平均有效濃度增加2倍至9倍16-18。雖然增加的倍數適中,但報告顯示對阿德福韋治療沒有反應係與三例發展突變的病患有關聯19,20。以阿德福韋治療發展的耐藥率亦相當高,以2年約3%,5年約29% 21。另一有效的抗HBV核苷:恩替卡韋對耐藥性具有高基因屏障。然而,在已有拉米呋啶耐藥突變存在的病患中,耐恩替卡韋性的可能性從1年的1%增加至5年的51% 22,23。因此,不推薦恩替卡韋作為有YMDD突變的病患之單一療法。雖然迄今還沒有偵測到在臨床上以泰諾福韋或拉米呋啶連續治療後產生耐藥性的確鑿證據,但延長治療後的結果有待確定。
抗病毒耐藥性的發展通常與較差的臨床結果有關聯8。例如,拉米呋啶治療的效力被耐藥性的發展抵消了24。與沒有耐藥性證據的對象相比,已發展耐藥性的病患不太可能顯露出組織學改善(44%對77%),而更有可能顯示肝惡化(15%對5%)24。曾特別報導病患中的肝炎發作(hepatitis flare)和肝衰竭(hepatic decomposition)係繼抗病毒耐藥性的發展之後發展25。因此,抗病毒耐藥性的精心管理在抗HBV治療中極為重要。添加(與不同的核苷或干擾素組合)療法和轉換至替代的核苷單一療法為對初始單一核苷治療未達到最理想反應之病患的兩種主要選擇。雖然還不清楚最有效的耐藥性管理方式,但提供具有高基因屏障且與初始藥物具有不同的耐藥性輪廓的額外/替代劑具關鍵性。目前的抗HBV庫(anti-HBV arsenal)是有限的。因此,重要的是開發具有不僅抵抗野生型(WT),並亦抵抗已存在的HBV耐藥突變體之活性的新穎核苷類似物。在吾等的藥物發現計劃過程期間,以氟原子引至糖部分上產生了許多具有興趣的生物學關注之核苷類的新穎核苷類26-35。因此,非常有興趣探究以6’-外-環烯烴(6’-亞甲基)取代在碳環核苷類上的氟原子。本文中,吾等想要報導感興趣的氟化碳環核苷的發明,該核苷具有抵抗HBV-WT以及拉米呋啶耐藥突變體和阿德福韋耐藥突變體的活性。
搜尋用於B型肝炎病毒、C型肝炎病毒、單純疱疹病毒I和II(HSV I和II)、細胞巨大病毒(CMV)、水痘帶狀皰狀病毒(VZV)及艾伯斯坦-巴爾病毒之抗病毒劑治療是一個持續的過程且本發明係針對該等病毒疾病狀態。 發明簡要說明
本發明有關如下式結構之碳環核苷化合物: 其中B為 其中R為H、F、Cl、Br、I、C1-C4烷基(較佳地CH3)、-C≡N、-C≡C-Ra、X為H、C1-C4烷基(較佳地CH3)、F、Cl、Br或I;Ra為H或-C1-C4烷基;R1及R1a各自獨立地為H、醯基、C1-C20烷基或醚基、胺基酸殘基(D或L)、磷酸酯、二磷酸酯、三磷酸酯、磷酸二酯或胺基磷酸酯(phosphoramidate)基團或R1及R1a與彼等所鍵結之氧原子一起形成碳酸二酯(carbodiester)或磷酸二酯基團;R2為H、醯基、C1-C20烷基或醚基或胺基酸殘基(D或L);或其醫藥上可接受的鹽、鏡像異構物、水合物或溶劑合物。
較佳地R1a為H。同樣較佳地,R1及R2各自獨立地為H或C2-C20醯基,更佳地二者皆為H。在某些方面R1為胺基磷酸酯基團。
B較佳地為
在替代性較佳方面,該化合物係以下式化學結構表示: 其中B為如上所述,較佳地,及R1、R1a和R2係如上另行所述。應注意:在2’位置之氟基(其可以α-或β構形配置在根據本發明化合物中)較佳配置在如所述之β(向上)構形。較佳根據本發明之化合物為前藥形式,其中R1a為如本文中另行說明的胺基磷酸酯基團,較佳地如本文中另行說明的衍生自胺基酸之胺基磷酸酯基團。在某些方面,特佳R1基團為胺基磷酸酯基團 其中Rp1為任意經取代(OH、鹵基)之C1-C20烷基,較佳地C1-C4烷基,甚至更佳地甲基、乙基、異丙基或異丁基;及RP為H、硝基、氰基、甲氧基、或任意經1-3個鹵素取代基(較佳地F)取代之C1-C3烷基。本發明也針對如本文中另行說明的根據胺基磷酸酯基團之個別非鏡像異構物(磷為手性中心)。
R1之較佳胺基磷酸酯基團包括彼等如下式化學結構者: 其中RP為H或C1-C3烷基及Rp1為甲基、乙基、異丙基或異丁基,更佳地甲基或異丙基。
較佳地,R1為基團。
在本發明之特佳方面,用於本發明之抗-HBV化合物為 或其醫藥上可接受的鹽。
本發明也有關醫藥組成物,其包含有效量的如上所述之化合物,任意與醫藥上可接受的載體、添加劑或賦形劑組合。醫藥組成物之替代性具體實例包含有效量的如本文中另行說明的碳環核苷化合物與另一抗病毒劑組合。較佳抗病毒劑包括例如阿昔洛韋(acyclovir)、泛昔洛韋(famciclovir)、更昔洛韋(ganciclovir)、伐昔洛韋(valaciclovir)、阿糖腺苷(vidaribine)、利巴韋林(ribavirin)、帶狀疱疹-免疫球蛋白(ZIG)、拉米呋啶(lamivudine)、阿德福韋酯(adefovir dipivoxil)、恩替卡韋(entecavir)、替比夫定(telbivudine)、克拉夫定(clevudine)、泰諾福韋(tenofovir)及彼等之混合物。使用於本發明藥物方面中的特佳化合物包括 或其醫藥上可接受的鹽。
治療方法代表根據本發明的進一步具體實例。在此方面,治療或降低病毒感染的可能性之方法包含將有效量的如上另行所述的化合物投與至需要治療或處於感染風險的病患,其中該病毒感染是由B型肝炎病毒(HBV)、C型肝炎病毒(HCV)、單純疱疹I(HSV I)、單純疱疹II(HSV II)、細胞巨大病毒(CMV)、水痘帶狀皰狀病毒(VZV)或艾伯斯坦-巴爾病毒(EBV)引起。
在本發明之方法方面,用於本發明以治療HBV之較佳化合物包括: 或其醫藥上可接受的鹽。
在一較佳方法中,本發明有關一種治療HBV感染(包括耐藥性(進一步包括多重耐藥性))HBV感染之方法,其中該耐藥性係為耐目前使用的抗-HBV劑之任一或多者,包括阿德福韋、恩替卡韋及/或拉米呋啶耐藥性,特別是包括耐拉米呋啶及恩替卡韋、拉米呋啶及阿德福韋、恩替卡韋及立馬威啶(limuvidine)及拉米呋啶、恩替卡樂(entecare)及阿德福韋,以及其他之株。在本發明之此方面,用於本發明方法以治療HBV感染,尤其包括耐藥性(包括如上所述之多重耐藥性)HBV感染之較佳化合物包括: 或其醫藥上可接受的鹽。
使用本發明化合物組合另一抗病毒劑之組合治療代表本發明之另一方面。較佳抗病毒劑包括(例如)阿昔洛韋、泛昔洛韋、更昔洛韋、伐昔洛韋、阿糖腺苷、利巴韋林、帶狀疱疹-免疫球蛋白(ZIG)、拉米呋啶、阿德福韋酯、恩替卡韋、替比夫定、克拉夫定、泰諾福韋及彼等之混合物,包括如本文中另行說明的其他藥劑。治療或降低病毒感染包括耐藥性病毒感染(尤其包括HBV及/或HCV)之續發性纖維化、肝癌或硬化的發展可能性之方法代表本發明之另一方面。下列化合物(包括彼等非鏡像異構上富含及/或非鏡像異構上純化合物)使用於某些治療HBV感染(尤其包括HBV之耐藥性(包括如本文中另行說明的多重耐藥性)株之組合治療方面為特佳: 或其醫藥上可接受的鹽與如本文中另行說明的另一抗-HBV劑之任一或多者組合。 發明之詳細說明
下列定義係用以描述本發明。如術語未在本文中明確定義,則給予於該術語的意義為一般技藝人士將該術語適用於該術語使用範圍內的意義。
術語“化合物”如使用本文中係指(除非另有其他指示)本文所揭示之任何特定的化學化合物,通常係指β-D核苷類似物,但可包括於上下文內的該等化合物之互變異構物、區域異構物、幾何異構物,變旋異構物(anomer)且如適用,其光學異構物(鏡像異構物)或非鏡像異構物(兩個手性中心),以及其醫藥上可接受的鹽、溶劑合物及/或多形體。在其於上下文的使用範圍內,術語化合物通常係指單一化合物,但亦可包括其他化合物,諸如所揭示之化合物的立體異構物、區域異構物及/或光學異構物(包括如本文所述之消旋性混合物及/或非鏡像異構物)以及特定的鏡像異構物、鏡像異構上富含或個別非鏡像異構物或混合物。應注意在提供化合物之碳範圍的情況中,該範圍表示各個和每個碳被視為範圍的一部分。例如C1-C20基團說明具有單個碳、2個碳、3個碳。4個碳等等,至多20個碳。
整篇說明書中使用術語“病患”或“對象”以描述提供根據本發明的組成物對其進行治療(包括預防性治療)的動物(較佳為家畜)或人類,更佳為人類。關於專對特定動物(諸如人類病患)的該等感染、病況或疾病狀態的治療,術語病患係指特定動物。在本發明中,術語病患通常係指人類病患,除非另有其他陳述。在本發明中,除了人類以外,亦可常見用於治療馴養的動物(例如,馬、牛、狗、貓等等)。
術語“B型肝炎病毒”或“HBV”係用於描述感染人猿科(hominoidae)(包括人類)之肝臟且引起所謂肝炎的發炎之病毒。原稱為“血清肝炎”之疾病在亞洲和非洲的部分地區引起傳染,且在中國流行。全球人口的約1/3(超過20億人)曾感染B型肝炎病毒。此包括約3.5億慢性病毒帶源者。B型肝炎病毒的傳播源自於感染之血液或含血液之體液。急性疾病造成肝發炎、嘔吐、黃疸及罕見地死亡。慢性B型肝炎最後造成肝硬化和肝癌-對目前的化療法具有非常差的反應之致命疾病。
B型肝炎病毒為肝dna病毒(hepadnavirus)-來自嗜肝(hepatotrophic)之hepa和dna,因為其為DNA病毒且具有由部分雙鏈DNA所組成的圓形基因組。病毒係經由反轉錄所形成的RNA中間體進行複製且該等在這方面類似於逆轉錄病毒。雖然複製係發生在肝臟中,但病毒散佈至血液中,在感染的人之血液中發現病毒特異性蛋白質和其相應之抗體。該等蛋白質和抗體的血液測試被用於診斷感染。
肝硬化和肝癌可因B型肝炎病毒感染而產生。B型肝炎病毒主要係藉由在稱為肝細胞的肝之細胞中複製而干擾肝功能。傳播的主要方法反映在特定地區內的慢性HBV感染之流行率。在低流行率地區,諸如美國和西歐,在此不到2%的人口受到慢性感染,注射毒品的濫用和不安全的性行為為主要的方法,雖然有其他可能重要的因素。在包括東歐、俄羅斯、日本的中度流行率地區,在此有2-7%的人口受到慢性感染,疾病主要在兒童之中散佈。在高流行率地區,諸如中國和東南亞,最常見於分娩期間的傳播,雖然在其他地區,諸如非洲,在幼童期間的傳播為重要的因素。在某些地區的滿性HBV感染之流行率可為至少8%。
B型肝炎病毒的傳播源自暴露於感染之血液或含血液之體液。可能的傳播形式包括(但不限於此)無保護的性接觸、輸血、再使用污染針頭&注射器和在分娩期間從母親至嬰兒的垂直傳播。
已顯示可用於治療及/或抑制HBV感染且可與根據本發明之2’-氟核苷化合物組合用於治療HBV感染的化合物包括(例如)賀維力(Hepsera)(阿德福韋酯)、拉米呋啶、恩替卡韋、替比夫定、泰諾福韋、恩曲他濱(emtricitabine)、克拉夫定(clevudine)、伐托他濱(valtoricitabine)、氨多索韋(amdoxovir)、普拉德福韋(pradefovir)、拉希韋(racivir)、BAM 205、硝唑尼特[nitazoxanide]、UT 231-B、Bay 41-4109、EHT899、札達辛(zadaxin)(胸腺素α-1)及彼等之混合物。術語HBV之“耐藥性”或“耐藥性突變體”包括耐一或多種上述引用的抗-HBV劑(包括多重耐藥性株),尤其包括拉米呋啶、阿德福韋及恩替卡韋之一或多者的所有HBV株。該等株包括(例如)HBV株rtM204V、rtM204I、rtL180M、rtLM/rtMV(其為rt180M/rtM204V之雙突變體)、rtN236T、L180M+S02I+M202V(恩替卡韋(entecavir)突變體)、以及其他。本發明化合物可用於抗所有類型之耐藥性HBV株,包括多重耐藥性株。
術語“C型肝炎病毒”或“HCV”係用於描述引起C型肝炎感染之病毒,其為肝臟的感染疾病。感染通常是無徵候的,但一經確立,慢性感染可以進展到肝結疤(纖維變性)和惡化的結疤(肝硬化),其通常經過多年後顯現。在某些情況下,該等患有硬化的病患繼續發展為肝衰竭或硬化的其他併發症,包括肝癌。
C型肝炎病毒(HCV)係藉由血液與血液接觸而散佈。大多數的人在初期感染後(若有徵候的話)很少出現徵候,但病毒仍存留在約85%之感染者的肝臟中。發展為肝硬化或肝癌的該等病患可能需要肝移植,且病毒普遍在移植後復發。
全球估計有2.7-3億人感染C型肝炎。C型肝炎為一種嚴酷的人類疾病。其不會從任何動物得病或傳給任何動物,雖然對黑猩猩的實驗是可能的。急性C型肝炎係指在以HCV感染後前6個月。所感染之人中介於60%與70%之間在急性期期間未發展出有任何徵候。在少數經歷急性期徵候的病患中,他們通常是輕微而不具特異性且很少導致一個特定的急性感染C型肝炎診斷。急性C型肝炎的徵候包括食慾下降、疲勞、腹痛、黃疸、瘙癢和似流感徵候。C型肝炎病毒通常在以PCR感染後1至3週內的血液中可檢出且對病毒的抗體通常在3至15週內可檢出。自發性病毒清除率非常反覆無常且以HCV感染之人中介於10-60%之間在急性期期間清除彼等體內的病毒,如以正常化的肝酵素(丙胺酸轉胺酶(ALT)&天門冬胺酸轉胺酶(AST)及血漿HCV-RNA清除率(此稱為自發性病毒清除率)所示。然而,持續的感染是常見的且大多數病患發展為慢性C型肝炎,亦即感染持續6個月以上。先前的慣例不治療急性感染,以察看感染者是否會自發地清除;最近的研究顯示在基因型1感染的急性期期間治療具有超過90%之以慢性感染治療所需時間一半的成功率。
將慢性C型肝炎定義為以C型肝炎病毒感染持續6個月以上。其在臨床上時常是無徵候的(沒有徵候)且其主要是偶然發現的。慢性C型肝炎的自然過程係隨人而異而變化很大。雖然幾乎所有以HCV感染的人具有肝臟生檢發炎的證據,肝臟結疤(纖維化)的進展速度顯示在個體之間顯著的變異性。難以建立準確估計的隨時間之風險,因此在有限的時間已取得此病毒的試驗。最近的數據表明在未接受治療的病患中有大約有三分之一在不到20年進展為肝硬化。另外三分之一在30年內進展為肝硬化。其餘的病患出現緩慢的進展,使得彼等在有生之年不可能發展為肝硬化。反之,NIH共識準則聲明經過20年期進展為肝硬化的風險為3-20%。
據報導影響HCV疾病進展之速度的因素包括年齡(漸增的年齡與更快的進展有關聯)、性別(男性比女性有更快的疾病進展)、飲酒(與增加之疾病進展速度有關聯)、HIV共同感染(與顯著增加之疾病進展速度有關聯)和脂肪肝(在肝細胞中存在的脂肪與增加之疾病進展速度有關聯)。
通常沒有特別提示肝疾病的徵候,直到出現大量肝臟結疤為止。但是,C型肝炎為全身性疾病且病患可在發展成惡化的肝疾病前經歷範圍從沒有徵候至更多徵候疾病的廣泛臨床表徵。慢性C型肝炎的全身性症狀和徵候包括疲勞、似流感徵候、關節痛、瘙癢、睡眠障礙、食慾改變、噁心和抑鬱症。
一經慢性C型肝炎進展為肝硬化時,則可出現通常由降低的肝功能或增加的肝循環壓力(稱為門脈高血壓之病況)所造成的症狀和徵候。可能的肝硬化症狀和徵候包括腹水(在腹部的液體積聚)、瘀傷和出血傾向、血管曲張(靜脈擴大,尤其在胃和食道)、黃疸和稱為肝性腦病的認知損傷症候群。肝性腦病係由於氨及通常由健康的肝所清除之其他物質的積聚。
C型肝炎感染之肝臟顯示在肝臟試驗中異變升高的ALT和AST。彼等可能週期地顯示正常的結果。凝血酶原和白蛋白結果是正常的,但一經發展出肝硬化時,可能會變為異常。肝臟試驗的升高水平與生檢的肝損傷程度沒有充分的關係。病毒基因型和病毒載量亦與肝損傷程度沒有關係。肝生檢為測定結疤和發炎程度的最好試驗。放射線照射研究(諸如超聲波或CT掃描)總是顯示不出肝損傷,直到其非常惡化為止。然而,隨著FibroTest和ActiTest出現非侵入性試驗(血液樣品),分別估計肝纖維變性和壞死性發炎(necrotico-inflammatory)。該等試驗在歐洲受到承認且建議(在USA創始的FDA程序)。
超過其他肝炎形式,慢性C型肝炎與HCV存在相關的肝外表現諸如遲發性皮膚卟啉症、冷球蛋白血症(一種小血管炎的形成)和腎小球性腎炎(腎臟的炎症),特別是膜增生性腎小球腎炎(MPGN)有關。C型肝炎也很少與乾症(一種自體免疫疾病)、血小板降低症、扁平苔蘚、糖尿病和B細胞淋巴增生性疾病相關。
顯示可用於治療及/或抑制HCV感染且可與根據本發明之2’-氟核苷化合物組合用於治療HCV感染之化合物包括(例如)NM 283、利巴韋林、VX-950(泰勒普維爾(telaprevir))、SCH 50304、TMC435、VX-500、BX-813、SCH503034、R1626、ITMN-191(R7227)、R7128、PF-868554、TT033、CGH-759、GI 5005、MK-7009、SIRNA-034、MK-0608、A-837093、GS 9190、ACH-1095、GSK625433、TG4040(MVA-HCV)、A-831、F351、NS5A、NS4B、ANA598、A-689、GNI-104、IDX102、ADX184、GL59728、GL60667、PSI-7851、TLR9促效劑、PHX1766、SP-30及彼等之混合物,及如本文中所確定之其他抗病毒化合物。
術語“單純疱疹病毒”、“單純疱疹病毒-1”(HSV-1)、“單純疱疹病毒-2”(HSV-2),是疱疹病毒家族皰疹病毒科(Herpesviridae)之二個種。正如其他疱疹病毒科一樣,單純疱疹病毒可產生終身感染。彼等也稱為人類疱疹病毒1和2(HHV-1和HHV-2)且為親神經性病毒和神經侵入性(neuroinvasive)病毒;彼等進入和隱藏於人類神經系統內,彼等長期佔據在人體內。儘管兩種HSV株中的各株可在通常伴有其他菌株HSV的區域中發現,但HSV-1通常與稱作唇疱疹或熱性疱疹的面部疱疹爆發相關,而HSV-2更經常與生殖器疱疹相關。
單純疱疹病毒感染係以嘴、唇或生殖器的皮膚或黏膜內的水泡為特點。病灶癒合具有疱疹疾病的結痂特性。然而,該感染是持久的,且當原感染部位附近爆發瘡時,症狀可周期性復發。最初或原發性感染之後,HSV潛伏在該區域內的神經細胞體內。一些受感染的人經歷病毒再活化的偶發性發作,接著經由神經軸突輸送病毒至皮膚,其中發生病毒複製和脫落。如果帶原者正在產生和脫落病毒,則該疱疹為傳染性。此在爆發期間尤其可能,但在其他時時也是可能的。目前仍無法治愈,但有降低病毒脫落之可能性的治療。
術語“細胞巨大病毒”、“CMV”人類細胞巨大病毒,“HCMV”用於描述疱疹病毒群的疱疹病毒屬:在人類中也通稱為HCMV或人類疱疹病毒5(HHV-5)。CMV屬於疱疹病毒科(Herpesviridae)的β疱疹病毒(Betaherpesvirinae)亞科,其也包括玫瑰疹病毒屬(Roseolovirus)。其他疱疹病毒都歸入α-疱疹病毒亞科(Alphaherpesvirinae)(包括HSV1和2以及水痘)或伽瑪疱疹病毒亞科(Gammaherpesvirinae)(包括艾伯斯坦-巴爾病毒)。[1]所有疱疹病毒共同具有在身體內長期潛伏的特性能力。
雖然全身都可發現HCMV感染,但HCMV感染經常與唾液腺有關。HCMV感染也會危及免疫功能低下的病患(例如HIV病患、器官移植接受者或新生兒)之生命。[1]在一些哺乳動物物種中發現其他CMV病毒,但根據基因組結構,由動物分離出的物種與HCMV不同,且不曾報道過引起人類疾病。
在所有地域和社會經濟群體中均發現了HCMV,且根據大多數一般人口中存在抗體所示,感染50%及80%之間的美國成年人(全球40%)。血清陽性率取決於年齡:58.9%的6歲及以上個體感染有CMV,而90.8%的80歲及以上的個體對於HCMV為陽性。HCMV也為最常傳遞至發育中的胎兒之病毒。HCMV感染在發展中國家和具有較低社會經濟狀況的社會中傳播更廣泛,並且在工業化國家中是引起出生缺陷的最重要病毒代表。
出生後感染有HCMV的大多數健康人沒有症狀。他們中的一些發展為伴有長期發熱以及輕微肝炎的傳染性單核細胞增多/類腺熱症候群(glandular fever-like syndrome)。喉嚨痛是常見的。感染後,該病毒終生潛伏在體內。明顯的疾病很少發生,除非免疫被藥物、感染或老齡抑制。經常無症狀的初期HCMV感染,伴隨著長期而隱性的感染,在此期間該病毒駐留在細胞內,而不引起可檢測到的損傷或臨床疾病。
傳染性CMV可在任何受感染的人之體液內脫落,並可在尿液、唾液、血液、淚液、精液和母乳中發現。病毒脫落可間歇性發生,而沒有任何可察覺的徵兆或症狀。
術語“水痘帶狀疱疹病毒”或“VZV”用於描述已知感染人類(和其他脊椎動物)的八種疱疹病毒中的一種。VZV通常導致兒童水痘及成人帶狀疱疹和帶狀疱疹後遺神經痛。水痘-帶狀疱疹病毒有許多名稱,包括:水痘(chickenpox)病毒、水痘(varicella)病毒、帶狀疱疹病毒及人類疱疹病毒型3(HHV-3)。原發性VZV感染導致水痘(chickenpox)(水痘(varicella)),但很少引起包括腦炎或肺炎的併發症。即使已解決了水痘(chickenpox)的臨床症狀,VZV仍潛伏在感染者的神經系統中(病毒潛伏期)、在三叉神經和背根神經節內。在約10-20%的情況中,VZV在以後的生活中再活化,產生稱作帶狀疱疹(herpes zoster)或帶狀疱疹(shingles)的疾病。嚴重的帶狀疱疹併發症包括帶狀疱疹後遺神經痛、多重帶狀疱疹、脊髓炎、眼部疱疹或無疹性帶狀疱疹。
VZV與單純疱疹病毒(HSV)密切相關,共有很多同源性基因組。許多已知的VZV包膜糖蛋白與HSV中的一致。VZV,不同於HSV,未能產生在建立HSV潛伏物(單純性疱疹病毒)中發揮重要作用的LAT(潛伏相關轉錄體)。該病毒很易受消毒劑(特別是次氯酸鈉)的影響。在人體內,可連同本發明的化合物與許多藥物和治療劑(包括阿昔洛韋、帶狀疱疹-免疫球蛋白(ZIG)和阿糖腺苷)一同進行治療。
術語“艾伯斯坦-巴爾病毒”或“EBV”,也稱作人類疱疹病毒4(HHV-4),是疱疹家族中的一種病毒,且為人類最常見的病毒之一。大多數人感染EBV後,經常無症狀,但感染通常會導致傳染性單核細胞增多症(也稱腺熱)。艾伯斯坦-巴爾病毒在世界各地發生。大多數人在其生命中的某一時間感染EBV,因此獲得適應性免疫,藉由EBV抗體防止再感染而反復生病。在美國,多達95%的35至40歲年齡的成年人曾受感染。母源抗體保護(與生俱來)一旦消失,嬰兒就容易感染EBV。當EBV感染發生在青春期或成年早期時,在35%至69%的時間裏會導致傳染性單核細胞增多症。
術語“贅瘤形成”或“癌症”係使用於整篇說明書中以指示導致癌性或惡性腫贅瘤之形成和成長的病理過程,即因細胞增生引起的不正常組織生長,該生長經常比正常組織生長更快且在引發該新生長的刺激停止後不斷生長。惡性腫瘤顯示結構組織以及與正常組織進行功能配合之部分或完全缺失,並大多侵入周圍組織,轉移至多個部位,且可能在嘗試性清除後復發及導致病患死亡,除非進行充分治療。如使用於本文中,術語贅瘤形成用以描述所有癌性疾病狀態並包含或包括與惡性血、腹水和固體腫瘤相關的病理過程。代表性癌症包括(例如)胃癌、結腸癌、直腸癌、肝癌、胰腺癌、肺癌、乳腺癌、子宮頸癌、子宮體癌、卵巢癌、前列腺癌、睾丸癌、膀胱癌、腎癌、腦/CNS癌、頭頸癌、喉嚨癌、霍奇金氏病、非霍奇金氏淋巴瘤、多發性骨髓瘤、白血病、黑素瘤、急性淋巴細胞白血病、急性骨髓性白血病、尤因氏肉瘤、小細胞肺癌、絨膜癌、橫紋肌肉瘤、威爾姆氏癌、神經母細胞瘤、毛細胞白血病、口或咽癌、鼻咽癌、食道癌、喉癌、腎癌和淋巴瘤以及其他,這些癌症可以一或多種根據本發明的化合物治療。在本發明的某些方面,術語腫瘤或癌症指肝細胞癌、淋巴瘤、伯基特淋巴瘤(Burkitt’s lymphoma)、霍奇金氏淋巴瘤和鼻咽癌,這些癌症經常繼發於B型肝炎病毒(HBV)、C型肝炎病毒(HCV)及/或艾伯斯坦-巴爾病毒(EBV)感染。
術語“腫瘤”用於描述惡性或良性的生長或腫脹。
術語“抗癌化合物”或“抗癌劑”用於描述任何可用於治療癌症的化合物。使用於本發明的抗癌化合物可與本發明化合物中的一或多種共投與以治療病毒感染存在時或繼發於病毒感染的癌症。使用於本發明與根據本發明化合物共投與的示範抗癌化合物包括許多廣泛地地以抗代謝物、拓撲異構酶I和II的抑制劑、烷化劑和微管抑制劑(如紫杉醇)為特徵的化合物。使用於本發明的抗癌化合物包括(例如)阿地白介素(Aldesleukin);阿萊珠單抗(Alemtuzumab);阿利維A酸(alitretinoin);別嘌呤(allopurinol);六甲蜜胺(altretamine);氧磷汀(amifostine);阿那曲唑(anastrozole);三氧化二砷;天冬醯胺酸酶;BCG Live;貝沙羅汀(bexarotene)膠囊;貝沙羅汀凝膠;博來黴素(bleomycin);靜脈注射白消安(busulfan);口服白消安;卡普睾酮(calusterone);卡培他濱(capecitabine);卡莫司汀(carmustine);具有聚苯丙生(Polifeprosan)20植入物之卡莫司汀;塞來昔布(celecoxib);苯丁酸氮芥(chlorambucil);順鉑(cisplatin);克拉屈濱(cladribine);環磷醯胺(cyclophosphamide);阿糖胞苷(cytarabine);阿糖胞苷脂質體;達卡巴嗪(dacarbazine);更生黴素(dactinomycin)、放線菌素D(actinomycin D);阿法達比泊汀(Darbepoetin alfa);柔紅黴素(daunorubicin)脂質體;柔紅黴素、柔紅黴素(daunomycin);地尼白介素(Denileukin diftitox);右雷佐生(dexrazoxane);多西他賽(docetaxel);多柔比星(doxorubicin);多柔比星脂質體;丙酸甲雄烷酮(Dromostanolone);愛立特氏B(Elliott’s B)溶液;表柔比星(epirubicin);阿法依泊汀雌莫司汀(epoetin alfa estramustine);磷酸依托泊苷(etoposide phosphate);依托泊苷(etoposide)(VP-16);依西美坦(exemestane));非格司亭(Filgrastim);氮尿苷(floxuridine)(動脈內);氟達拉濱(fludarabine);氟尿嘧啶(fluorouracil)(5-FU);否威秋特(folvestrant);吉妥珠單抗(gemtuzumab)奧唑米星(ozogamicin);醋酸戈舍瑞林(goserelin);羥基脲;替伊莫單抗(Ibritumomab Tiuxetan);伊達比星(idarubicin);異環磷醯胺(ifosfamide);甲磺酸伊馬替尼(imatinib mesylate);干擾素α-2a;干擾素α-2b;伊立替康(irinotecan);來曲唑(letrozole);菊白葉酸(leucovorin);左旋咪唑(levamisole);洛莫司汀(lomustine,CCNU);氮芥(meclorethamine)(氮芥子氣(nitrogen mustard));醋酸甲地孕酮(megestrol);美法侖(melphalan)(L-PAM);巰嘌呤(6-MP);美司鈉(mesna);氨甲喋呤(methotrexate);甲氧沙林(methoxsalen);絲裂黴素C(mitomycin C);米托坦(mitotane);米托蒽醌(mitoxantrone);苯丙酸諾龍(nandrolone phenpropionate);諾非妥莫單抗(Nofetumomab);LOddC;奧普瑞白介素(Oprelvekin);奧沙利鉑(oxaliplatin);紫杉醇(paclitaxel);帕米膦酸(pamidronate);培加酶(pegademase);培門冬酶(Pegaspargase);培非司亭(Pegfilgrastim);噴司他丁(pentostatin);哌泊溴烷(pipobroman);普卡黴素(plicamycin)、光輝黴素(mithramycin);卟吩姆鈉(porfimer sodiuma);丙卡巴肼(procarbazine);奎納克林(quinacrine);拉布立酶(Rasburicase);利妥昔單抗(Rituximab);沙莫司亭(Sargramostim);鏈佐星(streptozotocin);替比夫定(LDT);滑石;他莫昔芬(tamoxifen);替莫唑胺(temozolomide);替尼泊苷(teniposide)(VM-26);睾內酯(testolactone);硫鳥嘌呤(thioguanine)(6-TG);噻替哌(thiotepa);拓撲替康(topotecan);托瑞米芬(toremifene);托西莫單抗(Tositumomab);維生素A酸(tretinoin)(ATRA);尿嘧啶氮芥(Uracil Mustard);戊柔比星(valrubicin);弗特西他賓(valtorcitabine)(monoval LDC);長春鹼(vinblastine);長春瑞濱(vinorelbine);唑來膦酸鹽(zoledronate);且彼等之混合物,以及其他。
整篇說明書中使用術語“醫藥上可接受的鹽”以描述(如適用)本文所述化合物的一或多種的鹽形式,其呈現增加該化合物在病患胃腸道之胃液中的溶解度以便促進該化合物的溶解和生物可用度。如適用,醫藥上可接受的鹽包括彼等衍生自醫藥上可接受的無機或有機鹼和酸的鹽。適當鹽包括彼等衍生自鹼金屬例如鉀和鈉、鹼土金屬例如鈣、鎂和銨鹽,以及許多其他的在醫藥技藝中廣為人知的酸。鈉鹽和鉀鹽特佳作為根據本發明的磷酸鹽的中和鹽。
整篇說明書中使用術語“醫藥上可接受的衍生物”以描述任何醫藥可接受的前藥形式(諸如酯、醚或醯胺或其他前藥基團),其一旦投與至病患時,直接或間接地提供本發明化合物或本發明化合物的活性代謝物。
術語“烷基”在其範圍內應表示C1-C20,較佳地C1-C10直鏈、支鏈或環狀完全飽和烴基,其可任意地經取代。需要注意的是,在提供碳範圍之情況下,該範圍表示各個及每個碳可認為是該範圍的一部分。例如,C1-C20基團描述具有單個碳原子、2個碳原子、3個碳原子,4個碳原子等等的基團。術語“醚”應表示任意經取代之C1至C20醚基,由氧和烷基形成,或者,也可在烷基或伸烷基鏈內含有至少一個氧。
術語“芳族”或“芳基”在其範圍內應表示具有單環(例如,苯基)或多個稠環(例如,萘基、蒽基、菲基)的經取代或未經取代之單價碳環芳族基。其他實例包括任意經取代之環中具有一個或多個氮、氧或硫原子的雜環芳族環基團(“雜芳族”或“雜芳基”),且較佳地包括五員或六員雜芳基,諸如咪唑、呋喃基、吡咯、呋喃基、噻吩、噻唑、吡啶、吡、三唑,噁唑,以及其他,但也可包括稠環雜芳基諸如吲哚基團,以及其他。在根據本發明化合物中的較佳芳基為苯基或經取代之苯基。
術語“雜環”應表示任意經取代之部分,其為環狀且含有至少一個非碳原子的原子(諸如氮、硫,氧或其他原子),該環可為飽和及/或不飽和。
術語“未經取代”應表示僅具氫原子。術語“經取代”在所定義化合物的化學範圍內應表示選自烴基(其本身可經取代,較佳地經任意經取代之烷基或氟基,以及其他取代),較佳地烷基(通常,長度不大於約3個碳單元)之取代基(每個取代基本身可被取代),其包括CF3、任意經取代之芳基、鹵素(F、Cl、Br、I)、硫醇、羥基、羧基、C1-C3烷氧基、烷氧基羰基、CN、硝基或任意經取代之胺(例如,伸烷基胺或C1-C3單烷基或二烷基胺)。各種任意經取代之部分可經3或多個取代基取代,較佳地不多於3個取代基取代,且較佳經1或2個取代基取代。
整篇說明書中使用術語“醯基”以描述該核苷類似物的5’或3’位置上(即在該碳環部分的游離羥基位置處)或在該核苷鹼基的環外胺上的基團,該核苷鹼基含有C1至C20直鏈、支鏈或環狀烷基鏈。該醯基與羥基組合導致酯,及該醯基與環外胺基組合導致醯胺,其在投與後,可被裂解而產生本發明的游離核苷形式。根據本發明的醯基係以下式結構表示: 其中R4為C1至C20直鏈、支鏈或環狀烷基,其較佳地任意經(例如)1-3個羥基、1-3個鹵基(F、Cl、Br、I)或胺基團(其本身任意經一個或二個任意帶有1及3個之間的羥基之C1-C6烷基取代)、烷氧基烷基(包括可結束於游離羥基或C1-C10烷基且分子量範圍從約50至約40,000或約200至約5,000的環氧乙烷鏈)取代,諸如苯氧基甲基、芳基、烷氧基、烷氧基羰氧基(例如,[(異丙氧基羰基)氧基]-甲氧基)、芳氧基烷基、以及其他,如上所述,該等基團全部可任意地經取代。較佳醯基為彼等其中R4為C1至C12烷基者。根據本發明之醯基基團也包括(例如)彼等衍生自苯甲酸及相關酸、3-氯苯甲酸、琥珀酸、癸酸和己酸、月桂酸、肉豆蔻酸、棕櫚酸、硬脂酸和油酸基以及許多其他酸的醯基,且可包括該等相關基團如碸基團諸如甲磺酸酯基團。在如本文中另行說明的範圍內所有基團都可適當經取代。該技藝一般技術人士將確認醯基在本發明中具有用於合成該目標醫藥化合物或作為根據本發明的核苷類之前藥的利用性。
術語“胺基酸”或“胺基酸殘基”在其範圍內應表示於胞嘧啶鹼之4’環外胺位置或糖合成組元之5’-或3’-OH(R2、R1或R1a)透過胺基酸之羧酸部分共價鍵結至核苷類似物之D-或L-胺基酸的基團,因此分別形成將核苷連接至胺基酸的醯胺或酯基團。胺基酸也可用以提供在如本文中另行說明的根據本發明之核苷化合物中的胺基磷酸酯(phosphoramidate)基團。代表性胺基酸包括天然及非天然胺基酸二者,較佳地包括(例如)丙胺酸、β-丙胺酸、精胺酸、天冬醯胺酸、天冬胺酸、半胱胺酸、胱胺酸、麩胺酸、麩醯胺酸、甘胺酸、苯基丙胺酸、組胺酸、異白胺酸、離胺酸、白胺酸、甲硫胺酸、脯胺酸、絲胺酸、蘇胺酸、纈胺酸、色胺酸或酪胺酸,以及其他。
整篇說明書中使用術語“磷酸酯”或“磷酸二酯”(該術語在上下文中包括磷酸三酯基團及胺基磷酸酯(phosphoramidate)基團)以描述碳環糖合成組元之5’位置上的單-磷酸酯基團,其被單-或二酯化(或在胺基磷酸酯之情形下被醯胺化和任意酯化)以使磷酸酯基團帶負電荷或呈電中性,即具有中性電荷。使用於本發明中之磷酸酯、磷酸二酯及/或胺基磷酸酯基團包括彼等以下式結構表示者: 其各R5及R6係獨立地選自H、C1至C20直鏈、支鏈或環狀烷基、烷氧基烷基、芳氧基烷基,諸如苯氧基甲基、任意經取代之芳基(尤其任意地經取代之苯基)及烷氧基,以及其他,包括烷氧基羰氧基(例如,(異丙氧基羰基)氧基)-甲氧基),該等基團各個可任意經取代(例如,苯基或其他基團可如本文中另行說明的任意經取代或較佳地經從一至三個,C1-C6烷基、鹵素(較佳地F、Cl或Br)、硝基、氰基或C2-C6羧酸酯(carboxyester)基團取代),惟至少一個R5基團不是H,或二個R5基團一起形成五或六員雜環基;B’為基團或得自胺基酸(天然或非天然胺基酸諸如,例如,丙胺酸、β-丙胺酸、精胺酸、天冬醯胺酸、天冬胺酸、半胱胺酸、胱胺酸、麩胺酸、麩醯胺酸、甘胺酸、苯基丙胺酸、組胺酸、異白胺酸、離胺酸、白胺酸、甲硫胺酸、脯胺酸、絲胺酸、蘇胺酸、纈胺酸、色胺酸或酪胺酸、以及其他)之基團以較佳地提供如下式結構之基團其中i為0、1、2或3(較佳地0)R7為C1至C20直鏈、支鏈或環狀烷基或醯基、烷氧基烷基、芳氧基烷基,諸如苯氧基甲基,任意經取代之芳基(如上所述)及烷氧基,以及其他,該等基團各個可任意經取代;R8為胺基酸之側鏈,較佳地選自由下列所組成群組之胺基酸的側鏈:丙胺酸、β-丙胺酸、精胺酸、天冬醯胺酸、天冬胺酸、半胱胺酸、胱胺酸、麩胺酸、麩醯胺酸、甘胺酸、苯基丙胺酸、組胺酸、異白胺酸、離胺酸、白胺酸、甲硫胺酸、脯胺酸、絲胺酸、蘇胺酸、纈胺酸、色胺酸或酪胺酸(較佳地R8係衍生自丙胺酸、白胺酸、異白胺酸或蘇胺酸、更佳地丙胺酸-R8為甲基),及R”為C1至C20直鏈、支鏈或環狀烷基或苯基或雜芳基,該等基團各自係任意地經取代。
使用於根據本發明前藥形式中之較佳單磷酸酯為彼等其中R5為C1至C20直鏈或支鏈烷基,更佳地C1至C3烷基者,該等基團全部可任意地經取代。較佳如本文中另行說明的其他化合物,尤其,其中R1為如本文中另行說明的胺基磷酸酯基團。一較佳胺基磷酸酯為 其中Rp1為任意經取代(OH、鹵基)之C1-C20烷基,較佳地C1-C4烷基,甚至更佳地甲基、乙基、異丙基或異丁基;且RP為H、硝基、氰基、甲氧基或任意經1-3個鹵素取代基(較佳地F)取代之C1-C3烷基。
R1之較佳胺基磷酸酯基團包括該等如下式化學結構者: 其中RP為H或C1-C3烷基(較佳地H)及Rp1為甲基、乙基、異丙基或異丁基,更佳地甲基或異丙基。在其他具體實例中R1為基團。
術語“有效量”應表示在其投與或使用的情況下是有效的根據本發明化合物之量或濃度,其可為抑制、預防及/或治療。在上下文中,本發明中使用的所有活性化合物均以有效量使用。本發明化合物也有關都含有有效量的所用之各化合物的組合,無論該組合在效果上相加或加乘,只要化合物組合的整體效果將如本文中另行說明的抑制生長、降低病患病毒感染的可能性或治療病患的病毒感染。
術語“D-構形”如使用於本發明上下文中係指本發明核苷化合物的構形,其模擬與非天然存在的核苷或“L”構形相反的糖部分之天然構形。術語“β”或“β變旋異構物”用於描述根據本發明的核苷類似物,其中該核苷鹼基係配置(放置)在該化合物的碳環部分的平面之上。
整篇說明書中使用術語“鏡像異構上富含”以描述包括至少約95%,較佳地至少約96%,更佳地至少約97%,甚至更佳地,至少約98%,及甚至更佳地至少約100%或更多的核苷之核苷的單一鏡像異構物。根據本發明的碳環核苷化合物一般為β-D-核苷化合物。當本說明書中指出根據本發明的化合物時,除另有說明,否則假定該核苷具有D-核苷構形且為鏡像異構上富含(較佳,約100%的D-核苷)。術語“非鏡像異構上純”係用以描述根據本發明化合物之單一非鏡像異構物,其包含至少95%、96%、97%、98%、99%、99.5%或100%以重量計之單一非鏡像異構物以排除(enclusion)其他可能的非鏡像異構物。
術語“共投與(coadminister”及“coadministration)”係同義地使用於描述於認為同時或大約同時其用量或濃度是有效量的至少一種根據本發明之核苷化合物組合使用至少一種其他藥劑(較佳至少一種另一抗病毒劑(包括本文中特別揭示的其他核苷抗病毒劑)之投與。而較佳者為同時投與待投與之共投與劑,藥劑可在這個時候投與,使得兩種(或更多種)藥劑的有效濃度同時在該病患體內出現經至少一段短時間。或者,在本發明的某些方面,可能使每種共投與劑在病患體內於不同時間顯示其抑制效果,且最終結果為抑制病毒和治療上述感染。當然,當一種以上的病毒或其他感染或其他病況存在時,本發明化合物如需要可與治療其他感染或病況的藥劑組合。在某些較佳組成物及方法中,本發明碳環核苷化合物係與至少一種另一抗病毒劑共調配及/或共投與,較佳地其中該抗病毒劑為阿昔洛韋、泛昔洛韋、更昔洛韋、伐昔洛韋、阿糖腺苷、利巴韋林、帶狀疱疹-免疫球蛋白(ZIG)、拉米呋啶、阿德福韋酯、恩替卡韋、替比夫定、克拉夫定、泰諾福韋或彼等之混合物。在HCV感染之情況中,本發明2’-氟碳環核苷化合物較佳可與另一抗-HBV劑例如賀維力(Hepsera)(阿德福韋酯)、拉米呋啶、恩替卡韋、替比夫定、泰諾福韋、恩曲他濱、克拉夫定、伐托他濱、氨多索韋、普拉德福韋、拉希韋、BAM 205、硝唑尼特(nitazoxanide)、UT 231-B、Bay 41-4109、EHT899、札達辛(zadaxin)(胸腺素α-1)及彼等之混合物共投與。在HCV感染之情況中,本發明2’-氟碳環核苷化合物較佳可與另一抗-HCV劑例如,NM 283、利巴韋林、VX-950(泰勒普維爾(telaprevir))、SCH 50304、TMC435、VX-500、BX-813、SCH503034、R1626、ITMN-191(R7227)、R7128、PF-868554、TT033、CGH-759、GI 5005、MK-7009、SIRNA-034、MK-0608、A-837093、GS 9190、ACH-1095、GSK625433、TG4040(MVA-HCV)、A-831、F351、NS5A、NS4B、ANA598、A-689、GNI-104、IDX102、ADX184、GL59728、GL60667、PSI-7851、TLR9促效劑、PHX1766、SP-30及彼等之混合物共投與。
在替代性具體實例中,尤其是在HBV、HCV或艾伯斯坦-巴爾(Epstein-Barr)治療之情形中,本根據發明的化合物也可與抗癌劑共投與。
術語“獨立地”係使用於本文中以表示獨立應用的變數在各應用之間獨立變化。
本發明有關如下式結構之碳環核苷化合物: 其中B為 其中R為H、F、Cl、Br、I、C1-C4烷基(較佳地CH3)、-C≡N、-C≡C-Ra、X為H、C1-C4烷基(較佳地CH3)、F、Cl、Br或I;Ra為H或-C1-C4烷基;R1及R1a各自獨立地為H、醯基、C1-C20烷基或醚基、胺基酸殘基(D或L)、磷酸酯、二磷酸酯、三磷酸酯、磷酸二酯或胺基磷酸酯基團或R1及R1a與彼等所鍵結之氧原子一起形成碳酸二酯或磷酸二酯基團;R2為H、醯基、C1-C20烷基或醚基或胺基酸殘基(D或L);或其醫藥上可接受的鹽、鏡像異構物、水合物或溶劑合物。
較佳地R1a為H。同樣較佳地,R1及R2各自獨立地為H或C2-C20醯基,更佳地H。在其他具體實例中,R1為如本文中另行說明的胺基磷酸酯基團或如下式結構之胺基磷酸酯基團: 其中Rp1為任意經取代(OH、鹵基)之C1-C20烷基,較佳地C1-C4烷基,甚至更佳地甲基、乙基、異丙基或異丁基;RP為H、硝基、氰基、甲氧基、或任意經1-3個鹵素取代基(較佳地F)取代之C1-C3烷基。
R1之較佳胺基磷酸酯基團包括彼等如下式化學結構者: 其中Rp1為甲基、乙基、異丙基或異丁基及RP為H、硝基、氰基、甲氧基或C1-C3烷基,較佳為H。在本發明某些方面R1胺基磷酸酯基團較佳為 當R1為如上所述之胺基磷酸酯基團時,R1a較佳為H及R2較佳為H或C2-C20醯基。B較佳為
在替代性較佳方面中,化合物係以下列化學結構表示: 其中B係如上所述,較佳為,及R1、R1a及R2係如上另行所述的,最佳地,R1a及R2為H及R1較佳為胺基磷酸酯基團,尤其包括如下式結構之胺基磷酸酯基團: 其中Rp1為甲基、乙基、異丙基或異丁基及Rp為H。
本發明也有關醫藥組成物,其包含有效量的如上所述之化合物,任意與醫藥上可接受的載體、添加劑或賦形劑組合。在替代性具體實例中,醫藥組成物也可含有一或多種如本文中另行說明的另一抗病毒劑組合添加劑、載體或賦形劑。
治療方法代表根據本發明的進一步具體實例。在此方面,治療或降低需要治療或處於感染風險或其續發性疾病狀態或病況的病患之病毒感染或其續發性疾病狀態或病況(特別是選自HBV、HCV、HSV-1、HSV-2、CMV(包括HCMV)、VZV或EBV感染之病毒感染)的可能性之方法包含投與有效量的如上另行所述的化合物。替代性具體實例依賴於將根據本發明化合物組合另一抗病毒試劑共投與至該病患。在較佳方面,治療或降低HBV(包括其耐藥性株)或由於HBV發生之續發性疾病或病況的可能性之方法係有關將有效量的如本文中所描述的根據本發明化合物,較佳地如下式化學結構之化合物投與至需要之病患, 或其醫藥上可接受的鹽、溶劑合物或多形體。
以根據本發明的核苷化合物為主的醫藥組成物包含一或多種用於治療或降低需要該治療的病患的病毒感染(尤其HBV、HCV、HSV-1、HSV-2、CMV(HMCV)、VZV或EBV感染)之可能性的有效量之上述化合物,任意與醫藥上可接受的添加劑、載體或賦形劑組合。一般技藝人士將認識到治療有效量的將隨待治療的感染或病況、感染的嚴重性、待採用的治療方案、所用藥劑的藥物動力學,以及待治療的病患或對象(動物或人)改變。
在本發明的醫藥方面,根據本發明之化合物較佳與醫藥上可接受的載體混合調配。通常,較佳者為採用口服形式投與該醫藥組成物,但某些調配物可經由腸胃外、靜脈內、肌肉內、經皮、經頰、皮下、栓劑或其他途徑投與。靜脈和肌肉調配物較佳以無菌鹽水投與。在某些情況下,經皮投與為較佳。當然,一般技藝人士可在本說明書教示範圍內調整該調配物以提供許多用於特定投與途徑的調配物,而不導致本發明組成物不穩定或損害其治療活性。具體而言,改良本發明化合物使其更易溶於水或其他賦形藥,例如可藉由一般技藝範圍內之細微調整(鹽調配物、酯化等)容易地完成。同樣,也可在例行技藝範圍內調整投與途徑和特定化合物的劑量方案以控制本化合物的藥物動力學,以在病患體內得到最大的有益效果。
在某些醫藥劑型中,化合物的前藥形式,尤其包括醯化(乙醯化或其他)和醚(烷基及其相關)衍生物、磷酸酯和各種鹽的形式為較佳。一般技藝人士應認識到如何容易地將本化合物修正為前藥形式,以促進活性化合物輸至宿主生物體或病患體內的靶標部位。技術人員也將利用該前藥形式的有利藥物動力學參數,如適用,藉由將本發明化合物輸至宿主生物體或病患體內的靶標部位,以最大化該化合物的預期效果。
包括在本發明活性調配物內的化合物量為用於治療感染或病況(尤其是如本文中另行說明的病毒感染)的有效量。通常,於醫藥劑型的本發明化合物的治療有效量一般範圍在每日約0.05 mg/kg至約100 mg/kg病患或更多,更佳地,每日略少於約1mg/kg至約25mg/kg病患或顯著更多,取決於所用化合物、治療病況或感染以及投與途徑。根據本發明的活性核苷化合物較佳為以每日約0.5mg/kg至約25mg/kg病患的量投與,決於該藥劑在病患體內的藥物動力學。此劑量範圍通常產生活性化合物的有效血含量濃度,其範圍可在約0.05mg/cc血液至約100mg/cc病患血液。為了本發明的目,根據本發明組成物的預防或防止有效量(即有效降低病患感染病毒的風險之可能性的量)落在如上所述的治療有效量之相同濃度範圍內,且通常與治療有效量相同。
活性化合物的投與範圍可從連續(靜脈滴注)至每日分次口服投與(例如,Q.I.D.)或經皮投與,並可包括口服、局部、胃腸外、肌肉內、靜脈內、皮下、經皮(可包括滲透性增強劑)、經頰和栓劑投與,以及其他投與途徑。腸溶口服錠劑也可用於增強經口服途徑投與的化合物之生物可用度。最有效的劑型將取決於所選特定藥劑的生物可用度/藥物動力學以及病患體內疾病的嚴重性。口服劑型為特佳,因為容易投與且具有預期良好的病患順從性。
為了製備根據本發明的醫藥組成物,治療有效量的一或多種根據本發明之化合物較佳根據習知醫藥混合技術與醫藥上可接受的載體充分混合以生產一劑量。取決於投與所要的製劑之形式(例如口服或腸胃外),載體可採用廣泛的形式。在製備口服劑型的醫藥組成物中,可使用任何常用醫藥介質。因此,對於液體口服製劑諸如懸浮液、酏劑和溶液,可使用適當載體和添加劑,包括水、二醇、油、醇、調味劑、防腐劑、著色劑、等等。對於固體口服製劑諸如粉末、錠劑、膠囊和固體製劑諸如栓劑,可使用適當載體和添加劑,包括澱粉、糖載體(諸如葡萄糖、甘露醇、乳糖和相關載體)、稀釋劑、造粒劑、潤滑劑、黏合劑,崩解劑、等等。如果需要,錠劑或膠囊可藉由標準技術而為腸溶或緩釋。該等劑型之使用可顯著增強該化合物在病患體內的生物可用度。
對於腸胃外劑型,該載體通常包括無菌水或氯化鈉水溶液,但也可包括該等含幫助分散的其他成分。當然,無菌水使用和保存在無菌的情況下,該組成物和載體也必須消毒。也可製備可注射懸浮液,在該情況下,可使用適當的液體載體,懸浮劑、等等。
也可藉由產生藥學上可接受的載體之習知方法製備脂質體懸浮液(包括靶向病毒抗原的脂質體)。此適於輸送根據本發明核苷化合物的游離核苷、醯基/或烷基核苷或磷酸酯前藥形式。
在根據本發明之特佳具體實例中,化合物及組成物係用於治療、預防或延緩如本文中另外揭示的病毒感染(HBV、HCV、HSV-1、HSV-2、CMV、VZV及/或EBV)的發作。較佳地,用於治療、預防或延緩該等感染的發作或繼發於該等病毒感染的疾病狀態及/或病況(特別是硬化、纖維化及/或繼發於HBV及/或HCV病毒感染的肝癌),該組成物將口服劑型投與於範圍自約250 mg高達約500 mg或更多之量,每天至少一次,較佳地,高達每天四次。本發明化合物較佳口服投與,但也可藉由腸胃外、局部或栓劑形式投與。
在本發明化合物與另一種化合物組合用於治療病毒感染(特別是病毒感染染諸如HBV、HCV、HSV-1、HSV-2、CMV、VZV及/或EBV)之共投與的情況下,待投與之根據本發明碳環核苷化合物的量範圍約1mg/kg之病患至約500mg/kg之病患或更多,或更多,取決於待共投與的第二種試劑及其抗每種待抑制的病毒感染的效力、治療
的病或感染,以及投與途徑。在共投與的情況下,其他抗病毒試劑較佳的投與量範圍為約100 ug/kg(微克每千克)至約500 mg/kg。在某些較佳具體實例中,該等化合物較佳投與量範圍為約1 mg/kg至約50 mg/kg或更多(通常高達約100 mg/kg),通常取決於兩種試劑在病患體內的藥物動力學。該等劑量範圍通常在病患體內產生活性化合物的有效血含量濃度。可與根據本發明化合物共投與之典型抗病毒劑包括阿昔洛韋、泛昔洛韋、更昔洛韋、伐昔洛韋、阿糖腺苷、利巴韋林、帶狀疱疹-免疫球蛋白(ZIG)、拉米呋啶、阿德福韋酯、恩替卡韋、替比夫定、克拉夫定、泰諾福韋及彼等之混合物。在治療HBV感染之情況中,用於與本發明2’-氟碳環核苷化合物組合之較佳化合物包括(例如)賀維力(Hepsera)(阿德福韋酯)、拉米呋啶、恩替卡韋、替比夫定、泰諾福韋、恩曲他濱、克拉夫定、伐托他濱、氨多索韋、普拉德福韋、拉希韋、BAM 205、硝唑尼特[nitazoxanide]、UT 231-B、Bay 41-4109、EHT899、札達辛(胸腺素α-1)及彼等之混合物。在治療HCV感染之情況中,本發明2’-氟碳環核苷化合物較佳可與另一抗-HCV劑(例如)NM 283、VX-950(泰勒普維爾(telaprevir))、SCH 50304、TMC435、VX-500、BX-813、SCH503034、R1626、ITMN-191(R7227)、R7128、PF-868554、TT033、CGH-759、GI 5005、MK-7009、SIRNA-034、MK-0608、A-837093、GS 9190、ACH-1095、GSK625433、TG4040(MVA-HCV)、A-831、F351、NS5A、NS4B、ANA598、A-689、GNI-104、IDX102、ADX184、GL59728、GL60667、PSI-7851、TLR9促效劑、PHX1766、SP-30及彼等之混合物共投與。
根據本發明的化合物可利採用於預防性地防止或降低病毒感染的可能性,或防止或降低與該病毒感染相關的臨床症狀發生的可能性、或防止或降低病毒感染傳播給他人的可能性。因此,本發明也包括預防性治療HBV、HCV、HSV-1、HSV-2、CMV、VZV及/或EBV感染之方法。在根據本發明的此方面,本發明組成物可用於預防、降低或延緩病毒感染或與病毒相關的疾病狀態或病況(例如,硬化、纖維化及/或肝癌)發作或傳播感染給其他人的可能性。此預防性方法包括將單獨或與其他抗病毒試劑組合投與以有效減輕、預防或延緩該病毒感染發作的量之本發明化合物投與至需要該治療或有發展HBV、HCV、HSV-1、HSV-2、CMV、VZV及/或EBV感染(包括與病毒相關的疾病狀態或病況)之風險的病患,或希望預防或降低將病毒感染傳播給他人之可能性的受感染病患。在根據本發明的預防性治療中,較佳者為所利用之抗病毒化合物應對病患為低毒性,較佳無毒。在本發明此方面特佳者為所使用之化合物應具有最高抗病毒效力且對病患呈現最小的毒性。在本發明化合物用於預防性治療病毒感染的情形中,這些化合物可以在用於治療處理之相同治療劑量範圍(即約250 mg高達約500 mg或更多,口服劑型,每天一至四次)內投與作為預防試劑,以防止該病毒感染擴散,或者,延遲感染病毒感染之病患的發作或降低感染病毒感染之病患本身出現臨床症狀的可能性。
另外,根據本發明之化合物可單獨或與其他藥劑(包括本發明其他化合物)組合投與。某些根據本發明之化合物可藉由降低其他化合物的代謝、分解代謝或不活化而有效增強根據本發明之某些藥劑的生物活性,且因此,為此預期效果而共投與。 化學合成
通常,根據本發明的組成物係根據流程I、II及替代性流程II(彼等出示於圖3、4、5及8中)從D-核糖很容易地合成。在此流程中,如圖3流程I中所示D-核糖首先藉由一系列化學步驟轉化成經保護的五員碳環(化合物10)。根據流程I,然後將化合物10轉化成根據本發明的化合物(化合物15/18),藉由縮合核苷鹼(在該圖中,6-氯腺嘌呤)以產生化合物11,該化合物11隨後轉化成所出示的胺基以產生化合物15/18。在替代性流程II(圖5)中,化合物15/18,係使用如替代性流程II(圖5)中所概述之替代性方法從化合物10合成。圖8替代性流程III顯示:糖合成組之元5’位置上含有磷醯胺基團的化合物15/18及其前藥15P。根據本發明之各化合物可藉由依照出示於圖3、4、5、6及7中之一般化學流程類似地製備。
利用將各種基團引入碳環部分的2’、3’及/或5’之烴基位置上,或者引入該胞嘧啶鹼之4-位置的環外胺位置的標準合成化學,可將上述製得之各碳環核苷化合物容易地轉化成本發明的前藥形式或替代形式(例如,如本文中另行說明的醯化、磷酸酯或磷酸二酯衍生物、等等)。透過已知的合成方法(醯酐、醯鹵、等等)進行醯化,並使用該技藝所熟知的標準化學技術完成磷酸化。藉由利用本文所出示之特定化學步驟或類似方法,透過文獻中的化學步驟及類似方法,一般技藝人士可容易地合成根據本發明的化合物。
在碳環核苷的合成中,以合適的產率和規模結構所要碳環經常是棘手的。僅有幾份報告針對手6’-外-環烯烴製備碳環核,包括由Bristol-Meyer Squibb合成恩替卡韋,或透過基環化反應。36-39然而,該等方法不是非常適合於在該碳環的2’-位置的改良。最近,關鍵中間體1之有效且實用的合成方法也已由我們團隊完成。33,34,40因此,已開發了製備2’-氟-6’-甲基碳環核苷的替代性途徑(方案1和2)。
更具體地說,根據已知步驟製備環戊酮1。33,34,40烯醇化物與Eschenmoser氏鹽的反應將N,N-二甲胺基甲基放在該酮的α-位置上。經何夫曼消去作用(Hofmann elimination)之後,以適合產率安裝6’-亞甲基。由於α-面上的空間位阻,藉由典型Luche還原反應條件還原α,β-不飽和酮2以產生唯一的α-羥基化合物3。藉由苯甲基保護烯丙醇,以43%產率順利地自環戊酮1產生化合物4。同時,丙酮化合物和第三丁基在酸性條件下之去保護以85%產率提供三醇5。在吡啶中,用二氯四異丙基二矽氧烷(TIPDSCl)處理三醇5,產生高產率的3’,5’-去保護的化合物6。化合物6中的游離2’-α-OH係備用於氟化反應。此外,當化合物6進行包括三氟甲磺醯化(triflation)反應、SN2取代反應及脫乙醯作用的三步驟方案時,以81%產率得到2’-β-OH化合物7,其可用於製備2’-α-氟異構物。化合物6與(二乙胺基)三氟化硫(DAST)反應產生呈2’-β-氟化合物7的主產物。然而,在Birch還原或Lewis酸的條件下,在甲矽烷基存在下,隨後的脫苯甲基作用未能成功。因此,經由標準步驟以苯甲醯基取代甲矽烷基,提供10。然後,使化合物10在-78℃下受到三氯化硼(BCl3)並以89%成功地產生已充分描述的中間體11(流程1)。
核苷12的結構係藉由典型Mitsunobu條件33,34,在三苯基膦和偶氮二羧酸二異丙基酯存在下,在四氫呋喃(THF)中,於0℃至室溫下,用6-氯嘌呤處理11,經1小時完成。不幸地,直接將氯原子胺化至胺基,並同時藉由甲醇氨水解苯甲醯基未能成功。藉由1H-NMR及19F-NMR證實在該條件下消去一分子的HF。有趣的是,即使在很溫和的條件下,如施陶丁格反應(Staudinger Reaction),也不能達成轉換。理由是6’-亞甲基活化1’-質子以進行反式消去反應,形成穩定的二烯。為了避開6’-亞甲基的作用,臨時性保護為較佳。使用四氧化鋨/NMO進行環外烯的雙羥化以提供非鏡像異構物12的混合物。正如所料,藉由與疊氮化鈉反應,接著用H2還原,順利地以62%產率將非鏡像異構物12轉化成腺嘌呤衍生物13。接下來研究自二醇再生該烯烴的幾種條件。藉由1,3-二氧戊環-2-硫酮(1,3-dioxolane-2-thiones)與1,3-二甲基-2-苯基-1,3,2-二氮磷啶(diazaphospholidine)之脫硫的科裏(Corey)烯烴合成,因其溫和有效而衆所周知。41然而,當我們將此條件應用於化合物13時,只得到複雜的反應混合物。另一種藉由加熱在乙酸酐中之2-甲氧基-1,3-二氧戊環衍生物的一般方法,在本情況中也未成功,其可能是因為高反應溫度。42最後,我們採用廣泛使用在2’,3’-二去氧-2’,3’-二氫核苷類或2’,3’-二去氧核苷類的合成中的還原消去反應方案。43-45二醇13在-30℃至室溫下,與乙酸1-溴羰基-1-甲基乙基酯反應,接著與於DMF中的活化金屬鋅在催化量的HOAc存在下、室溫下反應8小時。以兩個步驟以68%產率獲得所要的具有6’-亞甲基的核苷14。根據以往的經驗,當6’-亞甲基和2’-F同時存在於該分子中時,鹼性條件將與14不相容以解除苯甲醯基。因此,應用還原裂解方法。在-78℃,用二異丁基氫化鋁(DIBAL-H)在CH2Cl2中將14處理30分鐘之後,最終以76%產率獲得該目標腺苷類似物15(流程2)。藉由NMR、元素分析、高解析質譜及UV光譜完成新合成的核苷類之結構的配置。
也可使用替代性方法以產生化合物15(圖5在替代性流程II中標記為化合物18),使用描述為替代性化學合成(圖5)的合成步驟進行合成。採取幾種方法以製備化合物18(與圖4的化合物15相同)。在標準Mitsunobu條件下,化合物10與6-氯嘌呤縮合以76%產率產生11。然而,試圖藉由11之甲醇氨胺化作用以獲得對應腺嘌呤衍生物13並未成功。只分離出副產物12,其可能在鹼性條件下失去HF而形成。推測消去產物12(即共軛二烯)的穩定性是促進該副反應的驅動力。因此,需要對環外雙鍵之暫時保護。因此用四氧化鋨/NMO處理化合物11以41%產率提供14。此用NaN3處理,隨後用H2還原,導致62%的腺嘌呤衍生物15a。15a與乙酸1-溴羰基-1-甲基乙基酯,接著活化鋅在催化量的AcOH存在下之還原消去以68%產率提供所要之核苷13。
由於途徑1的多重合成步驟以及13的低產率,最近發明者們將該合成修改為途徑2。根據文獻中報道的方案15合成N-Boc保護的腺嘌呤16,並與10縮合,以76%產率獲得17。藉由TFA進行Boc基團之去保護以提供82%的13。最終,用DIBAL-H處理13以76%產率產生目標化合物18(化合物15)。化合物15/18的分析數據出示於在下述實例段中。
圖6提供另一合成化合物15/18之說明。在圖6所述之流程中,標的化合物15/18之合成係如圖6流程中之簡要說明以酮1作為關鍵中間物開始。從D-核糖開始,經由根據Jin,等人(J.Org.Chem.,68:9012-9018(2003))的已知步驟之九個步驟合成酮1。以Mannich鹼(Eshenmoser氏鹽)引入環外亞甲基接著Hoffmann分解至烯酮,藉由使用硼氫化鈉將其選擇性地還原而以良好產率的獨占方式產生α-羥基化合物3。根據Dey及Garner報告的方案,J.Org.Chem.,65:7697(2000)以7步驟將化合物3轉化成2-氟衍生物4,其與N-Boc保護之腺嘌呤縮合,以三步驟從其獲得最終核苷15/18。也根據McGuigan等人之文獻步驟(J.Med.Chem.,53:4949-4957(2010))製備單磷酸酯前藥15p/18p。
在另一合成中,根據該化學流程圖7中所述之化學流程,化合物15/18,從經保護之內醯胺(-)文斯內醯胺(Vince lactum)合成。所使用的每一步驟及試劑係出示在上述圖7的說明中。
如出示於圖8流程中者製備胺基磷酸酯前藥化合物15P/18P。在該流程中,苯基磷氧基二氯化物(圖8中之化合物1P)係與L-丙胺酸取代之酯鹽酸鹽在三乙胺存在下在二氯甲烷中反應以產生適當經取代之氯苯基磷氧基(phorphoryl)-L-丙胺酸酯(圖8之2P或3P)。圖8之化合物2P或3P然後與在N-甲基咪唑中之化合物15/18在溶劑(四氫呋喃)中反應過夜以產生前藥類似物15P/18P及15PI/18PI。顯示圖8中之合成的實驗步驟係出示於實驗段。值得注意的是:甲基酯15P/18P及異丙基酯15PI/18PI之對應乙基及異丁基酯類似物係以相同方式使用類似反應物製造。也值得注意的是:該磷基團為手性中心及圖8中之顯示提供15P/18P及15PI/18PI之非鏡像異構物混合物。非鏡像異構物混合物可使用在該技藝已知的方法包括選擇性結晶(一非鏡像異構物從溶液結晶出來以排除其他非鏡像異構物)、手性管柱層析法(HPLC、等等)分離成純化非鏡像異構物。 抗HBV-WT和突變菌株的抗病毒活性
拉米呋啶是第一個授權的抗HBV核苷,其導致HBV治療領域的突破。與安慰劑組相比,使用拉米呋啶治療病患經常伴有血清HBV DNA含量之顯著降低和血清轉化及組織學改善。11,46然而,拉米呋啶抗性突變比之比率較高(治療5年後為70%),其限制拉米呋啶的臨床效果。11-14該主要突變為rtM204V/I和補償性突變包括rtV173L、rtL180M和rtL80I。9,10從結構上來看,該rtM204V/I借助於Val/Ile204的側鏈和拉米呋啶的L-糖環之間的空間位阻引起該耐藥性。47,48考慮該相同的L-構形,替比夫定必然與耐拉米呋啶性菌株例如rtM204I交叉耐藥。15另一個重要的臨床HBV突變為rtN236T,其與阿德福韋治療相關,治療5年後的比率高達29%。16-18分子模擬研究指示:在密碼子236上的Asp變異成Thr的突變導致阿德福韋-二磷酸的γ-磷酸鹽和原Asp236之間的氫鍵損失,其降低親和力,且因此損害阿德福韋抗性rtN236T突變體的抗病毒活性。49,50
鑒於拉米呋啶-和阿德福韋-抗性突變在抗-HBV治療的臨床應用中的顯著性,對該合成核苷15/18進行抗HBV WT以及拉米呋啶和阿德福韋抗性突變體的測試。所篩選數據匯總於圖10表1。核苷15/10呈現對HBV WT的強抗病毒活性,具1.5μM的50%有效濃度(EC50)和4.5μM的90%有效濃度(EC90)。有趣的是,核苷15/18也對包括rtM204V/I±rtL180M的拉米呋啶抗性突變體具活性。倍數增加約1.0-1.2,與阿德福韋者相當。此外,化合物15/18也未損失對阿德福韋突變體(rtN236T)的活性,具4.6 μM之EC90值。
15/18之結構係類似於已核准的抗HBV核苷,恩替卡韋,除2’-位置上帶有額外的β-氟原子之外。二種核苷類之低能量構形異構物的構形也與我們的模擬研究(見下文)所示者相似。然而,氟化的核苷15並不對所有已測試的拉米呋啶抗性突變體都交叉耐藥,而恩替卡韋失去8倍活性。50雖然該詳細機制仍不清楚,但該2’-氟取代是很重要的。
對所合成之核苷15/18評估其抗野生型HBV及耐藥性突變體的試管內抗病毒活性,且該結果匯總於下表1中。因為化合物15/18為腺嘌呤類似物的衍生物,所以發明者們比較阿德福韋而不是鳥嘌呤類似物之恩替卡韋的抗病毒活性,雖然碳環部分係類似於恩替卡韋之碳環部分。由該抗-HBV的評估顯示化合物15/18具有1.5 μM之EC50值的抗野生型HBV之顯著抗HBV活性。該抗病毒效力類似於阿德福韋,然而比拉米夫定的效力小7倍。抑制90%的野生型HBV DNA所需化合物濃度(EC90)為4.5μM,其比阿德福韋的效力(7.1μM)多1.5倍。
化合物15/18也顯示抗拉米呋啶-及阿德福韋-相關HBV突變體之極佳活性。頃發現:化合物15/18給予抗阿德福韋突變體rtN236T的4.5-倍提高之EC50值(1.7μM)及7.8-倍更有利的EC90值(4.6 μM)。對於rtM204V及rtM204I,化合物18分別顯示1.8及1.0 μM之EC50值。對於rtM204V突變體,阿德福韋及化合物15/18之效力相似,但對於rtM204I,化合物15/18在EC50以及EC90值方面比阿德福韋更有效。對於突變體rtL180M,在EC50值方面,化合物15/18之抗病毒活性係與拉米呋啶之抗病毒活性相似(2.1對1.5),而在EC90值方面,其呈現4.3倍增加之抗病毒活性(5.1對22.0)。抗相同突變體,化合物15/18之EC50及EC90值二者比阿德福韋更有效。
也試驗化合物15/18抗雙突變體rtL180M/rtM204V且其呈現2.2 μM之EC50值,該值等於阿德福韋之值,而15/18之EC90值(5.5 μM)比阿德福韋(8.5 μM)之值更有效。
也評估化合物15/18抗耐恩替卡韋抗性株(L180M+S202I+M202V),其中化合物5證明抗HBV活性(EC50 0.67 μM)類似於野生型病毒,而在恩替卡韋之情況下其抗病毒效力(EC50 1.2 μM)有顯著降低(圖11,表2)。 分子模擬
感興趣的是如何知道化合物15/18與阿德福韋相比而證明為有利的抗HBV活性。因此,藉由使用Schrodinger模組(1-第二組參考文獻)進行分子模擬研究,以獲得化合物15/18的分子機制之見解。根據公開之HIV反轉錄酶(PDB碼:1RTD)之X-射線晶體結構來建構HBV RT之同源模型,其先前係用於幾種抗-HBV核苷類的分子機制研究(17)。在HBV聚合酶的同源模型中,化合物15/18的關於催化三元組(triad)的α-、β-及γ-磷酸酯之相對位置係假定佔用類似於HIV-1 RT-DNA-dNTP複合物的晶體結構中之dNTP的位置。化合物15/18的分子嵌合顯示三磷酸酯形成氫鍵與活性位置殘基(S85、A86、A87、R41、K32)的所有網絡(圖14a)。15/18的γ-磷酸酯保持與介於S85與N236之間的氫鍵連接的S85之OH的關鍵性H-鍵結。通常,N236T突變體失去至S85之氫鍵,導致在S85對γ-磷酸酯相互作用的去穩定化,從而引起抵抗。然而,化合物15/18(呈其三磷酸酯)保持與S85的關鍵性H-鍵結(圖14b),類似於在WT(圖14a)中所觀察者。
具有15/18之環外烯的碳環佔據疏水性口袋(殘基F88、L180及M204)且造成與F88之有利的凡得瓦交互作用(圖14a & 14b)。如圖14a & 14b中所示,5之碳環中的2’-氟取代基似乎促進與R41的另外結合,其以圖10表1中所示之15/18的抗病毒活性證實。總體而言,模擬研究可定性解釋新發現的化合物15/18在WT以及抗阿德福韋抗性突變體,N236T中之有利的抗HBV活性(圖14a)。該等模擬研究是有益的且因此保證在未來有更多的定量計算。
總之,合成出新穎碳環腺苷酸衍生物15/18(FMCA)和其單磷酸鹽前藥15P/18P(FMCAP),且評估彼之抗-HBV活性。從該等研究證明核苷和前藥具有對抗野生型以及所有主要的抗核苷HBV突變體兩者之顯著的抗-HBV活性。鑑於該等大可為的抗-HBV活性、低腺粒體和細胞毒性以及對抗腺苷酸脫胺酶之穩定性,設計核苷15/18和前藥15P/18P進一步的生物和生化研究,於活體內確證試管內活性及評定該等劑作為抗-HBV劑的最大潛力。
現在下列實例中純粹以說明的方式描述本發明。一般技藝人士將理解這些實施例為非限制性,在不背離本發明精神及範圍下可進行各種細節變化。 實例 實驗(化學合成)
一般方法。熔點係利用Mel-temp II裝置測定且未校正。核磁共振光譜利用Varian Mercury 400光譜儀對於1H NMR記錄於400 MHz及對於13C NMR記錄於100 MHz或利用Varian Inova 500光譜儀對於1H NMR記錄於500 MHz及對於13C NMR記錄於125 MHz,使用四甲矽烷作為內標準。化學位移(δ)係報告為s(單峰)、d(雙峰)、t(三重峰)、q(四重峰)、m(多重峰)或bs(寛單峰)。UV光譜利用Beckman DU-650分光光度計記錄。旋光度係利用Jasco DIP-370數位偏光計測量。高解析質譜利用Micromass Autospec高解析度質譜儀記錄。TLC係利用購自Analtech公司之Uniplates(矽凝膠)進行。管柱層析法對於急驟層析法係使用矽凝膠-60(220-440篩目)進行或對於真空急驟管柱層析法係使用矽凝膠G(TLC級,>440篩目)進行。元素分析係由Atlantic Microlab Inc.,Norcross,GA進行。 (-)-(3aR,4S,6R,6aR)-4-(苯甲氧基)-6-(第三丁氧基甲基)-2,2-二甲基-5-亞甲基四氫-3aH-環戊[d][1,3]二噁唑(4)
將二異丙基胺鋰(2.0M溶液,19.1 mL,38.1 mmol)在-78℃下緩慢加到化合物1(8.4g,34.6 mmol)在THF溶液的混合物中33,34,40。相同溫度下攪拌3小時之後,加入Eshenmoser氏鹽(25.9g,138.4 mmol)。將該混合物在相同溫度下攪拌另3小時,並於室溫下過夜。然後,添加碘甲烷(108.8 mL,1.73mol),並在室溫下攪拌4小時,之後用10%的NaHCO3水溶液(100 mL)停止反應。將混合物攪拌1h並用乙醚(2×400 mL)萃取。將合併的乙醚萃取物用10%的NaHCO3水溶液洗滌接著鹽水洗滌,經過無水Na2SO4乾燥,過濾和在真空中濃縮。藉由真空矽凝膠管柱層析法(EtOAc:己烷=1:30至1:10)純化殘餘物,以產生油(4.6克),將其溶解在MeOH中並用CeCl3.7H2O(7.5g,19.6 mmol)在室溫下處理10分鐘。冷卻至-78℃之後,緩慢添加NaBH4(0.75g,20.0 mmol)。將反應保持在相同溫度下20分鐘並用乙酸停止反應。在真空中除去溶劑及將殘餘物溶解在EtOAc中,並用H2O及鹽水洗滌,經過Na2SO4乾燥。在減壓下除去溶劑,並藉由真空矽凝膠管柱層析法(EtOAc:己烷=1:30至1:10)純化殘餘物以產生白色固體(4.0g),其直接用於下一步驟。將得自上一步驟的白色固體(8.0g,31.2 mmol)溶解於THF中,並用NaH(60%,1.62g,40.5 mmol)在室溫下處理15分鐘。隨後添加苯甲基溴(4.81 mL,40.5 mmol)和碘化四丁基銨(TBAI),並在40℃下攪拌該混合物3.5h。用冰/水停止反應後,將混合物溶解於Et2O中,並用H2O及鹽水洗滌,經過Na2SO4乾燥。在減壓下除去溶劑,用真空矽凝膠管柱層析法(EtOAc:己烷=1:30至1:20)純化殘餘物以產生所要的化合物4(9.7g,43%,從1)。[α]24 D-121.09°(c 0.83,CHCl3);1H NMR(500 MHz,CDCl3)δ 7.43-7.26(m,5H),5.28(d,J=1.0 Hz,1 H),5.07(t,J=1.0 Hz,1 H),4.83(d,J=12.0 Hz,1H),4.68(d,J=13.0 Hz,1H),4.56(t,J=5.5 Hz,1H),4.44(t,J=1.0 Hz,1H),4.32-4.30(m,1 H),3.42(dd,J=4.0及8.5 Hz,1 H),3.21(dd,J=5.0及8.5 Hz,1 H),2.59-2.57(m,1H),1.46(s,3H),1.34(s,3H),1.02(s,9H);13C NMR(125 MHz,CDCl3)δ 150.6,138.6,128.3,127.8,127.6,110.8,108.9,81.3,79.7,78.5,72.6,71.8,64.5,49.9,27.3,26.9,25.3;(C21H30O4+H)+之HR-MS計算值347.2222,發現值347.2225。 (-)-(1S,2S,3S,5R)-3-(苯甲氧基)-5-(羥甲基)-4-亞甲基環戊烷-1,2-二醇(5)
將化合物4(450 mg,1.3 mmol)溶解於MeOH中,並在回流溫度下用3N HCl處理3.5h。用固體NaHCO3中和後,除去溶劑,用真空矽凝膠管柱層析法(MeOH:CH2Cl2=1:30至1:10)純化殘餘物以產生呈白色固體的三醇5(280 mg,85%)。mp 122-124℃;[α]24 D-123.05°(c 0.37,MeOH);1H NMR(500 MHz,CD3OD)δ 7.46-7.30(m,5 H),5.34(dd,J=1.0及3.0 Hz,1H),5.21(s,1H),4.77(d,J=12.0 Hz,1H),4.62(d,J=12.5 Hz,1H),4.17-4.14(m,2 H),3.95-3.93(m,1H),3.82-3.73(m,2H),2.69-2.66(m,1H);13C NMR(125 MHz,CD3OD)δ 148.9,138.3,128.0,127.6,127.3,109.1,80.8,71.7,71.0,70.8,61.8,49.6;(C14H18O4+H)+之HR-MS計算值251.1283,發現值251.1281。 (-)-(6aR,8S,9R,9aR)-8-(苯甲氧基)-2,2,4,4-四異丙基-7-亞甲基全氫環戊[f][1,3,5,2,4]三氧雜二矽辛(trioxadisilocin)-9-醇(6)
在-30℃下,將1,3-二氯-1,1,3,3-四異丙基二甲矽氧烷(5.5 mL,16.8 mmol)滴入三醇5(4.0g,16.0 mmol)在無水吡啶中的溶液。將該反應混合物逐漸升溫至室溫,在相同溫度下保持2h。真空中除去吡啶之後,將殘餘物溶解於EtOAc中,並用H2O及鹽水洗滌,經過硫酸鎂乾燥,過濾及在真空中濃縮。藉由管柱層析法在矽凝膠上(EtOAc:己烷=1:30至1:5)純化殘餘物以產生糖漿狀醇6(6.5g,82%)。[α]24 D-105.94°(c 0.58,CHCl3);1H NMR(500 MHz,CDCl3)δ 7.41-7.26(m,5H),5.36(t,J=2.5 Hz,1H),5.11(t,J=2.5 Hz,1H),4.77(d,J=12.0 Hz,1H),4.62(d,J=12.5 Hz,1H),4.18-4.14(m,2H),4.05(dd,J=4.5及12.0 Hz,1H),3.78(dd,J=8.0及12.0 Hz,1H),2.90-2.88(m,1H),1.08-0.97(m,27H);13C NMR(125 MHz,CDCl3).δ 147.3,138.1,128.4,127.6,127.5,111.1,80.2,74.2,71.2,71.1,64.9,50.1,17.6,17.5,17.4,17.3,17.2,17.1,17.0。C26H44O5Si2之分析計算值:C,63.37;H,9.00。發現值:C,63.64;H,9.05。 (-)-(6aR,8S,9R,9aR)-8-(苯甲氧基)-2,2,4,4-四異丙基-7-亞甲基全氫環戊[f][1,3,5,2,4]三氧雜二矽辛(trioxadisilocin)-9-醇(7)
在-78℃下,用三氟甲磺酸酐(0.94 mL,5.6 mmol)處理化合物6(2.1g,4.3 mmol)與無水吡啶(1.05 mL,12.6 mmol)在無水CH2Cl2(20 mL)中的溶液。反應混合物逐步升溫至室溫並在相同溫度下保持20 min。在真空中除去溶劑之後,將殘餘物溶解在EtOAc中並用H2O及鹽水洗滌,經過硫酸鎂乾燥,過濾及在真空中濃縮。將殘餘物溶解在無水苯(40 mL)中,及添加18-冠醚-6(2.25 g,8.6 mmol)及乙酸銫(2.47 g,12.6 mmol)。將該懸浮液在50℃下加熱30 min並冷卻至室溫。除去溶劑之後,將殘餘物溶解於MeOH中及用甲醇鈉在室溫下處理3小時後,在真空中濃縮。藉由管柱層析法在矽凝膠上純化(EtOAc:己烷=1:10至1:3)殘餘物以產生7(1.7 g,81%,從6)。[α]24 D-76.47°(c 0.82,CHCl3);1H NMR(500 MHz,CDCl3)δ 7.41-7.26(m,5H),5.34(t,J=2.5 Hz,1H),5.16(t,J=2.0 Hz,1H),4.80(q,J=12.0 Hz,2H),4.12-3.89(m,5H),2.60(m,1H),1.09-0.94(m,27H);13C NMR(125 MHz,CDCl3).δ 144.4,138.6,128.5,127.7,127.6,111.5,82.4,82.3,77.3,77.0,76.8,76.2,71.8,62.7,49.4,17.6,17.5,17.4,17.3,17.2,17.1,17.0,13.6,13.4,12.8,12.6。
(C26H44O5Si2+H)+之HR-MS計算值493.2806,發現值493.2736。 (-)-(6aR,8S,9R,9aR)-8-(苯甲氧基)-9-氟-2,2,4,4-四異丙基-7-亞甲基六氫環戊[f][1,3,5,2,4]三氧雜二矽辛(trioxadisilocine)(8)
將(二乙胺)三氟化硫(DAST,1.84 mL,13.9 mmol)在室溫下緩慢加到醇6(6.5g,13.2 mmol)在無水CH2Cl2中之溶液。20分鐘後,用冰H2O將反應混合物停止反應。收集該有機層,並用二氯甲烷萃取該水相。然後合併該有機層,經過硫酸鎂乾燥,過濾及在真空中濃縮。該粗製殘餘物立即用於接下來的去保護步驟。使用管柱層析法在矽凝膠上純化(EtOAc:己烷=1:100至1:20)獲得到8的分析樣品。[α]24 D-104.08°(c 0.51,CHCl3);1H NMR(500 MHz,CDCl3)δ 7.39-7.26(m,5H),5.36(t,J=2.5 Hz,1H),5.20(dd,J=2.5及5.0 Hz,1H),4.92(ddd,J=6.0,7.5及55.0 Hz,1H),4.78(d,J=11.5 Hz,1H),4.65(d,J=11.5 Hz,1H),4.31-4.26(m,1H),4.23-4.16(m,1H),4.01-3.92(m,1H),1.08-0.94(m,27H);13C NMR(100 MHz,CDCl3)142.6(d,J=9.2 Hz),137.9,128.4,127.8,127.7,112.7,103.4(d,J=189.0 Hz),80.4(d,J=21.3 Hz),73.8(d,J=19.8 Hz),71.3,61.6,48.8(d,J=5.3 Hz),17.5,17.4,17.1,17.0,16.9,16.8,13.4,13.3,12.7,12.5。(C26H43FO4Si2+H)+之HR-MS計算值495.2762,發現值495.2769。 苯甲酸(-)-[(1R,2Ri3R,4R)-2-(苯甲醯氧基)-4-(苯甲氧基)-3-氟-5-亞甲基環戊基]甲酯(9)
將粗製氟化化合物8(直接來自最後一個步驟)溶解於THF,並先用乙酸(3.2 mL,53.0 mmol),接著用四丁基氟化銨(TBAF)(40 mL,40.0 mmol)在室溫下處理1h。在真空中除去溶劑之後,將殘餘物溶解於異丙醇/氯仿(4:1)共溶劑中並用H2O洗滌。收集該有機層,經過硫酸鎂乾燥,過濾及在真空中濃縮。藉由管柱層析法在矽凝膠上(EtOAc:己烷=1:4至1:1)純化殘餘物以產生二醇。將二醇(1.0g,4.0 mmol)溶解在在無水吡啶中,並在室溫下用苯甲醯氯(1.88 mL,16.0 mmol)處理。4小時後,在真空中除去吡啶,並將殘餘物溶解在EtOAc中。用H2O及鹽水洗滌該溶液,經過硫酸鎂乾燥,過濾及在真空下濃縮。藉由管柱層析法在矽凝膠上純化殘餘物(EtOAc:己烷=1:20至1:3)以產生9(1.8 g,61%)。[α]24 D-52.71°(c 0.55,CHCl3);1H NMR(500 MHz,CDCl3)8.03-7.26(m,15H),5.68-5.61(m,1H),5.49(t,J=2.5 Hz,1H),5.34(dd,J=2.5及4.5 Hz,1H),5.20(td,J=6.0及53.0 Hz,1H),4.82(d,J=11.5 Hz,1H),4.73(d,J=11.5 Hz,1H),4.62(dd,J=5.0及10.5 Hz,1H),4.55-4.50(m,2H),3.24-3.23(m,1H);13C NMR(125 MHz,CDCl3)166.3,165.7,142.8(d,J=7.6 Hz),137.5,133.4,133.0,129.8,129.6,129.5,129.3,128.5,128.4,128.3,128.0,127.9,114.3,99.9(d,J=189.9 Hz),81.2(d,J=22.0 Hz),76.2(d,J=23.8 Hz),71.7,64.9,45.0(d,J=4.5 Hz)。(C28H25FO5+H)+之HR-MS計算值461.1764,發現值461.1756。 苯甲酸(-)-[(1R,2R,3R,4R)-2-(苯甲醯氧基)-3-氟-4-羥基-5-亞甲基環戊基]甲基酯(10)
在-78℃下用三氯化硼(9.1 mL,在CH2Cl2中的1M溶液,9.1 mmol)處理化合物9(1.4g,3.0 mmol)在無水CH2Cl2的溶液。相同溫度下攪拌30分鐘之後,添加另一部分三氯化硼(6.1 mL,在CH2Cl2中的1M溶液,6.1 mmol)。15分鐘之後,在-78℃下用MeOH停止反應,並在真空中濃縮。藉由管柱層析法在矽凝膠上純化殘餘物(EtOAc:己烷=1:10至1:3)以產生呈糖漿狀的10(1.0 g,89%)。[α]26 D-53.55°(c 0.25,CHCl3);1H NMR(500 MHz,CDCl3)δ 8.03-7.32(m,10H),5.66(td,J=6.8及16.4 Hz,1H),5.49(t,J=2.0 Hz,1H),5.32(dd,J=2.0及4.4 Hz,1H),4.96(td,J=6.8及54.4 Hz,1H),4.80(m,1H),4.64-4.52(m,2H),3.21(m,1H),2.66(d,J=7.0 Hz,D2O交換性,1H);13C NMR(125 MHz,CDCl3)δ 166.3,165.8,144.4(d,J=8.4 Hz),133.4,133.1,129.8,129.6,129.2,128.4,128.3,113.1,99.9(d,J=191.3 Hz),75.3,75.2,75.1,75.0,65.4,44.8(d,J=3.8 Hz)。C21H19FO5之分析計算值:C,68.10;H,5.17。發現值:C,67.78;H,5.27。 苯甲酸(1R,3R,4R,5R)-5-(苯甲醯氧基)-3-(6-氯-9H-9-嘌呤基)-4-氟-2-羥-2-(羥甲基)環戊基]甲基酯(12)
在0℃下,5分鐘內將在無水THF(20 mL)和偶氮二羧酸二異丙基酯(DIAD,0.89 mL,4.33 mmol)中之三苯基膦(TPP,1.13g,4.33 mmol)和6-氯嘌呤(0.67g,4.33 mmol)加至化合物10的溶液(1.07g,2.89 mmol)中。使反應升溫至室溫,並保持1小時。藉由添加MeOH(1 mL)停止反應,在真空中蒸發。藉由管柱層析法在矽凝膠上(EtOAc:己烷=1:4至1:2)純化殘餘物以產生呈混合物之偶合核苷11,其被還原的DIAD類物質污染。將粗製化合物11(660 mg)溶解在丙酮/H2O(15 mL/2.5 mL)中,並用四氧化鋨(1.3 mL,5% H2O溶液)/NMO(480 mg)處理24h。用飽和硫代硫酸鈉水溶液使反應混合物停止反應。在真空中除去有機溶液,並用異丙醇/氯仿(4:1)共溶劑萃取水相。收集有機層,並經過Na2SO4乾燥和過濾。在真空中濃縮濾液,並用藉由管柱層析法在矽凝膠上(MeOH:CH2Cl2=1:60至1:40)純化殘餘物以產生呈非鏡像異構物的混合物之化合物12(640 mg,41%從10)。主要異構物:1H NMR(500 MHz,CD3OD)δ 8.80(d,J=5.0 Hz,1H),8.78(s,1H),7.95-7.11(m,10 H),6.10(ddd,J=3.0,12.5及17.5 Hz,1H),5.80(dd,J=10.0及35.0 Hz,1H),5.38(ddd,J=3.0,10.5及67.5 Hz,1H),4.80(m,2H),3.73(d,J=14.5 Hz,1H),3.40(d,J=14.5 Hz,1H),3.00(m,1H);13C NMR(100 MHz,CDCl3)166.4,165.6,153.1,151.8,151.7,149.9,148.2,148.1,129.4,129.1,128.2,127.9,93.1(d,J=193.1 Hz),80.8,79.3(d,J=26.2 Hz),62.8,61.9(d,J=5.0 Hz),60.2(d,J=13.4 Hz),48.6(d,J=5.6 Hz)。
(C26H22ClFN4O6+H)+之HR-MS計算值541.1290,發現值541.1290。 苯甲酸[(1R,3R,4R,5R)-3-(6-胺基-9H-9-嘌呤基)-5-(苯甲醯氧基)-4-氟-2-羥-2-(羥甲基)環戊基]甲基酯(13)
將在無水DMF中的核苷12(620 mg,1.15 mmol)於70-80℃下用疊氮化鈉(750 mg,11.5 mmol)處理1.5 h。在真空中除去揮發物,並將殘餘物溶解於異丙醇/氯仿(4:1)共溶劑中,用H2O洗滌,經過Na2SO4乾燥及蒸發至乾燥。將所得粗製疊氮化合物溶解於EtOH中,於40℃下在氫氣氛圍下用Pd/C(200 mg)處理3小時。除去該固體之後,蒸發濾液,及藉由管柱層析法在矽凝膠上(MeOH:CH2Cl2=1:40至1:20)純化殘餘物以產生所要之呈非鏡像異構物的混合物之腺苷類似物13(370 mg,62%)。主要異構物:UV(MeOH)λmax 259.0 nm;1H NMR(500 MHz,CD3OD)δ 8.43(d,J=4.0 Hz,1H),8.29(s,1H),7.99-7.16(m,10 H),6.11(ddd,J=2.5,9.5及14.5 Hz,1H),5.59(dd,J=8.0及29.0 Hz,1H),5.35(ddd,J=2.5,8.5及43.5 Hz,1H),4.89(m,2H),3.72(d,J=11.0 Hz,1H),3.50(d,J=11.0 Hz,1H),3.00(m,1H);13C NMR(100 MHz,CDCl3)δ166.4,165.6,156.0,152.4,150.5,142.8,142.7,133.1,132.7,129.4,129.1,128.2,127.8,117.7,93.3(d,J=193.1 Hz),80.8,79.4(d,J=26.2 Hz),63.0,61.9(d,J=17.6 Hz),60.3,48.9(d,J=5.2 Hz)。
(C26H25FN5O6+H)+之HR-MS計算值522.1789,發現值522.1774。 (+)-[(1R,3R,4R,5R)-3-(6-胺基-9H-9-嘌呤基)-5-(苯甲醯氧基)-4-氟-2-亞甲基環戊基]甲基 苯甲酸酯(14)
將化合物13(260 mg,0.50 mmol)溶解在濕乙腈(9μL的H2O加至10 mL的無水乙腈中)中並冷卻至-30℃。將過量1-溴羰基-甲基乙基乙酸酯(0.54 mL,3.68 mmol)滴入混合物,並使升溫至室溫。在室溫下攪拌1小時後,將該反應混合物再冷卻至-30℃,並添加另外1-溴羰基-甲基乙基乙酸酯(0.2 mL,1.47 mmol)。添加碎冰以停止反應,並用飽和NaHCO3溶液(20 mL)中和,及用乙酸乙酯萃取(100 mL×2)。用鹽水洗滌該合併的有機層,經過乾燥Na2SO4及過濾。真空中濃縮該濾液,將殘餘物溶解在無水DMF中,並用活化鋅(約2.0 g)和HOAc(0.2毫升)處理,並在室溫下攪拌8小時。真空中除去揮發物,及將殘餘物溶解於異丙醇/氯仿(4:1)共溶劑,並用飽和NaHCO3(15 mL)溶液、H2O及鹽水洗滌。收集該有機層,並經過乾燥Na2SO4及過濾。真空中濃縮濾液,並藉由管柱層析法在矽凝膠上(EtOAc:己烷=2:1至4:1)純化殘餘物以產生呈白色固體的外-環烯核苷14(165.0 mg,68%)。mp:195-198℃(dec.)[α]25 D+77.66°(c 0.27,CHCl3);UV(MeOH)λmax 231.0,259.0 nm;1H NMR(400 MHz,CDCl3)δ 8.40(s,1H),8.12-8.06(m,2H),7.94(d,J=3.6 Hz,1H),7.65-7.44(m,3H),6.0(dd,J=2.4及33.2 Hz,1H),5.86(br,2H,D2O交換性),5.75(d,(d,J=14.8 Hz,1H),5.50(s,1H),5.21(dd,J=4.0及50.8 Hz,1H),4.98(d,J=1.2 Hz,1H),4.82-4.64(m,1H),4.66-4.61(m,1H),3.42(m,1H);13C NMR(100 MHz,CDCl3)δ 166.4,165.0,155.5,153.2,150.5,144.4,140.9,140.8,133.8,133.3,130.0,129.7,129.6,128.7,128.6,128.5,118.8,113.2,93.6(d,J=184.4 Hz),75.8(d,J=29.0 Hz),64.4(d,J=3.1 Hz),58.3(d,J=17.5 Hz),46.5。(C26H22FN5O4+H)+之HR-MS計算值488.1734,發現值488.1731。
(+)-(1R,2R,3R,5R)-3-(6-胺基-9H-9-嘌呤基)-2-氟-5-(羥甲基)-4-亞甲基環戊-1-醇(15)
在-78℃下將二異丁基氫化鋁(DIBAL-H,1.6mL,在甲苯中之1.0M)緩慢加到化合物14(160.0mg,0.33mmol)在無水CH2Cl2中的溶液。在相同溫度下保持30 min之後,用異丙醇/氯仿(4:1)共溶劑(30mL)稀釋反應,並添加飽和酒石酸鉀鈉溶液(10mL)。室溫下攪拌混合物2小時,並收集該有機層。用異丙醇/氯仿(4:1)共溶劑萃取該水層(3×10mL),且合併有機層,經過乾燥Na2SO4及過濾。在真空中濃縮濾液,及藉由管柱層析法在矽凝膠上純化殘餘物(MeOH:CH2Cl2=1:20至1:10)以產生呈白色固體的腺苷類似物15(70.0 mg,76%)。mp:215-218℃(dec.)[α]25 D+151.80°(c 0.23,CHCl3)UV(H2O)λmax 259.0 nm(ε 13998,pH 2),260.0 nm(ε 15590,pH 7),260.0 nm(ε 15579,pH 11);1H NMR(400 MHz,CDCl3)δ 8.22(s,1H),8.06(d,J=2.4 Hz,1H),5.86(dd,J=2.4及25.6 Hz,1H),5.42(t,J=2.4 Hz,1H),4.93(td,J=3.2及52.4 Hz,1H),4.92(s,1H,部分埋在H2O峰內),4.40(td,J=3.2及10.8 Hz,1H),3.88-3.76(m,2H),2.78(m,1H);13C NMR(100 MHz,CDCl3).δ 156.0,152.5,149.9,146.1(d,J=1.0 Hz),141.1(d,J=5.2 Hz),117.9,111.8,95.9(d,J=186.0 Hz),72.9(d,J=22.9 Hz),61.8(d,J=3.4 Hz),57.6(d,J=17.2 Hz),51.1。
C12H14FN5O2之分析計算值:C,51.61;H,5.05;N,25.08。發現值:C,51.74;H,5.09;N,24.92。
化合物18(圖5)。依照附圖5中所述的一或多種方法合成化合物18(與流程2的化合物15相同,但以出示於圖5中的替代性途徑合成)。化合物18的選擇分析數據與上述化合物15相同。 化合物15P/18P及15PI/18PI之實驗方案
在氬氛圍下於-78℃將N-甲基咪唑(NMI,5.0 mmol)加至FMCA(1 mmol)在THF中之攪拌懸浮液。滴加溶解在THF中的適當經取代之氯苯基磷氧基-L-丙胺酸酯(2P或3P,3.0 mmol),緩慢加溫至室溫及繼續在室溫下攪拌過夜。蒸發揮發物,及將殘餘物溶解在二氯甲烷(DCM)中並用0.5 M HCL洗滌。將有機層經過Na2SO4乾燥,減少至乾,及藉由驟急層析法純化以產生FMCA之前藥(15/18 & 15P/18P)。
化合物15P/18P之分析數據1H NMR(500 Mz,CD3OD)d 8.35(s,1H),7.86(d,J=3.0 Hz,1H),7.34-7.15(m,5H),5.95(m,3H),5.26 d,J=8.0 Hz,1H),5.01-4.90(m,1H),4.83(s,1H),4.50-4.41(m,2H),4.25-4.04(m,3H),3.71(s,3H),3.07(s,1H),1.40(d,J=6.5 Hz,3 H);19F NMR(500 MHz,CDCl3)δ-192.86(m,1F);13C NMR(125 MHz,CD3OD)d171,159.0,156.5,152.5,150.4,142.9,130.1,121.2,120.3,106.7,102.4,72.2,71.1,62.3,51.9,46.3,43.9,19.1;31P NMR(CDCl3,202 MHz):δ 2.67,2.99。
C22H26FN6O6P.0.5H2O之分析計算值:C,49.91;H,5.14;N,15.87;發現值C,49.84;H,5.06;N,15.22。
化合物15PI/18PI之分析數據1H NMR(500 Mz,CD3OD)d 8.36(s,1H),7.84(d,J=30.0 Hz,1H),7.34-7.07(m,5H),5.94(d,J=23 Hz,1H),5.76(bs,2H NH2),5.30(m,1H),5.04-4.86(m,3H),4.50-4.44(m,2H),4.21(m,1H),4.11-3.80(m,3H),3.09(s,1H),1.40(d,J=14.5 Hz,3 H),1.28(d,J=14.0 Hz,6H);19F NMR(500 MHz,CDCl3)δ-192.96(m,1F);31P NMR(CDCl3,202 MHz):δ 2.84,2.32。 抗病毒分析。
如前所述進行藥物感受性分析。如前所述在PBM、CEM和Vero細胞中進行細胞毒性分析。兩種化合物用於試驗,第一種,分子糖部分上的R1及R1a含有羥基的腺嘌呤核苷類似物(化合物15/18),以及第二種為以化合物15/18為基楚的前藥核苷化合物,其在含有苯基作為R6的R1(R1a為H)上含有胺基磷酸酯(phosphoramidate)基團,及B’為衍生自丙胺酸之胺基酸基團,其中R8為甲基及R”為甲基,二者形成甲酯。在Brent Korba博士實驗室對這些化合物試驗標準HBV分析。得到以下結果。應注意在本測定中,所測試的根據本發明化合物效力比3TC大1000倍以上。該前藥化合物(所測試的第二種化合物,其中R1為胺基磷酸酯基團,R6=苯基及B’係衍生自丙胺酸並含有甲酯(R8為甲基,R”為甲基))比其中的R1及R1a均為H的化合物更有效10倍以上。

如前所述,也試驗化合物15/18抗野生型及HBV之耐藥性形式。該試驗係如上所述及結果列在表1中,其說明於此處所附圖10中。
單-磷酸酯的前藥可為有用的,其不僅繞過限制初始核苷激酶之磷酸化步驟的速率,從而增加抗病毒效力,且也可瞄準肝。因此,也合成胺基亞磷酸酯(phosphoramidite),化合物15P/18P。在單獨抗病毒評估實驗中,觀察到15P/18P試管內之抗-HBV效力在EC50及EC90值方面分別提高7-及13-倍,抗WT HBV相較於本發明化合物15/18細胞毒性沒有顯著增加(表2,圖11)。也在Huh7細胞中評估單-磷酸酯前藥15P/18P(IC50=0.05μM)抗HBV基因型C恩替卡韋抗性株(L180M+M204V+S202G)(16),如圖11表2所示,及有趣的是,化合物15/18 FMCA及15P/18P FMCA單磷酸酯前藥仍維持抗恩替卡韋突變體之抗病毒效力。圖12顯示前藥15P/18P在Huh7細胞中抗HBV基因型C恩替卡韋耐藥株(L180M+S202G+M204V)之抗HBV活性。
也在嵌合體小鼠中試驗FMCA單磷酸酯前藥化合物(15P/18P)之活性。在此等活體內研究中,FMCA單磷酸酯前藥15P/18P顯示抗野生型HBV之活性,具有2 log病毒負荷量下降(圖15)。在另一活體內研究(小鼠)中,ETV(恩替卡韋)對恩替卡韋抗性HBV突變體((L180M+M204V+S202G)不具活性(圖16A),而與此相反,FMCA單磷酸酯前藥(15P/`8P)顯示對恩替卡韋抗性HBV突變體(L180M+M204V+S202G)具有活性,具有1 log病毒負荷量下降(圖16B)。 線粒體研究
藉由測定乳酸去氫酶釋放之在HepG2細胞中的線粒體毒性研究細胞(13)表明:FMCA 15/18沒有表現出任何如拉米呋啶(3TC)高達100mM之顯著毒性,而疊氮胸苷(AZT)顯示顯著毒性(圖13)。此外,用得自小牛胸腺的腺苷去胺酶的去胺作用之研究表明:化合物15/18是完全穩定的(20)。 分子模擬研究
構形搜尋:化合物15/18及恩替卡韋類似物16的最初構形係以MACROMODEL®,第8.5版(Schrodinger,Inc.)中的架構模組(builder module)構建。Monte Carlo構形搜尋係以5,000-步驟、於使用MMFFs力場之GB/SA水模式存在下、在MACROMODEL®中進行。假旋轉分析:使用線上假旋轉分析工具PROSIT(http://cactus.nci.nih.gov/prosit/)以計算所有假旋轉參數。51
有關本發明尤其可得出以下結論:1.試管內本發明化合物及彼等之單磷酸酯前藥具抗拉米呋啶、阿德福韋及恩替卡韋抗性突變體之活性;2. 2’-F部分顯示為藉由氫鍵加強FMCA-TP鍵結至HBV聚合酶且該等化合物在此系列內特別有效;3.本發明化合物(包括FMCA)顯示低細胞及線粒體毒性且可用於預防以及治療;4.在感染拉米呋啶-阿德福韋-恩替卡韋三突變體的嵌合體小鼠中的初步活體內療效研究中,FMCA-MP前藥呈現抗病毒活性,而恩替卡韋則沒有,一個意想不到的結果顯示本發明化合物特別可用於治療,包括包含在抗耐藥性HBV和導致感染的雞尾酒治療。
圖1顯示許多現用抗-HBV核苷類/核苷酸類。
圖2顯示(a)採用2’-內、Southern構形的模型化核苷16之低能量構形異構物(以藍色顯示)。雖然此構形異構物不是整體極小值,但彼等之間的能量障壁低至0.5 kJ/mol。(b)重疊之16及15的結構指示兩個分子的構形之間的相似性。(c)氟化碳環核苷15(C:灰色,N:藍色,O:紅色,F:綠色,H:白色)較佳亦為2’-內、Southern構形。
圖3顯示合成流程1,其提供糖合成組元中間物10之一系列合成步驟。使用下列試劑及條件:(a)參考文獻33、34、40,J.Org.Chem.2003,68,9012-9018;(b)i)LDA,Echenmoser氏鹽,THF,-78℃,ii)MeI,rt,iii)飽和NaHCO3溶液,rt;(c)NaBH4/CeCl3.7H2O,THF,-78℃;(d)NaH,BnBr,TBAI,THF,rt;(e)3N HCl,MeOH,90℃;(f)TIPDSCl,Py,-30℃至rt;(g)DAST,CH2Cl2,rt;(h)i)Tf2O,Py,-30℃至rt,ii)CeOAc,18-冠醚-6,苯,50℃;iii)NaOMe,MeOH,rt;(i)i)TBAF/HOAc,THF,rt,ii)BzCl,Py,rt;(j)BCl3,CH2Cl2,-78℃。
圖4顯示合成流程2,其提供核苷化合物15/18之一系列合成步驟。使用下列試劑及條件:(a)DIAD,Ph3P,6-氯嘌呤,THF,rt;(b)NH3,MeOH,100℃或NaN3,DMF接著H2O;(c)i)OsO4/NMO,丙酮/H2O,rt,ii)NaN3,DMF,140℃,iii)H2/Pd/C,EtOH,rt;(d)i)乙酸1-溴羰基-1-甲基乙基酯,乙腈,-30℃-rt,ii)Zn/HOAc,DMF,rt;(e)DIBAL-H,CH2Cl2,-78℃。
圖5顯示替代性流程2,其提供化合物15/18(其如實例段中所述係使用於試驗抗野生型及突變HBV)之一系列合成步驟。使用下列試劑及條件:(a)參見Jin,等人,J.Org.Chem.,2003,68,9012-9018(b)i)LDA,Eshenmoser氏鹽,THF,-78℃;ii)MeI,rt;iii)飽和NaHCO3溶液,rt;(c)NaBH4/CeCl3.7H2O,MeOH,-78℃;(d)NaH,BnBr,DMF,0℃;(e)TFA/H2O(2:1),50℃;(f)TIDPSCl2/咪唑,DMF,0℃;(g)DAST,CH2Cl2,rt;(h)TBAF/AcOH,THF,rt;(i)BzCl,吡啶,rt;(j)BCl3,CH2Cl2,-78℃。
或者,使用下列試劑及條件:(a)DIAD,Ph3P 6-氯嘌呤,THF,rt;(b)NH3,MeOH,100℃;(c)OsO4/NMO,丙酮/H2O,rt;(d)i)NaN3,DMF,140℃;(ii)H2/Pd/C,EtOH,rt;(e)i)乙酸1-溴羰基-1-亞甲基酯,乙腈,rt;(ii)Zn/HOAc,DMF;(f)DIAD,Ph3P,THF,0℃;(g)TFA,CH2Cl2,rt;(h)DIABAL-H,CH2Cl2,-78℃。
圖6顯示又另一替代性化學流程,其提供化合物15/18之一系列合成步驟。此為在本文中他處所提供之合成的簡略方法。
圖7顯示替代性流程3,其提供化合物15/18之一系列合成步驟。使用下列試劑及條件:(a)i)OsO4/NMO,丙酮/水(ii)二甲氧基丙烷,PTSA,丙酮(b)NaBH4,甲醇(c)氯第三丁烷,NaH,DMF(d),TFA,DCM或NaOtBu,H2O/THF(e)NBS,NaOMe,乙醇,H+(f)(i)LDA,Eshenmoser氏鹽,THF,-78℃;ii)MeI,rt;iii)飽和NaHCO3溶液,rt;(g)NaBH4/CeCl3.7H2O,MeOH(h)NaH,BnBr,DMF,(i)TFA/H2O(2:1),50℃;(j)TIDPSCl2/咪唑,DMF;(k)DAST,CH2Cl2,(1)BCl3,CH2Cl2;(m)DIAD,Ph3P,THF;(m)TFA,CH2Cl2
圖8顯示化合物15P/18P及15PI/18PI之前藥合成。合成係從二氯磷(dichlorophosph)1P開始,藉由在三乙胺存在下、於二氯甲烷溶劑中使L-丙胺酸取代之酯鹽酸鹽反應以產生2P或3P,氯苯基磷氧基-L-丙胺酸酯之甲基酯或異丙基酯。如所示將在N-甲基咪唑中之化合物15/18加至磷氧基中間物2P或3P,在無水四氫呋喃中過夜以產生前藥類似物15P/18P及15PI/18PI。值得注意的是:顯示甲基及異丙基酯15P/18P及15PI/18PI,也經由相同步驟製造對應乙基及異丁基酯。圖8中之合成顯示化合物之非鏡像異構物混合物(呈現丙胺酸基團上之立體特異性甲基之碳及磷基團皆為手性中心,但所示磷基團為消旋的,導致化合物之非鏡像異構物混合物)。這些非鏡像異構物很容易使用在該技藝中可用的標準方法包括選擇性結晶技術及/或手性管柱分離。
圖9顯示本說明書中另外揭示的化學流程之粗略示意圖。本發明合成提供一種如所示的從D-核糖合成根據本發明化合物之方法。
圖10顯示利用細胞內HBV DNA複製檢測之化合物15/18抗拉米呋啶及阿德福韋耐藥突變體之試管內抗HBV活性。表1之圖例說明如下:a rtLM/rtMV=rt180M/rtM204V雙突變體。b抑制50%的HBV-DNA所需要的有效濃度。c降低90%的傳染性病毒滴度所需要的濃度。d>符號表示在所試驗的最高濃度下未達到50%的抑制作用。e3天之後,藉由MTT分析測定之細胞活力降低至未治療之對照組的50%所需要的藥物濃度。
圖11顯示表2闡述在Huh7細胞中化合物15/18、其單磷酸酯前藥15P/18P、拉米呋啶及恩替卡韋抗野生型及恩替卡韋耐藥性突變體之試管內抗HBV活性。a參見參考文獻(22);b參考第二組參考文獻之文獻(23)。
圖12A及12B顯示在Huh7細胞中化合物15P/18P抗HBV基因型C耐恩替卡韋株(L180M+S202G+M204V)之抗HBV活性。圖12B顯示0.054μM的化合物15/18之IC50值。
圖13顯示經由乳酸酶去氫酶釋放(LDH)分析的化合物15/18、AZT及3TC之線粒體毒性。
圖14顯示化合物15/18之鍵結模式及凡得瓦交互作用A)在野生型HBV中及B)在N236T阿德福韋突變體HBV中。較淡虛線為氫鍵相互作用(<2.5Å)。
圖15顯示FMCA單磷酸酯前藥(根據圖8之化合物15P/18P)具有抗野生型HBV之活性,具有2 log病毒負荷量下降。
圖16A顯示ETV(恩替卡韋)不具有抗恩替卡韋抗性HBV突變體((L180M+M204V+S202G)之活性。
圖16B顯示FMCA單磷酸酯前藥(根據圖8之化合物15P/`8P)具有抗恩替卡韋抗性HBV突變體(L180M+M204V+S202G)之活性,具有1 log病毒負荷量下降。 參考文獻(第一組)
1. Mast, E. E.; Alter, M. J.; Margolis, H. S. Strategies to prevent and control hepatitis B and C virus infections: a global perspective. Vaccine 1999, 17, 1730-3.
2. Lee, W. M. Hepatitis B virus infection. N Engl J Med 1997, 337, 1733-45.
3. Perrillo, R. P.; Schiff, E. R.; Davis, G. L.; Bodenheimer, H. C., Jr.; Lindsay, K.; Payne, J.; Dienstag, J. L.; O'Brien, C.; Tamburro, C.; Jacobson, I. M.; et al. A randomized, controlled trial of interferon alfa-2b alone and after prednisone withdrawal for the treatment of chronic hepatitis B. The Hepatitis Interventional Therapy Group. N Engl J Med 1990, 323, 295-301.
4. Wong, D. K.; Cheung, A. M.; O'Rourke, K.; Naylor, C. D.; Detsky, A. S.; Heathcote, J. Effect of alpha-interferon treatment in patients with hepatitis B e antigen-positive chronic hepatitis B. A meta-analysis. Ann Intern Med 1993, 119, 312-23.
5. Kim, W. R.; Benson, J. T.; Hindman, A.; Brosgart, C.; Fortner-Burton, C. Decline in the need for liver transplantation for end stage liver disease secondary to hepatitis B in the US. Hepatology 2007, 46(Suppl), 238A.
6. Tuttleman, J. S.; Pourcel, C.; Summers, J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 1986, 47, 451-60.
7. Zoulim, F. Mechanism of viral persistence and resistance to nucleoside and nucleotide analogs in chronic hepatitis B virus infection. Antiviral Res 2004, 64, 1-15.
8. Ghany, M. G.; Doo, E. C. Antiviral resistance and hepatitis B therapy. Hepatology 2009, 49, S174-84.
9. Ono, S. K.; Kato, N.; Shiratori, Y.; Kato, J.; Goto, T.; Schinazi, R. F.; Carrilho, F. J.; Omata, M. The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance. J Clin Invest 2001, 107, 449-55.
10. Allen, M. I.; Deslauriers, M.; Andrews, C. W.; Tipples, G. A.; Walters, K. A.; Tyrrell, D. L.; Brown, N.; Condreay, L. D. Identification and characterization of mutations in hepatitis B virus resistant to lamivudine. Lamivudine Clinical Investigation Group. Hepatology 1998, 27, 1670-7.
11. Dienstag, J. L.; Schiff, E. R.; Wright, T. L.; Perrillo, R. P.; Hann, H. W.; Goodman, Z.; Crowther, L.; Condreay, L. D.; Woessner, M.; Rubin, M.; Brown, N. A. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 1999, 341, 1256-63.
12. Lai, C. L.; Chien, R. N.; Leung, N. W.; Chang, T. T.; Guan, R.; Tai, D. I.; Ng, K. Y.; Wu, P. C.; Dent, J. C.; Barber, J.; Stephenson, S. L.; Gray, D. F. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 1998, 339, 61-8.
13. Marcellin, P.; Lau, G. K.; Bonino, F.; Farci, P.; Hadziyannis, S.; Jin, R.; Lu, Z. M.; Piratvisuth, T.; Germanidis, G.; Yurdaydin, C.; Diago, M.; Gurel, S.; Lai, M. Y.; Button, P.; Pluck, N. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med 2004, 351, 1206-17.
14. Yuen, M. F.; Seto, W. K.; Chow, D. H.; Tsui, K.; Wong, D. K.; Ngai, V. W.; Wong, B. C.; Fung, J.; Yuen, J. C.; Lai, C. L. Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease. Antivir Ther 2007, 12, 1295-303.
15. Lai, C. L.; Gane, E.; Liaw, Y. F.; Hsu, C. W.; Thongsawat, S.; Wang, Y.; Chen, Y.; Heathcote, E. J.; Rasenack, J.; Bzowej, N.; Naoumov, N. V.; Di Bisceglie, A. M.; Zeuzem, S.; Moon, Y. M.; Goodman, Z.; Chao, G.; Constance, B. F.; Brown, N. A. Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med 2007, 357, 2576-88.
16. Angus, P.; Vaughan, R.; Xiong, S.; Yang, H.; Delaney, W.; Gibbs, C.; Brosgart, C.; Colledge, D.; Edwards, R.; Ayres, A.; Bartholomeusz, A.; Locarnini, S. Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase. Gastroenterology 2003, 125, 292-7.
17. Qi, X.; Xiong, S.; Yang, H.; Miller, M.; Delaney, W. E. t. In vitro susceptibility of adefovir-associated hepatitis B virus polymerase mutations to other antiviral agents. Antivir Ther 2007, 12, 355-62.
18. Villeneuve, J. P.; Durantel, D.; Durantel, S.; Westland, C.; Xiong, S.; Brosgart, C. L.; Gibbs, C. S.; Parvaz, P.; Werle, B.; Trepo, C.; Zoulim, F. Selection of a hepatitis B virus strain resistant to adefovir in a liver transplantation patient. J Hepatol 2003, 39, 1085-9.
19. Curtis, M.; Zhu, Y.; Borroto-Esoda, K. Hepatitis B virus containing the I233V mutation in the polymerase reverse-transcriptase domain remains sensitive to inhibition by adefovir. J Infect Dis 2007, 196, 1483-6.
20. Schildgen, O.; Sirma, H.; Funk, A.; Olotu, C.; Wend, U. C.; Hartmann, H.; Helm, M.; Rockstroh, J. K.; Willems, W. R.; Will, H.; Gerlich, W. H. Variant of hepatitis B virus with primary resistance to adefovir. N Engl J Med 2006, 354, 1807-12.
21. Hadziyannis, S. J.; Tassopoulos, N. C.; Heathcote, E. J.; Chang, T. T.; Kitis, G.; Rizzetto, M.; Marcellin, P.; Lim, S. G.; Goodman, Z.; Ma, J.; Brosgart, C. L.; Borroto-Esoda, K.; Arterburn, S.; Chuck, S. L. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Gastroenterology 2006, 131, 1743-51.
22. Sherman, M.; Yurdaydin, C.; Sollano, J.; Silva, M.; Liaw, Y. F.; Cianciara, J.; Boron-Kaczmarska, A.; Martin, P.; Goodman, Z.; Colonno, R.; Cross, A.; Denisky, G.; Kreter, B.; Hindes, R. Entecavir for treatment of lamivudine-refractory, HBeAg-positive chronic hepatitis B. Gastroenterology 2006, 130, 2039-49.
23. Tenny, D. J.; Pokornowski, K. A.; Rose, B. E.; al., e. Entecavir at five years shows long-term maintenance of high genetic barrier to hepatitis B virus resistance. Heptol Int 2008, 2, 302-303.
24. Dienstag, J. L.; Goldin, R. D.; Heathcote, E. J.; Hann, H. W.; Woessner, M.; Stephenson, S. L.; Gardner, S.; Gray, D. F.; Schiff, E. R. Histological outcome during long-term lamivudine therapy. Gastroenterology 2003, 124, 105-17.
25. Lok, A. S.; Lai, C. L.; Leung, N.; Yao, G. B.; Cui, Z. Y.; Schiff, E. R.; Dienstag, J. L.; Heathcote, E. J.; Little, N. R.; Griffiths, D. A.; Gardner, S. D.; Castiglia, M. Long-term safety of lamivudine treatment in patients with chronic hepatitis B. Gastroenterology 2003, 125, 1714-22.
26. Choi, Y.; Lee, K.; Hong, J. H.; Schinazi, R. F.; Chu, C. K. Synthesis and anti-HIV activity of L-2'-fluoro-2',3'-unsaturated purine nucleosides. . Tetrahedron Lett 1998, 39, 4437-4440.
27. Chong, Y.; Choo, H.; Choi, Y.; Mathew, J.; Schinazi, R. F.; Chu, C. K. Stereoselective synthesis and antiviral activity of D-2',3'-didehydro-2',3'-dideoxy-2'-fluoro-4'-thionucleosides. J Med Chem 2002, 45, 4888-98.
28. Chong, Y.; Gumina, G.; Mathew, J. S.; Schinazi, R. F.; Chu, C. K. 1-2',3'-Didehydro-2',3'-dideoxy-3'-fluoronucleosides: synthesis, anti-HIV activity, chemical and enzymatic stability, and mechanism of resistance. J Med Chem 2003, 46, 3245-56.
29. Choo, H.; Chong, Y.; Choi, Y.; Mathew, J.; Schinazi, R. F.; Chu, C. K. Synthesis, anti-HIV activity, and molecular mechanism of drug resistance of L-2',3'-didehydro-2',3'-dideoxy-2'-fluoro-4'-thionucleosides. J Med Chem 2003, 46, 389-98.
30. Chu, C. K.; Ma, T.; Shanmuganathan, K.; Wang, C.; Xiang, Y.; Pai, S. B.; Yao, G. Q.; Sommadossi, J. P.; Cheng, Y. C. Use of 2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis B virus and Epstein-Barr virus. Antimicrob Agents Chemother 1995, 39, 979-81.
31. Lee, K.; Choi, Y.; Gullen, E.; Schlueter-Wirtz, S.; Schinazi, R. F.; Cheng, Y. C.; Chu, C. K. Synthesis and anti-HIV and anti-HBV activities of 2'-fluoro-2', 3'-unsaturated L-nucleosides. J Med Chem 1999, 42, 1320-8.
32. Lee, K.; Choi, Y.; Gumina, G.; Zhou, W.; Schinazi, R. F.; Chu, C. K. Structure-activity relationships of 2'-fluoro-2',3'-unsaturated D-nucleosides as anti-HIV-1 agents. J Med Chem 2002, 45, 1313-20.
33. Wang, J.; Jin, Y.; Rapp, K. L.; Bennett, M.; Schinazi, R. F.; Chu, C. K. Synthesis, antiviral activity, and mechanism of drug resistance of D- and L-2',3'-didehydro-2',3'-dideoxy-2'-fluorocarbocyclic nucleosides. J Med Chem 2005, 48, 3736-48.
34. Wang, J.; Jin, Y.; Rapp, K. L.; Schinazi, R. F.; Chu, C. K. D- and L-2',3'-didehydro-2',3'-dideoxy-3'-fluoro-carbocyclic nucleosides: synthesis, anti-HIV activity and mechanism of resistance. J Med Chem 2007, 50, 1828-39.
35. Zhou, W.; Gumina, G.; Chong, Y.; Wang, J.; Schinazi, R. F.; Chu, C. K. Synthesis, structure-activity relationships, and drug resistance of beta-d-3'-fluoro-2',3'-unsaturated nucleosides as anti-HIV Agents. J Med Chem 2004, 47, 3399-408.
36. Bisacchi, G. S.; Chao, S. T.; Bachard, C.; Daris, J. P.; Innaimo, S.; Jacobs, G. A.; Kocy, O.; Lapointe, P.; Martel, A.; Merchant, Z.; Slusarchyk, W. A.; Sundeen, J. E.; Young, M. G.; Colonno, R.; Zahler, R. BMS-200475, a novel carbocyclic 2′ -deoxyguanosine analog with potent and selective anti-hepatitis B virus activity in vitro. Bioorg Med Chem Lett 1997, 7, 127-132.
37. Gaudino, J. J.; Wilcox, C. S. A concise approach to enantiomerically pure carbocyclic ribose analogs. Synthesis of (4S,5R,6R,7R)-7-(hydroxymethyl)spiro[2.4]heptane-4,5,6-triol 7-O-(dihydrogen phosphate). J Am Chem Soc 1990, 112, 4374-4380.
38. Takagi, C.; Sukeda, M.; Kim, H. S.; Wataya, Y.; Yabe, S.; Kitade, Y.; Matsuda, A.; Shuto, S. Synthesis of 5'-methylenearisteromycin and its 2-fluoro derivative with potent antimalarial activity due to inhibition of the parasite S-adenosylhomocysteine hydrolase. Org Biomol Chem 2005, 3, 1245-51.
39. Ziegler, F. E.; Sarpong, M. A. Radical cyclization studies directed toward the synthesis of BMS-200475 'entecavir': the carbocyclic core. Tetrahedron 2003, 59, 9013-9018.
40. Wang, P.; Agrofoglio, L. A.; Newton, M. G.; Chu, C. K. Chiral Synthesis of Carbocyclic Analogues of L-ribofuranosides. J Org Chem 1999, 64, 4173-4178.
41. Corey, E. J.; Winter, R. A. E. A New, Stereospecific Olefin Synthesis from 1,2-Diols. J Am Chem Soc 1963, 85, 2677-2678.
42. Ando, M.; Ohhara, H.; Takase, K. A mild and stereospecific conversion of vicinal diols into olefins via 2-methoxy-1,3-dioxolane derivatives. Chem Letter 1986, 15, 879-882.
43. Manchand, P. S.; Belica, P. S.; Holman, M. J.; Huang, T. N.; Maehr, H.; Tam, S. Y. K.; Yang, R. T. Syntheses of the anti-AIDS drug 2',3'-dideoxycytidine from cytidine. J Org Chem 1992, 57, 3473-3478.
44. Robins, M. J.; Hansske, F.; Low, N. H.; Park, J. I. A mild conversion of vicinal diols to alkenes. Efficient transformation of ribonucleosides into 2'-ene and 2',3'-dideoxynucleosides. Tetrahedron Lett 1984, 25, 367-370.
45. Van Aerschot, A.; Everaert, D.; Balzarini, J.; Augustyns, K.; Jie, L.; Janssen, G.; Peeters, O.; Blaton, N.; De Ranter, C.; De Clercq, E.; et al. Synthesis and anti-HIV evaluation of 2',3'-dideoxyribo-5-chloropyrimidine analogues: reduced toxicity of 5-chlorinated 2',3'-dideoxynucleosides. J Med Chem 1990, 33, 1833-9.
46. Tassopoulos, N. C.; Volpes, R.; Pastore, G.; Heathcote, J.; Buti, M.; Goldin, R. D.; Hawley, S.; Barber, J.; Condreay, L.; Gray, D. F. Efficacy of lamivudine in patients with hepatitis B e antigen-negative/hepatitis B virus DNA-positive (precore mutant) chronic hepatitis B.Lamivudine Precore Mutant Study Group. Hepatology 1999, 29, 889-96.
47. Das, K.; Xiong, X.; Yang, H.; Westland, C. E.; Gibbs, C. S.; Sarafianos, S. G.; Arnold, E. Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and emtricitabine (FTC). J Virol 2001, 75, 4771-9.
48. Chong, Y.; Chu, C. K. Understanding the molecular mechanism of drug resistance of anti-HIV nucleosides by molecular modeling. Front Biosci 2004, 9, 164-86.
49. Yadav, V.; Chu, C. K. Molecular mechanisms of adefovir sensitivity and resistance in HBV polymerase mutants: a molecular dynamics study. Bioorg Med Chem Lett 2004, 14, 4313-7.
50. Langley, D. R.; Walsh, A. W.; Baldick, C. J.; Eggers, B. J.; Rose, R. E.; Levine, S. M.; Kapur, A. J.; Colonno, R. J.; Tenney, D. J. Inhibition of hepatitis B virus polymerase by entecavir. J Virol 2007, 81, 3992-4001.
51. Sun, G.; Voigt, J. H.; Marquez, V. E.; Nicklaus, M. C. Prosit, an online service to calculate pseudorotational parameters of nucleosides and nucleotides. Nucleosides Nucleotides Nucleic Acids 2005, 24, 1029-32.
52. Chong, Y.; Chu, C. K. Understanding the unique mechanism of L-FMAU (clevudine) against hepatitis B virus: molecular dynamics studies. Bioorg Med Chem Lett 2002, 12, 3459-62. 參考文獻(第二組)
1.化合物數據併入本文中。
2.化合物數據併入本文中。
3. Chu, C. K., T. Ma, K. Shanmuganathan, C. Wang, Y. Xiang, S. B. Pai, G. Q. Yao, J. P. Sommadossi, and Y. C. Cheng. 1995. Use of 2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis B virus and Epstein-Barr virus. Antimicrobial agents and chemotherapy 39:979.
4. Crimmins, M. T. 1998. New developments in the enantioselective synthesis of cyclopentyl carbocyclic nucleosides. Tetrahedron 54:9229-9272.
5. Delaney, W. E., S. Locarnini, and T. Shaw. 2001. Resistance of hepatitis B virus to antiviral drugs: current aspects and directions for future investigation. Antiviral chemistry & chemotherapy 12:1-35.
5. Dey, S., and P. Garner. 2000. Synthesis of tert-butoxycarbonyl (Boc)-protected purines. The Journal of Organic Chemistry 65:7697-7699.
6. Ferrero, M., and V. Gotor. 2000. Biocatalytic selective modifications of conventional nucleosides, carbocyclic nucleosides, and C-nucleosides. Chemical Reviews 100:4319-4348.
7. Ganem, D., and A. M. Prince. 2004. Hepatitis B virus infection-natural history and clinical consequences. New England Journal of Medicine 350:1118-1129.
8. Genovesi, E. V., L. Lamb, I. Medina, D. Taylor, M. Seifer, S. Innaimo, R. J. Colonno, D. N. Standring, and J. M. Clark. 1998. Efficacy of the Carbocyclic 2'-Deoxyguanosine Nucleoside BMS-200475 in the Woodchuck Model of Hepatitis B Virus Infection. Antimicrob. Agents Chemother. 42:3209-3217.
9. Iyer, R. P., Y. Jin, A. Roland, J. D. Morrey, S. Mounir, and B. Korba. 2004. Phosphorothioate Di- and Trinucleotides as a Novel Class of Anti-Hepatitis B Virus Agents. Antimicrob. Agents Chemother. 48:2199-2205.
10. Jin, Y. H., P. Liu, J. Wang, R. Baker, J. Huggins, and C. K. Chu. 2003. Practical synthesis of D-and L-2-cyclopentenone and their utility for the synthesis of carbocyclic antiviral nucleosides against orthopox viruses (smallpox, monkeypox, and cowpox virus). The Journal of Organic Chemistry 68:9012-9018.
12. Korba, B. E., and J. L. Gerin. 1992. Use of a standardized cell culture assay to assess activities of nucleoside analogs against hepatitis B virus replication. Antiviral research 19:55-70.
13. Lai, Y., C. M. Tse, and J. D. Unadkat. 2004. Mitochondrial expression of the human equilibrative nucleoside transporter 1 (hENT1) results in enhanced mitochondrial toxicity of antiviral drugs. Journal of Biological Chemistry 279:4490.
14. McGuigan, C., A. Gilles, K. Madela, M. Aljarah, S. Holl, S. Jones, J. Vernachio, J. Hutchins, B. Ames, K. D. Bryant, E. Gorovits, B. Ganguly, D. Hunley, A. Hall, A. Kolykhalov, Y. Liu, J. Muhammad, N. Raja, R. Walters, J. Wang, S. Chamberlain, and G. Henson. 2010. Phosphoramidate ProTides of 2’-C-Methylguanosine as Highly Potent Inhibitors of Hepatitis C Virus. Study of Their in Vitro and in Vivo Properties. Journal of medicinal chemistry 53:4949-4957.
15. Montgomery, J. A., A. T. Shortnacy-Fowler, S. D. Clayton, J. M. Riordan, and J. A. Secrist. 1992. Synthesis and biological activity of 2'-fluoro-2-halo derivatives of 9-.beta.-D-arabinofuranosyladenine. Journal of medicinal chemistry 35:397-401.
16. Mukaide, M., Y. Tanaka, T. Shin-I, M. F. Yuen, F. Kurbanov, O. Yokosuka, M. Sata, Y. Karino, G. Yamada, and K. Sakaguchi. 2010. Mechanism of Entecavir Resistance of Hepatitis B Virus with Viral Breakthrough as Determined by Long-Term Clinical Assessment and Molecular Docking Simulation. Antimicrobial agents and chemotherapy 54:882.
17. Sharon, A., and C. K. Chu. 2008. Understanding the molecular basis of HBV drug resistance by molecular modeling. Antiviral research 80:339-353.
18. Sharon, A., A. K. Jha, and C. K. Chu. 2010. Clevudine, to Treat Hepatitis B Viral Infection, p. 383-408. In J. Fisher and C. R. Ganellin (ed.), Analogue-based Drug Discovery II. WILEY-VCH Verlag GmbH & Co.: KGaA, Weinheim.
19. Sorrell, M. F., E. A. Belongia, J. Costa, I. F. Gareen, J. L. Grem, J. M. Inadomi, E. R. Kern, J. A. McHugh, G. M. Petersen, and M. F. Rein. 2009. National Institutes of Health consensus development conference statement: management of hepatitis B. Hepatology 49:S4-S12.
20. Stoeckler, J. D., C. A. Bell, R. E. Parks Jr, C. K. Chu, J. J. Fox, and M. Ikehara. 1982. C(2')-substituted purine nucleoside analogs: Interactions with adenosine deaminase and purine nucleoside phosphorylase and formation of analog nucleotides. Biochemical Pharmacology 31: 1723-1728.
21. Suzuki, Y., F. Suzuki, Y. Kawamura, H. Yatsuji, H. Sezaki, T. Hosaka, N. Akuta, M. Kobayashi, S. Saitoh, and Y. Arase. 2009. Efficacy of entecavir treatment for lamivudine resistant hepatitis B over 3 years: Histological improvement or entecavir resistance? Journal of gastroenterology and hepatology 24:429-435.
22. Villet, S., A. Ollivet, C. Pichoud, L. Barraud, J.-P. Villeneuve, C. Trépo, and F. Zoulim. 2007. Stepwise process for the development of entecavir resistance in a chronic hepatitis B virus infected patient. Journal of Hepatology 46:531-538.
23. Walsh, A. W., D. R. Langley, R. J. Colonno, and D. J. Tenney. 2010. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir. PloS one 5:e9195.
24. Wang, J., Y. Jin, K. L. Rapp, M. Bennett, R. F. Schinazi, and C. K. Chu. 2005. Synthesis, antiviral activity, and mechanism of drug resistance of D-and L-2', 3'-didehydro-2', 3'-dideoxy-2'-fluorocarbocyclic nucleosides. Journal of medicinal chemistry 48:3736-3748.
25. Yuen, M. F., and C. L. Lai. 2004. Adefovir dipivoxil in chronic hepatitis B infection. Expert Opinion on Pharmacotherapy 5:2361-2367.
权利要求:
Claims (42)
[1] 一種如下式結構之核苷化合物: 其中B為 其中R為H、F、Cl、Br、I、C1-C4烷基(較佳地CH3)、-C≡N、-C≡C-Ra、X為H、C1-C4烷基(較佳地CH3)、F、Cl、Br或I;Ra為H或-C1-C4烷基;R1及R1a各自獨立地為H、醯基、C1-C20烷基或醚基、胺基酸殘基(D或L)、磷酸酯、二磷酸酯、三磷酸酯、磷酸二酯或胺基磷酸酯(phosphoramidate)基團或R1及R1a與彼等所鍵結之氧原子一起形成碳酸二酯(carbodiester)或磷酸二酯基團(phosphdiester);R2為H、醯基、C1-C20烷基或醚基或胺基酸殘基(D或L);或其醫藥上可接受的鹽、鏡像異構物、水合物或溶劑合物。
[2] 根據申請專利範圍第1項之化合物,其中R1a為H。
[3] 根據申請專利範圍第1項之化合物,其中R1及R2各自獨立地為H或C2-C20醯基。
[4] 根據申請專利範圍第1項之化合物,其中R1、R1a及R2各自為H。
[5] 根據申請專利範圍第1-4項中任一項之化合物,其中B為
[6] 根據申請專利範圍第1-4項中任一項之化合物,其係以下式化學結構表示:
[7] 根據申請專利範圍第6項之化合物,其中B為
[8] 根據申請專利範圍第7項之化合物,其中R1、R1a及R2各自獨立地為H或C2-C20醯基。
[9] 根據申請專利範圍第1-4項中任一項之化合物,其中R為H或F。
[10] 根據申請專利範圍第7項之化合物,其中R1a為H且R1及R2各自獨立地為H或C2-C20醯基。
[11] 根據申請專利範圍第1-3項中任一項之化合物,其中R1為醯基、磷酸酯、磷酸二酯或胺基磷酸酯基團。
[12] 根據申請專利範圍第1-3項中任一項之化合物,其中R1與其所連接的核苷一起形成如下式結構之基團: 其中R5及R6係各別獨立地選自H、C1至C20直鏈、支鏈或環狀烷基、烷氧基烷基、芳氧基烷基、芳基、烷氧基或烷氧基羰氧基,該等基團各個可任意經取代,惟至少一個R5基團不是H,或二個R5基團一起形成五或六員雜環基;B’為如下式結構之基團或 其中i為0、1、2或3;R7為C1-C20直鏈、支鏈或環狀烷基、醯基、烷氧基烷基、芳氧基烷基或芳基,該等基團各個可任意經取代;R8為胺基酸之側鏈;且R”各別獨立地為C1-C20直鏈、支鏈或環狀烷基或苯基或雜芳基,該等基團各個可任意經取代。
[13] 根據申請專利範圍第1-3項中任一項之化合物,其中R1及R1a與彼等基團所連接的核苷一起形成如下式結構之基團: 其中R6係選自H、C1-C20直鏈、支鏈或環狀烷基、烷氧基烷基、芳氧基烷基、芳基或烷氧基。
[14] 根據申請專利範圍第1-3項中任一項之化合物,其中R1與其所連接的核苷一起為如下式結構之基團: 其中R6為C1-C20烷基或任意經取代之苯基;B’為如下式結構之基團其中R8為C1-C3直鏈或支鏈烷基;且R”為C1-C20直鏈、環狀或支鏈烷基或任意經取代之苯基。
[15] 根據申請專利範圍第14項之化合物,其中B為 R2及R1a各自獨立地為H或C2-C20醯基;R1與其所連接的核苷一起為如下式結構之基團: 其中R6為任意經取代之苯基;且B’為如下式結構之基團其中R8為甲基;且R”為C1-C4直鏈或支鏈烷基。
[16] 根據申請專利範圍第7項之化合物,其中R2及R1a各自獨立地為H或C2-C20醯基;且R1為基團;其中Rp1為任意經取代之C1-C20烷基;且RP為H、硝基、氰基、甲氧基、或任意經1-3個鹵素取代基取代之C1-C3烷基。
[17] 根據申請專利範圍第16項之化合物,其中R1為 其中RP為H或C1-C3烷基且Rp1為甲基、乙基、異丙基或異丁基。
[18] 根據申請專利範圍第17項之化合物,其中Rp為H且Rp1為甲基或異丙基。
[19] 根據申請專利範圍第16項之化合物,其中R1為基團,其中RP為H或C1-C3烷基。
[20] 根據申請專利範圍第17項之化合物,其中Rp為H。
[21] 根據申請專利範圍第16項之化合物,其中Rp1為C1-C4烷基。
[22] 一種化合物 或其醫藥上可接受的鹽。
[23] 一種醫藥組成物,其包含有效量之根據申請專利範圍第1-22項中任一項之化合物,任意與醫藥上可接受的載體、添加劑或賦形劑組合。
[24] 根據申請專利範圍第23項之醫藥組成物,其包含有效量之另一抗病毒劑。
[25] 根據申請專利範圍第24項之組成物,其中該另一抗病毒劑為阿昔洛韋(acyclovir)、泛昔洛韋(famciclovir)、更昔洛韋(ganciclovir)、伐昔洛韋(valaciclovir)、阿糖腺苷(vidaribine)、利巴韋林(ribavirin)、帶狀疱疹-免疫球蛋白(ZIG)、拉米呋啶(lamivudine)、阿德福韋酯(adefovir dipivoxil)、恩替卡韋(entecavir)、替比夫定(telbivudine)、克拉夫定(clevudine)、泰諾福韋(tenofovir)或彼等之混合物。
[26] 根據申請專利範圍第24項之組成物,其中該另一抗病毒劑係選自下列所組成之群組:賀維力(Hepsera)(阿德福韋酯)、拉米呋啶、恩替卡韋、替比夫定、泰諾福韋、恩曲他濱(emtricitabine)、克拉夫定、伐托他濱(valtoricitabine)、氨多索韋(amdoxovir)、普拉德福韋(pradefovir)、拉希韋(racivir)、BAM 205、硝唑尼特(nitazoxanide)、UT 231-B、Bay 41-4109、EHT899、札達辛(zadaxin)(胸腺素α-1)、NM 283、VX-950(泰勒普維爾(telaprevir))、SCH 50304、TMC435、VX-500、BX-813、SCH503034、R1626、ITMN-191(R7227)、R7128、PF-868554、TT033、CGH-759、GI 5005、MK-7009、SIRNA-034、MK-0608、A-837093、GS 9190、ACH-1095、GSK625433、TG4040(MVA-HCV)、A-831、F351、NS5A、NS4B、ANA598、A-689、GNI-104、IDX102、ADX184、GL59728、GL60667、PSI-7851、TLR9促效劑、PHX1766、SP-30及彼等之混合物。
[27] 根據申請專利範圍第24項之組成物,其中該另一抗病毒劑係選自下列所組成之群組:賀維力(阿德福韋酯)、拉米呋啶、恩替卡韋、替比夫定、泰諾福韋、恩曲他濱、克拉夫定、伐托他濱、氨多索韋、阿德福韋、拉希韋、BAM 205、硝唑尼特、UT 231-B、Bay 41-4109、EHT899、札達辛(胸腺素α-1)及彼等之混合物。
[28] 根據申請專利範圍第24項之組成物,其中該另一抗病毒劑係選自下列所組成之群組:NM 283、VX-950(泰勒普維爾)、SCH 50304、TMC435、VX-500、BX-813、SCH503034、R1626、ITMN-191(R7227)、R7128、PF-868554、TT033、CGH-759、GI 5005、MK-7009、SIRNA-034、MK-0608、A-837093、GS 9190、ACH-1095、GSK625433、TG4040(MVA-HCV)、A-831、F351、NS5A、NS4B、ANA598、A-689、GNI-104、IDX102、ADX184、GL59728、GL60667、PSI-7851、TLR9促效劑、PHX1766、SP-30及彼等之混合物。
[29] 根據申請專利範圍第23-28項中任一項之組成物,其另組合至少一種抗癌劑。
[30] 根據申請專利範圍第29項之組成物,其中該抗癌劑係選自下列所組成之群組:奧沙利鉑(oxaliplatin)、5-氟尿嘧啶、吉西他濱(gemcitabine)或彼等之混合物。
[31] 根據申請專利範圍第29項之組成物,其中該抗癌劑為抗代謝物、拓撲異構酶I或II抑制劑、烷化劑或微管抑制劑。
[32] 根據申請專利範圍第29項之組成物,其中該抗癌劑係選自下列所組成之群組:阿地白介素(Aldesleukin);阿萊珠單抗(Alemtuzumab);阿利維A酸(alitretinoin);別嘌呤(allopurinol);六甲蜜胺(altretamine);氧磷汀(amifostine);阿那曲唑(anastrozole);三氧化二砷;天冬醯胺酸酶;BCG Live;貝沙羅汀(bexarotene)膠囊;貝沙羅汀凝膠;博來黴素(bleomycin);靜脈注射白消安(busulfan);口服白消安;卡普睾酮(calusterone);卡培他濱(capecitabine);卡鉑(carboplatin);卡莫司汀(carmustine);具有聚苯丙生(Polifeprosan)20植入物之卡莫司汀;塞來昔布(celecoxib);苯丁酸氮芥(chlorambucil);順鉑(cisplatin);克拉屈濱(cladribine);環磷醯胺(cyclophosphamide);阿糖胞苷(cytarabine);阿糖胞苷脂質體;達卡巴嗪(dacarbazine);更生黴素(dactinomycin)、放線菌素D(actinomycin D);阿法達貝泊汀(Darbepoetin alfa);柔紅黴素(daunorubicin)脂質體;柔紅黴素、柔紅黴素(daunomycin);地尼白介素(Denileukin diftitox);右雷佐生(dexrazoxane);多西他賽(docetaxel);多柔比星(doxorubicin);多柔比星脂質體;丙酸甲雄烷酮(Dromostanolone);愛立特氏B(Elliott’s B)溶液;表柔比星(epirubicin);阿法依泊汀(Epoetin alfa)雌莫司汀(Estramustine);磷酸依托泊苷(etoposide phosphate);依托泊苷(etoposide)(VP-16);依西美坦(exemestane);非格司亭(Filgrastim);氮尿苷(floxuridine)(動脈內);氟達拉濱(fludarabine);氟尿嘧啶(5-FU);否威秋特(folvestrant);吉西他濱(gemcitabine)、吉妥珠單抗(gemtuzumab)、奧唑米星(ozogamicin);葛立瓦(gleevac)、醋酸戈舍瑞林(goserelin乙酸鹽);羥基脲;替伊莫單抗(Ibritumomab Tiuxetan);伊達比星(idarubicin);異環磷醯胺(ifosfamide);甲磺酸伊馬替尼(imatinib mesylate);干擾素α-2a;干擾素α-2b;伊立替康(irinotecan);來曲唑(letrozole);菊白葉酸(leucovorin);左旋咪唑(levamisole);洛莫司汀(lomustine)(CCNU);氮芥(meclorethamine)(氮芥子氣(nitrogen mustard));醋酸甲地孕酮(megestrol乙酸鹽);美法侖(melphalan)(L-PAM);巰嘌呤(6-MP);美司鈉(mesna);氨甲喋呤(methotrexate);甲氧沙林(methoxsalen);絲裂黴素C(mitomycin C);米托坦(mitotane);米托蒽醌(mitoxantrone);苯丙酸諾龍(nandrolone phenpropionate);諾非妥莫單抗(Nofetumomab);LOddC;奧普瑞白介素(Oprelvekin);奧沙利鉑(oxaliplatin);紫杉醇(paclitaxel);帕米膦酸(pamidronate);培加酶(pegademase);培門冬酶(Pegaspargase);培非司亭(Pegfilgrastim);噴司他丁(pentostatin);哌泊溴烷(pipobroman);普卡黴素(plicamycin)、光輝黴素(mithramycin);卟吩姆鈉(porfimer sodium);丙卡巴肼(procarbazine);奎納克林(quinacrine);拉布立酶(Rasburicase);利妥昔單抗(Rituximab);沙格司亭(Sargramostim);鏈佐星(streptozocin);替比夫定(talbuvidine)(LDT);滑石;他莫昔芬(tamoxifen);替莫唑胺(temozolomide);替尼泊苷(teniposide)(VM-26);睾內酯(testolactone);硫鳥嘌呤(thioguanine)(6-TG);噻替哌(thiotepa);拓撲替康(topotecan);托瑞米芬(toremifene);托西莫單抗(Tositumomab);曲妥珠單抗(Trastuzumab);維生素A酸(tretinoin)(ATRA);尿嘧啶氮芥(Uracil Mustard);戊柔比星(valrubicin);弗特西他賓(valtorcitabine)(monoval LDC);長春鹼(vinblastine);長春瑞濱(vinorelbine);唑來膦酸鹽(zoledronate);及彼等之混合物。
[33] 一種套組,其包含根據申請專利範圍第23-32項中任一項之組成物及對有需要的病患投與該組成物的指示。
[34] 一種根據申請專利範圍第1-22項中任一項之化合物之用途,其係用於製備供治療病毒感染之藥劑,該病毒感染係由B型肝炎病毒(HBV)、C型肝炎病毒(HCV)、單純疱疹1(HSV-1)、單純疱疹2(HSV-2)、細胞巨大病毒(CMV)、水痘帶狀皰狀病毒(VZV)及艾伯斯坦-巴爾病毒(Epstein-Barr virus,EBV)之一或多者所引起。
[35] 一種根據申請專利範圍第1-22項中任一項之化合物之用途,其係用於製備供降低處於病毒感染風險的病患之病毒感染可能性之藥劑,該病毒感染係由B型肝炎病毒(HBV)、C型肝炎病毒(HCV)、單純疱疹1(HSV-1)、單純疱疹2(HSV-2)、細胞巨大病毒(CMV)、水痘帶狀皰狀病毒(VZV)及艾伯斯坦-巴爾病毒(Epstein-Barr virus,EBV)之一或多者所引起。
[36] 一種根據申請專利範圍第23-32項中任一項之組成物之用途,其係用於製備供治療HBV感染之續發性肝纖維化、硬化或癌症的藥劑。
[37] 根據申請專利範圍第35或36項之用途,其中該HBV感染係因HBV的抗藥株。
[38] 根據申請專利範圍第37項之用途,其中該HBV株為抗拉米呋啶、恩替卡韋及阿德福韋之一或多者。
[39] 根據申請專利範圍第37項之用途,其中該HBV株為rtM204V、rtM204I、rtL180M、rtLM/rtMV、rtN236T或L180M+M204V+S202G。
[40] 根據申請專利範圍第37項之用途,其中該HBV株為L180M+M204V+S202G。
[41] 一種根據申請專利範圍第23-25及28-32項中任一項之組成物之用途,其係用於製備供治療HCV感染之續發性肝纖維化、硬化或癌症的藥劑。
[42] 一種根據申請專利範圍第23-28項中任一項之組成物之用途,其係用於製備供治療EBV感染之續發性肝纖維化、硬化或癌症的藥劑。
类似技术:
公开号 | 公开日 | 专利标题
TWI567074B|2017-01-21|2’-氟-6’-亞甲基碳環核苷類及治療病毒感染之方法
JP5779799B2|2015-09-16|2’−フルオロ−6’−メチレン炭素環ヌクレオシド類、及びウイルス感染の治療法
US11082386B2|2021-08-03|2′-fluoro-6′-methylene carbocyclic nucleosides and methods of treating viral infections
EP3504212B1|2021-05-19|Substituted pyrrolizine compounds and uses thereof
US20210052613A1|2021-02-25|Methods for treating filoviridae virus infections
TWI731309B|2021-06-21|經取代吡化合物及其用途
TW201720820A|2017-06-16|B型肝炎核心蛋白質調節劑
AU2015373996A1|2017-07-13|Derivatives and methods of treating hepatitis B infections
BRPI0923305B1|2019-01-22|moduladores de receptores toll-like, seu uso e composição farmacêutica que os compreende
TW201840563A|2018-11-16|治療b型肝炎病毒感染的化合物
US10118941B2|2018-11-06|Methods for the preparation of diastereomerically pure phosphoramidate prodrugs
EA026523B1|2017-04-28|2&#39;-фторзамещенные карбануклеозидные аналоги для противовирусного лечения
CA2692460A1|2009-01-08|Hiv reverse transcriptase inhibitors
KR20100041798A|2010-04-22|신규 hiv 역전사효소 억제제
US20180297924A1|2018-10-18|Hydroxylated tropolone inhibitors of nucleotidyl transferases in herpesvirus and hepatitis b and uses therefor
JP2021512927A|2021-05-20|ウイルス感染の処置および予防のための新規のスルホン化合物および誘導体
KR20220015421A|2022-02-08|Hbv 캡시드 조립 조절제로서의 아제핀
同族专利:
公开号 | 公开日
WO2012158552A3|2013-01-24|
CN103827130A|2014-05-28|
WO2012158552A2|2012-11-22|
US20110244027A1|2011-10-06|
US8816074B2|2014-08-26|
KR102002886B1|2019-07-23|
TWI567074B|2017-01-21|
AR086372A1|2013-12-11|
KR20140033124A|2014-03-17|
CN103827130B|2017-02-15|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US4396623A|1981-08-26|1983-08-02|Southern Research Institute|Carbocyclic analogs of uracil nucleosides as antiviral agents|
KR910007655A|1989-10-03|1991-05-30|엠. 피. 잭슨|치료용 뉴클레오시드|
US5340816A|1990-10-18|1994-08-23|E. R. Squibb & Sons, Inc.|Hydroxymethyl purines and pyrimidines|
US5627160A|1993-05-25|1997-05-06|Yale University|L-2',3'-dideoxy nucleoside analogs as anti-hepatitis B and anti-HIV agents|
EP2392580A1|1998-02-25|2011-12-07|Emory University|2'-fluoronucleosides|
ES2272460T3|2000-03-29|2007-05-01|Georgetown University|L-fmau para el tratamiento de la infeccion viral hepatitis delta.|
US20030008841A1|2000-08-30|2003-01-09|Rene Devos|Anti-HCV nucleoside derivatives|
US7608600B2|2002-06-28|2009-10-27|Idenix Pharmaceuticals, Inc.|Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections|
WO2004043402A2|2002-11-12|2004-05-27|Pharmasset, Inc.|Modified nucleosides as antiviral agents|
US8895531B2|2006-03-23|2014-11-25|Rfs Pharma Llc|2′-fluoronucleoside phosphonates as antiviral agents|
KR101961601B1|2009-11-16|2019-03-25|유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드|바이러스 감염 치료를 위한 2'―플루오로―6'―메틸렌 카보사이클릭 뉴클레오사이드 및 방법|MY164523A|2000-05-23|2017-12-29|Univ Degli Studi Cagliari|Methods and compositions for treating hepatitis c virus|
ES2624353T3|2002-11-15|2017-07-13|Idenix Pharmaceuticals Llc|2'-Metil nucleósidos en combinación con interferón y mutación de Flaviviridae|
KR101961601B1|2009-11-16|2019-03-25|유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드|바이러스 감염 치료를 위한 2'―플루오로―6'―메틸렌 카보사이클릭 뉴클레오사이드 및 방법|
US9700560B2|2009-11-16|2017-07-11|University Of Georgia Research Foundation, Inc.|2′-fluoro-6′-methylene carbocyclic nucleosides and methods of treating viral infections|
EP2755983B1|2011-09-12|2017-03-15|Idenix Pharmaceuticals LLC.|Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections|
TW201331221A|2011-10-14|2013-08-01|Idenix Pharmaceuticals Inc|嘌呤核苷酸化合物類之經取代的3’,5’-環磷酸酯及用於治療病毒感染之醫藥組成物|
KR20140129019A|2012-02-14|2014-11-06|유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드|플라비비리다에 감염의 치료를 위한 스피로[2.4]헵탄|
US9296778B2|2012-05-22|2016-03-29|Idenix Pharmaceuticals, Inc.|3′,5′-cyclic phosphate prodrugs for HCV infection|
WO2013177188A1|2012-05-22|2013-11-28|Idenix Pharmaceuticals, Inc.|3',5'-cyclic phosphoramidate prodrugs for hcv infection|
JP6165848B2|2012-05-22|2017-07-19|イデニク ファーマシューティカルズ エルエルシー|肝疾患のためのd−アミノ酸化合物|
HUE029038T2|2012-05-25|2017-01-30|Janssen Sciences Ireland Uc|Uracil spirooxetan nucleosides|
US9192621B2|2012-09-27|2015-11-24|Idenix Pharmaceuticals Llc|Esters and malonates of SATE prodrugs|
AP2015008384A0|2012-10-08|2015-04-30|Univ Montpellier Ct Nat De La Rech Scient|2'-Chloro nucleoside analogs for hcv infection|
EP2909222B1|2012-10-22|2021-05-26|Idenix Pharmaceuticals LLC|2',4'-bridged nucleosides for hcv infection|
CN103804417B|2012-11-13|2017-09-19|北京美倍他药物研究有限公司|抗乙肝病毒药物|
EP2935304A1|2012-12-19|2015-10-28|IDENIX Pharmaceuticals, Inc.|4'-fluoro nucleosides for the treatment of hcv|
US9688666B2|2013-02-07|2017-06-27|Tobira Therapeutics, Inc.|Lamivudine salts|
WO2014137930A1|2013-03-04|2014-09-12|Idenix Pharmaceuticals, Inc.|Thiophosphate nucleosides for the treatment of hcv|
WO2014137926A1|2013-03-04|2014-09-12|Idenix Pharmaceuticals, Inc.|3'-deoxy nucleosides for the treatment of hcv|
WO2014165542A1|2013-04-01|2014-10-09|Idenix Pharmaceuticals, Inc.|2',4'-fluoro nucleosides for the treatment of hcv|
WO2014197578A1|2013-06-05|2014-12-11|Idenix Pharmaceuticals, Inc.|1',4'-thio nucleosides for the treatment of hcv|
WO2015013352A2|2013-07-25|2015-01-29|Patel Hasmukh B|Nucleoside phosphoramidates and phosphoramidites|
WO2015017713A1|2013-08-01|2015-02-05|Idenix Pharmaceuticals, Inc.|D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease|
US20160280729A1|2013-11-20|2016-09-29|Idenix Pharmaceuticals Llc|Cyclopentane and cyclopentene nucleoside analogs for the treatment of hcv|
US9334273B1|2014-03-05|2016-05-10|University Of Georgia Research Foundation, Inc.|Efficient and stereoselective synthesis of 2′-fluoro-6′-methylene-carbocyclic adenosine |
EP3131914A1|2014-04-16|2017-02-22|Idenix Pharmaceuticals LLC.|3'-substituted methyl or alkynyl nucleosides for the treatment of hcv|
CN104706651A|2015-02-13|2015-06-17|新昌县大成生物科技有限公司|吉西他滨衍生物的组合物及用途|
CN104650169A|2015-02-13|2015-05-27|新昌县大成生物科技有限公司|一种吉西他滨衍生物、制备方法及用途|
BR112017018977A2|2015-03-06|2018-05-22|Atea Pharmaceuticals, Inc.|?composto, composição farmacêutica, métodos para tratamento de uma infecção por hepatite c ou uma condição resultante de uma infecção por hepatite c, em um hospedeiro em necessidade do mesmo e para fabricação de um medicamento direcionado para uso terapêutico para tratamento de uma infecção pelo vírus da hepatite c, uso de um composto, e, formulação farmacêutica?.|
US10533008B2|2016-04-07|2020-01-14|University Of Georgia Research Foundation, Inc.|Synthesis of 2′-fluoro-6′-methylene-carbocyclic adenosineand 2′-fluoro-6′-methylene-carbocyclic guanosine |
PT3442580T|2016-04-11|2020-12-23|Genfit|Métodos de tratamento para doenças colestáticas e fibróticas|
US10653678B2|2016-04-11|2020-05-19|Genfit|Methods of treatment for cholestatic and fibrotic diseases|
LU100724B1|2016-07-14|2018-07-31|Atea Pharmaceuticals Inc|Beta-d-2'-deoxy-2'-alpha-fluoro-2'-beta-c-substituted-4'-fluoro-n6-substituted-6-amino-2-substituted purine nucleotides for the treatment of hepatitis c virus infection|
JP2019526596A|2016-09-07|2019-09-19|アテア ファーマシューティカルズ, インコーポレイテッド|Rnaウイルス治療に対する2’−置換−n6−置換プリンヌクレオチド|
KR20190080897A|2016-11-07|2019-07-08|아뷰터스 바이오파마 코포레이션|치환된 피리디논 함유 트리시클릭 화합물, 및 그의 사용 방법|
US10933067B2|2016-11-16|2021-03-02|National Center For Global Health And Medicine|Nucleoside derivative having physiological activity such as antiviral activity|
SG10202012214WA|2017-02-01|2021-01-28|Atea Pharmaceuticals Inc|Nucleotide hemi-sulfate salt for the treatment of hepatitis c virus|
JPWO2020045628A1|2018-08-31|2021-08-12|国立大学法人 鹿児島大学|核酸アナログ及び抗b型肝炎ウイルス剤|
US10874687B1|2020-02-27|2020-12-29|Atea Pharmaceuticals, Inc.|Highly active compounds against COVID-19|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
US13/107,713|US8816074B2|2009-11-16|2011-05-13|2′-fluoro-6′-methylene carbocyclic nucleosides and methods of treating viral infections|
[返回顶部]