![]() Spinnoscillator device
专利摘要:
Abstract The present invention relates to using spin transfer torque underneath a nanocontact on amagnetic thin film with perpendicular magnetic anisotropy (PMA), provides generation ofdissipative magnetic droplet solitons and magnetic droplet-skyrmions and report on their richdynamical properties. Micromagnetic simulations identify the conditions necessary tonucleate and drive droplet-skyrmions over a wide range of currents and fields. Micromagneticsimulations also demonstrate how droplets and droplet-skyrmions can be used as skyrmioninjectiors and detectors in skyrmion-based magnetic memories. The droplet-skyrmion can becontrolled using both current and magnetic fields, and is expected to have applications in spintronics, magnonics, skyrmionics, and PMA-based domain-wall devices. Fig. 1'A 19 公开号:SE1450442A1 申请号:SE1450442 申请日:2014-04-09 公开日:2015-10-10 发明作者:Johan Åkerman 申请人:Nanosc Ab; IPC主号:
专利说明:
[10] [10] X. Yu, Y. Onose, N. Kanazawa, J. Park, J. Han, Y. Matsui, N. Nagaosa, and Y. Tokura,Nature 465, 901 (2010). [11] [11] X. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang, S. lshiwata, Y. Matsui, and Y.Tokura, Nature Materials 10, 106 (2011). [12] [12] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nanotechnology 8, 839(2013). [13] [13] A. Fert, V. Cros, and J. Sampaio, Nature Nanotechnology 8, 152 (2013).[14] J. lwasaki, M. Mochizuki, and N. Nagaosa, Nature Nanotechnol 8, 742 (2013). [15] [15] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A.Kubetzka,and R. Wiesendanger, Science 341, 636 (2013). [16] [16] M. A. Hoefer, T. J. Silva, and M. W. Keller, Phys. Rev. B 82, 054432 (2010). [17] [17] S. M. Mohseni, S. R. Sani, J. Persson, T. N. A. Nguyen, S. Chung, Y. Pogoryelov, P. K.Muduli, E. lacocca, A. Eklund, R. K. Dumas, S. Bonetti, A. Deac, M. A. Hoefer, and J.Åkerman, Science 339, 1295 (2013). [18] [18] B. lvanov and A. Kosevich, Sov. Phys. JETP 45, 1050 (1977). [19] [19] A. Kosevich, B. lvanov, and A. Kovalev, Physics Reports 194, 117 (1990). [20] [20] J. C. Slonczewski, Journal of Magnetism and Magnetic Materials 159, L1 (1996). [21] [21] L. Berger, Phys. Rev. B 54, 9353 (1996). [22] [22] W. H. Rippard, A. M. Deac, M. R. Pufall, J. M. Shaw, M. W. Keller, S. E. Russek, G. E.W. Bauer, and C. Serpico, Phys. Rev. B 81, 014426 (2010). [23] [23] S. M. Mohseni, S. R. Sani, J. Persson, T. N. Anh Nguyen, S. Chung, Y. Pogoryelov, andJ. Åkerman, Physica Status Solidi RRL 5, 432 (2011). [24] [24] M. A. Hoefer, M. Sommacal, and T. J. Silva, Phys. Rev. B 85, 214433 (2012).[25] M. Mochizuki, Phys. Rev. Lett. 108, 017601 (2012). [26] [26] Y. Onose, Y. Okamura, S. Seki, S. lshiwata, and Y. Tokura, Phys. Rev. Lett. 109,037603 (2012). [27] [27] M. Mochizuki, X. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, T. Y.,and N. N., Nature Materials 13, 241 (2014). [28] [28] A. Vansteenkiste and B. V. de Wiele, Journal of Magnetism and Magnetic Materials 323,2585 (2011). [29] [29] C. Mouta_s, S. Komineas, and J. A. C. Bland, Phys. Rev. B 79, 224429 (2009). [30] [30] H.-B. Braun, Advances in Physics 61, 1 (2012). 14 [31] [31] A. Thiaville, S. Rohart, E. Jue, V. Cros, and A. Fert, EPL 100, 57002 (2012). [32] [32] E. lacocca, R. K. Dumas, L. Bookman, M. Mohseni, S. Chung, M. A. Hoefer, and J.Åkerman, Phys. Rev. Lett. 112, 047201 (2014). [33] [33] J. C. Slonczewski, J. Magn. Magn. Mater. 159, 261 (1999). [34] [34] S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Manco_, A. Slavin,and J. Åkerman, Physical Review Letters 105, 217204 (2010). [35] [35] R. K. Dumas, E. lacocca, S. Bonetti, S. R. Sani, S. M. Mohseni, A. Eklund, J. Persson,O. Heinonen, and J. Åkerman, Physical Review Letters 110, 257202 (2013). [36] [36] M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B. Manco, M. [37] [37] A. Slavin and V. Tiberkevich, Phys. Rev. Lett. 95, 237201 (2005). [38] [38] V. E. Demidov, S. Urazhdin, and S. O. Demokritov, Nature Materials 9, 984 (2010).[39] J. Grollier, V. Cros, and A. Fert, Phys. Rev. B 73, 060409 (2006). [40] [40] J. Persson, Y. Zhou, and J. Åkerman, J. Appl. Phys. 101, 09A503 (2007). [41] [41] Y. Zhou and J. Åkerman, Applied Physics Letters 94, 112503 (2009). [42] [42] E. lacocca and J. Åkerman, Journal of Applied Physics 110, 103910 (2011). [43] [43] A. N. Bogdanov and U. K. Roler, Phys. Rev. Lett. 87, 037203 (2001).
权利要求:
Claims (20) [1] 1. A spin oscillator device (1) comprising a spin oscillator (2) having a magnetic film (3) with perpendicular magnetic anisotropy; and; characterised in that the spin oscillator device (1) comprises means (4) configured to generate magnetic droplet solitons skyrmions (5), wherein the means (4) is configured to control the droplet skyrmionss-solitons (5) by means of applying current (I) and/or magnetic (.(OH) fields, wherein the spin oscillator (2) is a spin torque oscillator, STO, wherein a nano-contact, NC, (6) is provided on the magnetic film (3) providing a "NC-STO" (2, 6), wherein the means (4) is configured to apply spin transfer torque, STT, underneath the NC (6). [2] 2. The spin oscillator device (1) according to claim 1, wherein the spin oscillator (2) is a spin torque oscillator, STO, wherein a nano-contact, NC, (6) is provided on said magnetic film (3) providing an NC-STO (2, 6), and the means (4) are configured to apply spin transfer torque underneath the NC (6). [3] 3. The spin oscillator device (1) according to claim 1, wherein the spin oscillator (2) is based on a spin Hall Effect. [4] 4. The spin oscillator device (1) according to claim 2, wherein the means (4) is configured to control the droplets sokens-skyrrnions (5) by means of applying current (I). [5] 5. The spin oscillator device (1) according to claim 2, wherein the means (4) is configured to control the droplets sokons•skyrmions (5) by means of magnetic (11.0H) fields. [6] 6. The slain osoillaton device according -to any ene of the siaims 1-2, or 4 5, wherein the NCSTO -(2, -6) -is- based- on- o-r-thogenal--psesdes-pin--valve-st-ask-s, [7] 7. 6. The spin oscillator device according to any one of the claims 2, or 4-5, wherein the NC-STO (2, 6) is based on perpendicular pseudospin valve stacks. The spin oscillator device according to any one of the claims 2, or 4-5, wherein the NCSTO (2, 6) is based on tilted pseudospin valve stacks. [8] 8. The spin oscillator device according to any one of the claims 1-2, or 4-5, wherein the NCSTO (2, 6) is based on orthogonal pseudospin valve stacks. [9] 9. The spin oscillator device according to any one of the claims 2, or 4-5, wherein the NCSTO (2, 6) is based on tilted pseudospin valve stacks where the tilt angle is non-uniform. [10] 10. The spin oscillator device according to any one of the claims 2, or 4-5, wherein the NCSTO (2, 6) is based on a magnetic tunnel junction, MTJ. [11] 11. The spin oscillator device according to any one of the claims 2, or 4-5, wherein the NCSTO (2, 6) is based on a combination of pseudospin valves and -magnetic tunnel junctions, MTJ. [12] 12. The spin oscillator device according to claim 8, wherein the tilted pseudospin valve stacks are made by layers having different crystalline characteristics. [13] 13. The spin oscillator device according to claim 8, wherein the tilted pseudospin valve stacks are made by two or more layers tilted at different angles. [14] 14. The spin oscillator device according to claim 1-13, wherein any of the magnetic properties have a spatial variation in any lateral direction. [15] 15. The spin oscillator device according to claim 144, wherein a microwave current, or microwave field, or a combination of microwave current and field, at nominally the same frequency as the spin oscillator device is provided in'ected so as to improve the intrinsic microwave signal of the spin oscillator device. [16] 16. The spin oscillator device according to claim 144, wherein a microwave current, or microwave field, or a combination of microwave current and field, at nominally any higher harmonic, or fractional harmonic, or lower sub-harmonic of the frequency of the spin oscillator device is provided injected so as to improve the intrinsic microwave signal of the spin oscillator device. [17] 17. The spin oscillator device according to claim 15-16, wherein the provided microwave current and/or field is originally generated by the spin oscillator device so as to provide feedback of the spin oscillator device onto itself. [18] 18. The spin oscillator device according to claim 1, wherein a magnetic field or a current modulates the operating point of the spin oscillator device. [19] 19. The spin oscillator device according to claim 18, wherein the modulating magnetic field or current modulates the operating point across the nucleation point of the magnetic droplet soliton. [20] 20. The spin oscillator device according to claim 1, where the spin oscillator device is employed for frequency shift keying. Use of a device according to any one of the claims 1-20 in one or more of: spintronics, magnonics, hard disk drives (reading head) or domain-wall devices 1/12 Insu- Nano-contact lator5 - 500 nm Cap 1r (Active Magnetic LAayAer11/1: ,,,,,,,,,,,,,,,„ Spacer /VVV‹ Polarizing Fixed Layer Base Electrode 8 9 3 7 A A AA. A A Active Magnetic Layer Cap Layer '8 3 Spacer Polarizing Fixed Layer Base Electrode FIG. VAFIG. l'B n4 he, /7 / / 1/2/ /I / / ------ --1.,,..• Cci -4 ( ter PO 4/4 Z_ A f .,e/ 4 j:i4Ce etrcA k, < pi 4 "/- . hili4 ee4e,ke 6 po /7,c-e f(A 3 3/ Insu-Nano-contact lator5 - 500 nm A r11Pr Polarizing Fixed Layer VV A11.,A Base Electrode Cap Layer Active Magnetic Layer Ground Contact Spacer 1. ■■ FIG. I'D Ground Contact lnsu- Nano-conta lator 5 - 500 nrr Cap Layer Active Magnetic L Spacer ■ Polarizing Fixed L Base Electrod FIG. 'PE Ground Contact = MI FIG. IF Ground Contact lnsu- Nano-contact lator 5 - 500 nm Cap Layer AA A A A A ,Active Magnetic Layer /X///,,,,■7N/ Tr. Spacer Polarizing Fixed Layer Base Electrode 6/6 at = 0.09 t2 = 0.11t3= 0.29 14=0.315 t = 1.293 t= 1'296 t7= 1'298 tEs= 1'363 t= 1.555 1= 2.128 1 0. 5 E" rr 1, - dIh6let I droplet-skyrmion 1i ,, .• static skyrmion It 1 dropleakyiimion i,1 ,...,_..."--.........._,.._,_"....., static skyrmion I 1 static shirmion- I11 - 11liI ,,1 I,11t 0. 20.40.60.811.21.4 Time (ns)
类似技术:
公开号 | 公开日 | 专利标题 US10615748B2|2020-04-07|Spin oscillator device Zhou et al.2015|Dynamically stabilized magnetic skyrmions Liu et al.2015|Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy Zeng et al.2013|Spin transfer nano-oscillators Bonetti et al.2012|Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators EP2126938B1|2016-10-12|Spin-transfer torque oscillator Liu et al.2015|Switching of a target skyrmion by a spin-polarized current Jin et al.2018|Array of synchronized nano-oscillators based on repulsion between domain wall and skyrmion Hrkac et al.2015|Magnetic vortex oscillators US9543894B2|2017-01-10|Spin oscillator device Lendínez et al.2015|Observation of droplet soliton drift resonances in a spin-transfer-torque nanocontact to a ferromagnetic thin film Penthorn et al.2019|Experimental observation of single skyrmion signatures in a magnetic tunnel junction Berkov et al.2011|Micromagnetic simulations of magnetization dynamics in a nanowire induced by a spin-polarized current injected via a point contact Divinskiy et al.2017|Magnetic droplet solitons generated by pure spin currents Das et al.2019|Skyrmion based spin-torque nano-oscillator Monteblanco et al.2013|Redshift and Blueshift Regimes in Spin-Transfer-Torque Nano-Oscillator Based on Synthetic Antiferromagnetic Layer Choi et al.2016|Current-induced pinwheel oscillations in perpendicular magnetic anisotropy spin valve nanopillars Lee et al.2010|Effect of angular dependence of spin-transfer torque on zero-field microwave oscillation in symmetric spin-valves Chen et al.2020|Magnetic Droplet Mode in a Vertical Nanocontact-Based Spin Hall Nano-Oscillator at Oblique Fields Zhou et al.2014|Dynamical magnetic skyrmions Liu et al.2013|Micromagnetic modeling of magnetization dynamics driven by spin-transfer torque in magnetic nanostructures Rahman et al.2017|Thickness dependence of magnetization dynamics of an in-plane anisotropy ferromagnet under a crossed spin torque polarizer Chen et al.2007|Magnetization oscillation in a nanomagnet driven by a self-controlled spin-polarized current: Nonlinear stability analysis Zhou et al.2014|Spin Torque-Driven Magnetic Droplet Skyrmions Shukrinov et al.2021|Anomalous Gilbert damping and Duffing features of the superconductor-ferromagnet-superconductor φ 0 Josephson junction
同族专利:
公开号 | 公开日 WO2015156727A1|2015-10-15| US10615748B2|2020-04-07| US20170033742A1|2017-02-02| EP3195468A1|2017-07-26| EP3195468A4|2018-06-20| SE538342C2|2016-05-24|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JP4803681B2|2006-03-02|2011-10-26|国立大学法人京都大学|Ferromagnetic dot core rotation element and ferromagnetic dot core information storage element| GB0809403D0|2008-05-23|2008-07-02|Cambridge Entpr Ltd| US9543894B2|2013-03-14|2017-01-10|Johan Akerman|Spin oscillator device|WO2015118579A1|2014-02-10|2015-08-13|独立行政法人理化学研究所|Skyrmion drive method| US10468590B2|2015-04-21|2019-11-05|Spin Memory, Inc.|High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory| US9728712B2|2015-04-21|2017-08-08|Spin Transfer Technologies, Inc.|Spin transfer torque structure for MRAM devices having a spin current injection capping layer| US9853206B2|2015-06-16|2017-12-26|Spin Transfer Technologies, Inc.|Precessional spin current structure for MRAM| US9773540B2|2015-07-17|2017-09-26|The Johns Hopkins University|Skyrmion based universal memory operated by electric current| US9773974B2|2015-07-30|2017-09-26|Spin Transfer Technologies, Inc.|Polishing stop layer for processing arrays of semiconductor elements| US10269402B2|2015-09-15|2019-04-23|Imec Vzw|Magnetic topological soliton detection| SE540517C2|2015-12-21|2018-09-25|Johan Aakerman|Synchronization of multiple nano-contact spin torque oscillators| US9741926B1|2016-01-28|2017-08-22|Spin Transfer Technologies, Inc.|Memory cell having magnetic tunnel junction and thermal stability enhancement layer| WO2017151735A1|2016-03-01|2017-09-08|Virginia Commonwealth University|Switching skyrmions with vcma/electric field for memory, computing, and information processing| EP3249705B1|2016-05-24|2019-12-18|IMEC vzw|Tunable magnonic crystal device and filtering method| SE540812C2|2016-11-02|2018-11-20|Johan Aakerman Ab|Spin oscillator device and mutually synchronized spin oscillator device arrays| JP6712804B2|2016-11-18|2020-06-24|国立研究開発法人理化学研究所|Magnetic element, skyrmion memory, central arithmetic processing LSI equipped with skyrmion memory, data recording device, data processing device and data communication device| US10672976B2|2017-02-28|2020-06-02|Spin Memory, Inc.|Precessional spin current structure with high in-plane magnetization for MRAM| US10665777B2|2017-02-28|2020-05-26|Spin Memory, Inc.|Precessional spin current structure with non-magnetic insertion layer for MRAM| US10270027B1|2017-12-29|2019-04-23|Spin Memory, Inc.|Self-generating AC current assist in orthogonal STT-MRAM| US10360961B1|2017-12-29|2019-07-23|Spin Memory, Inc.|AC current pre-charge write-assist in orthogonal STT-MRAM| US10199083B1|2017-12-29|2019-02-05|Spin Transfer Technologies, Inc.|Three-terminal MRAM with ac write-assist for low read disturb| US10236047B1|2017-12-29|2019-03-19|Spin Memory, Inc.|Shared oscillatorfor MRAM array write-assist in orthogonal STT-MRAM| US10236048B1|2017-12-29|2019-03-19|Spin Memory, Inc.|AC current write-assist in orthogonal STT-MRAM| US10319900B1|2017-12-30|2019-06-11|Spin Memory, Inc.|Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density| US10141499B1|2017-12-30|2018-11-27|Spin Transfer Technologies, Inc.|Perpendicular magnetic tunnel junction device with offset precessional spin current layer| US10339993B1|2017-12-30|2019-07-02|Spin Memory, Inc.|Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching| US10236439B1|2017-12-30|2019-03-19|Spin Memory, Inc.|Switching and stability control for perpendicular magnetic tunnel junction device| US10255962B1|2017-12-30|2019-04-09|Spin Memory, Inc.|Microwave write-assist in orthogonal STT-MRAM| US10229724B1|2017-12-30|2019-03-12|Spin Memory, Inc.|Microwave write-assist in series-interconnected orthogonal STT-MRAM devices| US10468588B2|2018-01-05|2019-11-05|Spin Memory, Inc.|Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer| US20210013397A1|2018-03-09|2021-01-14|Intel Corporation|Perpendicular spin transfer torque memorydevices with enhanced thermal stability and methods to form the same| US10580827B1|2018-11-16|2020-03-03|Spin Memory, Inc.|Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching| CN111912603B|2020-06-23|2022-01-18|浙江大学|Method and system for calibrating phase type spatial light modulator based on optical differentiator|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 SE1450442A|SE538342C2|2014-04-09|2014-04-09|Spinnoscillator device|SE1450442A| SE538342C2|2014-04-09|2014-04-09|Spinnoscillator device| PCT/SE2015/050410| WO2015156727A1|2014-04-09|2015-04-02|Spin oscillator device| EP15777424.1A| EP3195468A4|2014-04-09|2015-04-02|Spin oscillator device| US15/303,063| US10615748B2|2014-04-09|2015-04-02|Spin oscillator device| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|