![]() 除湿のために、膜に含有された液体乾燥剤を用いる間接蒸発冷却器
专利摘要:
液体冷却剤および排出またはパージ空気の流れを用いて、流入供給空気を第1の温度から第2のより低い温度まで冷却する間接蒸発冷却器である。この冷却器は、流入供給空気のための第一フローチャネル、および第1フローチャネルに隣接する、排出空気のための第2フローチャネルを含む。第1および第2フローチャネルは、膜シートによってある程度規定される。膜シートは、熱が流入供給空気から液体冷却剤に伝達されるにつれて、質量が蒸気として、流入供給空気から膜を通って除湿のために含有されている液体乾燥剤および排出空気へと伝達されるように、水蒸気に対して浸透性である。分離壁は液体乾燥剤と液体冷却剤を仕切るが、供給空気から、水蒸気を逆流または直交流の排出空気へと放出する冷却剤へと熱が伝達されることは許容する。 公开号:JP2011511244A 申请号:JP2010544285 申请日:2008-01-25 公开日:2011-04-07 发明作者:ジョセフ コズバル、エリック;ジョセフ スレイザック、スティーブン 申请人:アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー; IPC主号:F24F3-147
专利说明:
[0001] 米国政府は、ユナイテッドステイツデパートメントオブエナジーと、ミッドウエストリサーチインスティチュートの一部門であるナショナルリニューワブル エナジーラボラトリーのとの間の契約第DE−AC36−99GO10337に従い、本発明における権利を有する。] 背景技術 [0002] 適切に換気および冷却され、また適切な湿度コントロールを有する快適かつ健康的な室内環境を提供するために、空調設備は世界中で使用されている。従来の空調設備システムは供給空気を調整するのに有用であるが、大量のエネルギー(例えば電力)を使用するため、運転にはコストがかかる。エネルギーへの需要増加により、空調設備のコストは増大することが予測され、より効果的な空調設備の方法および技術に対する需要が高まっている。また、例えば、従来の多くの冷却剤のように、放出または液漏れの際に環境を破壊するおそれのある化学物質および材料を使用しない冷却技術に対する需要も高まっている。保守管理もまた多くの空調設備技術に関する懸念であり、結果として、とりわけ住宅での使用に対して保守管理の要求が増大すると認められる新しい技術は全て、市場からの抵抗を受けるだろう。] [0003] 蒸発冷却器は、空調設備の需要またはニーズに応えるためにいくつかの状況で用いられているが、数多くの制限ゆえに、従来の蒸発冷却器は商業用または住宅用の建物での使用には広く取り入れられていなかった。しばしばスワンプ・クーラー(swamp cooler)と称される蒸発冷却器は、単純な空気中の水分の蒸発によって冷却をもたらす装置であって、蒸気圧縮または吸収による冷却サイクルを用いる冷却または吸収装置を使用する従来の空調設備とは対照をなす。蒸気冷却の使用は一般的に、米国西部などの、高温で湿度が低い気候に限られていた。そのような乾燥した気候においては、従来の蒸発冷却器の取り付けおよび運転コストは、冷却剤による空調設備よりも低い。住宅用および産業用の蒸発冷却器は一般的に、水分と混合されている暖かく乾いた空気を用いて水分を蒸気に変え、蒸発の潜熱を用いて冷たく湿った空気を生み出す直接的な蒸発冷却を使用する(例えば、相対湿度が50〜70%である冷たい空気)。例えば蒸発冷却器は、ファンまたは送風機を含むベント側、ファンを運転する電気モータ、および蒸発冷却パッドを濡らす水ポンプ備える、囲いのある金属またはプラスチックの箱において、提供され得る。冷却をもたらすために、ファンはユニット側にあるベントおよび湿らされたパッドを通して周囲の空気を引きこむ。空気中の熱はパッドからの水分を蒸発させ、パッドは冷却工程を続けるために連続的に濡らされる。冷却され、かつ湿った空気はその後、屋根または壁にあるベントを通して建物へと運ばれる。] [0004] 蒸発冷却器の運転コストは、冷却剤による空調設備の4分の1程度であるが、より効率がよく低コストの調整技術に対するニーズに応えるためには、広く取り入れられてこなかった。多くのサンプ・クーラー(sump cooler)に関する1つの問題は、一定の条件においてこれらの蒸発冷却器が、充分に冷却された空気を提供するように作動できないということである。例えば、流入空気が華氏90度で50%の相対湿度である場合、空気は華氏75度程度までしか冷却されず、このような冷却は特定の空間を冷却するのに適切でないおそれがある。この問題は、例えば華氏100度を大幅に上回る気温ではさらに深刻化し、このような気温は米国の南西部および他の場所で多く見られる。結果として、空調設備システムは、蒸発冷却器からの流出空気を冷却するために、冷却剤による空調設備を含む必要があり、これは購入、運転、保守管理がより高額なシステムを招く。] [0005] また、従来の蒸発冷却器は空気の除湿をもたらさず、実際、相対湿度が80〜90%である流出空気は、非常に高い湿度の空気は建物の使用者のための蒸発率を低下させ(例えば、快適水準を低下させる)、また腐食または他の問題を招く結露を引き起こす場合があることから、非常に乾燥した環境でしか条件を満たさない。除湿は、いくつかの蒸発冷却器において第2または後の段階として、例えば液体乾燥剤を空気流チャネルまたはチャンバの壁に沿って運ぶことによりもたらされるが、このようなシステムは、増大する運転および保守管理のコスト、および調整された空気と共に放出される乾燥剤を有する懸念から、広く取り入れられていなかった。一般的に、蒸発工程は、冷却パッドまたは冷却器の他の表面上での鉱床を引き起こすおそれがあり、これらはシステムの性能を維持するためには冷却器の清浄または取替えが必要であって、また水供給ラインは、オフ・シーズンの間システムを乾燥させるなどして凍結から保護される必要があるので、保守管理は蒸発冷却器に関する懸念である。これらおよびその他の懸念により、蒸発冷却器は、保守管理の懸念を軽減させつつも達成可能な冷却を改善する重大な改良がなされる(例えば、建物内で直接使用するために、充分に冷却された流出空気を提供する)まで、商業用および住居用の用途に利用できる、エネルギー効率のよい空調設備を提供するためには用いられないだろう。] [0006] 上記した関連技術の例およびこれらに関する制限事項は、例証を意図するものであって、限定を意図するものではない。関連技術の他の制限事項は、明細書を読み込み、また図面を検討することに基き、当業者に明らかになるだろう。] [0007] 以下の実施形態およびそれらの態様は、範囲内で非制限的な代表的かつ例証となることを意図されたシステム、道具および方法に関連して記載および説明される。様々な実施形態において、上記した問題の1つ以上が軽減または取り除かれ、その一方で他の実施形態は他の改良を導く。] [0008] 本発明の目的は、1つには、間接蒸発冷却器または熱交換器において使用するための、質量/熱伝達アセンブリを提供することによって達成される。このアセンブリは、それぞれが第1の(または上側の)層または膜材料のシート、分離壁、および第2の(または下側の)層または膜材料のシートを含むものを交互に積み重ねることで形成される。各層の膜または膜材料は、蒸気の状態において水分子に浸透性であり、一方で分離壁は、水に対して不浸透性であるが熱伝達を許容する(例えば、薄い層および/または熱を伝導する材料で作られる)。隣接する積層の組の第1の部分では、水などの冷却剤が第1の膜層および分離壁の間を流れ、液体乾燥剤が分離壁および第2の膜層の間を流れるが、隣接する積層の組の第2のまたは次の部分では、流れの順序が逆になる。交互の供給および排出空気流チャネルまたはチャンバを形成するために、この順序付けは質量/熱伝達アセンブリを通して繰り返される。供給空気(または調整されるべき空気)は、第1の積層の組の間のチャネルを通して導かれるが、あらかじめ冷却された排出空気の部分(例えば、積層を流れることによって冷却される供給空気の一部分)は、積み重ねの第2のまたは次の積層の組の間のチャンバを通して導かれる(例えば、一般的には入ってくる供給空気の流れに関して逆流の配置で)。液体乾燥剤は、供給流入空気流に近接して提供され、一方で水などの冷却剤は、水が浸透する膜によってこれら流れる液体から分離されているだけの空気を伴う排出空気流(つまり、排出されるように導かれる供給流出空気流の一部分)に近接して提供される。供給空気流入空気流、供給流出空気流、排出空気流、液体乾燥剤の流れ、および冷却液の流れは、1つ以上の種々のアセンブリを介すなどして質量/熱伝達アセンブリに配管され、種々のアセンブリは、単一ユニットとしてハウジングで提供されてもよい(例えば、間接蒸発冷却器)。] [0009] 一般的な実施形態において除湿および蒸発冷却は、処理されるべき空気と、液体および/または気体物質(例えば、液体乾燥剤、水、乾燥した空気など)との分離を膜によって行うことで達成される。この膜は、蒸気の状態において水分子に浸透性である1つ以上の物質または材料で形成される。膜を通した水分子の浸透は、1つ以上のプロセス空気流の除湿(またはいくつかの実行における除湿)および蒸発冷却の駆動力(またはそれらを可能にするもの)である。前述のように、複数の空気流は、あらかじめ冷却された供給空気の排出空気流などの二次的な(パージ)空気流が、加湿され、また後に供給流出空気流として建物へと導かれる(例えば住居用または商業用の建物などのための補給空気)供給流入空気流などの一次的な(プロセス)空気流からエンタルピーを吸収するように、質量/熱伝達アセンブリ中のチャンバを通して流れるように配置される。プロセス空気流は充分に冷却され、またいくつかの実施形態においては、供給流入空気流チャネルまたはチャンバの横壁を規定する膜に含有される液体乾燥剤の流れを提供することによって、同時に除湿される。] [0010] また、いくつかの実施形態においてこの膜は、膜が排出気流からの冷却剤の液体を抑制または分離するように、排出(例えば、逆流の)空気流チャネルまたはチャンバの横壁を規定するためにも使用される。材料/表面または他の装置の運搬は、水の流れを阻止するためまたは抑制するために使用され得るが(例えば、直接接触する運搬表面は、膜によって含有される液体乾燥剤の使用と共に用いられ得る)、膜による液体抑制は、本明細書に記載される冷却、除湿、および/または加湿を提供する熱および質量交換器/アセンブリの構造に有用である、積層または種々の構造の組み立てを容易にする。このような構造では、蒸発冷却ユニットにおいて、所望の熱および質量の同時伝達を行うために、気流は逆流、あらかじめ冷却された流出空気に対して逆流、直交流、並流および衝突流で設置され得る。] [0011] 例として挙げるものであって制限するものではないが、ある実施形態は、液体冷却剤の流れおよび排出またはパージ空気の流れを用いて、流入供給空気の流れを第1温度から第2のより低い温度へと冷却する間接蒸発冷却器を含む。この冷却器は、流入供給空気の流れが流れる第1フローチャネルと、排出空気の流れが供給空気の入口または第1温度よりも低い温度で流れる、第1フローチャネルに隣接する第2フローチャネルとを含む。第2フローチャネルは、1つには、水蒸気に対して浸透性の膜または膜材料、またそうでない場合には液体冷却剤を含有する膜または膜原料のシートによって、形成または規定される。このようにして冷却剤は、第2フローチャネル内で(空気とは直接接触せずに)膜側を流れるが、質量は、流入供給空気から液体冷却剤に熱が伝えられた際またはこの熱伝達を受けて、蒸気として膜を通して排出空気へと運搬される。いくつかの場合または構成においては、後に明確になることであるが、供給空気流(または流入供給空気)はこの第1段階において冷却および除湿される。第2段階は空気流を非常に低い温度まで充分に冷却するために提供でき、供給流入空気はあらかじめまたは第1段階で除湿されているため、温度は当初の供給流入空気の露点を下回る場合がある。] [0012] 膜シートから離れて配置される分離壁は、液体冷却剤のフローチャネルを規定するために用いられ、この壁は、冷却剤に対して不浸透性である一方で、熱を伝導または熱が流入空気供給から冷却剤へ伝達されることを許容する材料(プラスチックなど)によって形成されている。第2の膜シートは、液体乾燥剤のフローチャネルを規定するために、上記の分離壁の反対側から離れて配置され得る。運転の間、水蒸気は膜を通して流入供給空気の流れから液体乾燥剤へと移され、これは流入供給空気が同時に冷却および除湿されるという結果を招く。この膜は液体冷却剤および液体乾燥剤の流れを妨害さらには完全に遮断するために効果的であるが、その一方で水蒸気の流れは許容し、いくつかの実施形態においては、冷却剤は水であって乾燥剤はハライド塩溶液(例えば、CaClなどの弱い乾燥剤)である。排出空気はいくつかの場合(例えば、第1フローチャネルを抜け出る時に)、第2のより低い温度まで冷却された後の流入供給空気の流れの再び導かれる部分であって、排出空気は、第1フローチャネルを流れる供給空気に関して交差、逆またはそれらの組み合わせである第2フローチャネルを通して一方向に流れる。] [0013] 他の代表的な実施形態においては、住居用または商業用の建物のために、プロセス空気または戻り空気を調整する方法が提供される。この方法は、プロセス空気を、第1フローチャネルを通して導く第1導入段階、および第1フローチャネルを規定する1つ以上の壁に隣接する液体乾燥剤の気流または体積を導く第2段階を含む。この液体乾燥剤は、液体乾燥剤を含有し、かつプロセス空気からの水蒸気が、液体乾燥剤へ流入し該乾燥剤により吸収されることを許容し、これによりプロセス空気を除湿する膜によって(例えば、膜は壁を備える)プロセス空気から離れて配置される。この方法は、第1および第2導入段階に伴って、第1フローチャネルに近接する(例えば、平行かつ隣接する)第2フローチャネルを通して、パージ空気の流れを導く第3導入段階をさらに含む。パージ空気は、第1フローチャネルにおけるプロセス空気の全てまたは少なくとも実質的な部分よりも、低い温度である。いくつかの場合では、パージ空気は、第2フローチャネルを通るプロセス空気に関して逆流の方向に向けられる第1フローチャネルを抜け出る、除湿されたプロセス空気の一部分である。この方法はまた、第2フローチャネルの壁に隣接する液体冷却剤の流れを導く第4導入段階を含む。液体冷却剤もまた、質量が冷却剤からパージ空気へ運搬されるように、冷却剤からの蒸気に浸透性である膜によって空気から離れて配置される。この方法は、プロセス空気の除湿および冷却を、同時に(または単一段階で)提供する。] [0014] 他の態様によれば、質量および熱伝達アセンブリは、間接蒸発冷却器および交換器において使用するために備えられる。このアセンブリは、上側の膜、下側の膜、および上側の膜と下側の膜の間の分離壁を含む第1の積層を含む。上側および下側の膜は、水蒸気に対して浸透性であり、分離壁は液体および蒸気に対して実質的に不浸透性である。第2および第3の積層もまた、それぞれが上側の膜、下側の膜、およびそれらの間の分離壁を含むように提供される。このアセンブリにおいて、第1の積層および第2の積層は、空気(例えば、調整されるべき空気)の第1の流れを受け取るフローチャネルを規定するために離れて配置され(例えば、およそ0.25〜0.5インチ未満離れて)、第2および第3の積層は、空気の第2の流れ(例えば、空気の第1の流れに関して直交流または逆流に方向づけられるパージまたは排出空気)のためのフローチャネルを規定するために離れて配置される。いくつかの構造および/または運転モードにおいて、この装置は蒸発冷却のみを行い、除湿は行わない。この場合、膜はパージ側でのみ使用され、壁のもう一方の側は供給空気が熱を交換するために露出したままにされる。] [0015] 第1、第2、および第3の積層は一組の積層と考えられ、アセンブリは、膜および分離壁の積層または層によって隔てられる複数の空気流チャネルを規定するために、このような積層の組を複数含む。仕切り板または隔離板は、膜の間隔を維持しつつ、チャネルにおける空気流の流れを可能にするために、フローチャネルに備えられ得る。アセンブリは第1の積層において、上側の膜と分離壁との間を流れる液体冷却剤、および分離壁と下側の膜との間を流れる液体乾燥剤をさらに含んでもよい。第2の積層において、液体乾燥剤は上側の膜と分離壁との間を流れ、一方で液体冷却剤は分離壁と下側の膜との間を流れる。第3の積層において、液体乾燥剤は上側の膜と分離壁との間を流れ、一方で液体冷却剤は分離壁と下側の膜との間を流れる。液体冷却剤は水でもよく、運転中に、水蒸気は膜を通って冷却剤から空気の第2の流れへと伝達され得る。液体乾燥剤は塩溶液(例えば、CaClなどの弱い乾燥剤)でもよく、運転中またはアセンブリの使用中に、水蒸気は膜を通って空気の第1の流れから液体乾燥剤へと伝達され得る。これにより、空気の第1の流れは、除湿され、かつ同時により低い温度へと冷却される。] [0016] 上記の代表的な態様および実施形態に加えて、さらなる態様および実施形態は、図面への参照および以下の記載の検討により明らかになるだろう。] [0017] 代表的な実施形態は図面中の参照図において記載される。本明細書で開示される実施形態および図面は、制限的なものというよりも、むしろ例証的なものとみさなれることを意図する。] 図面の簡単な説明 [0018] 間接蒸発冷却器に、一体化型ユニットまたは単一段階において同時に行われる除湿を提供するために用いられる、浸透性の膜層またはアセンブリの代表的なものを含む、蒸発冷却器または熱交換器を概略的な形状で描く。 蒸発冷却器の別の代表的なものを描き、供給および排出空気流を、膜に含まれた液体乾燥剤および冷却剤(例えば、冷却水)に関して導き、冷却および除湿を達成するために組み合わせて使用される膜/壁/膜と積み重ねられるアセンブリを示す。 図2に示されたものと同様のものだが、排出/冷却済みの空気のために内蔵式の逆流通路を備えて構成される蒸発冷却器を示す。 代表的な熱交換器の上面図であって、図1〜3で示されるような、または本明細書で提示または記載される他の実施形態で示されるような、膜に基づくアセンブリによって提供される複数のチャネルまたはチャンバを通る空気流を描く。 図2に示される積層アセンブリおよび図4に示されるフロー配置を備える、蒸発冷却器または逆流の熱/質量交換器の代表的なモデリングを描く。 図2に示される積層アセンブリおよび図4に示されるフロー配置を備える、蒸発冷却器または逆流の熱/質量交換器の代表的なモデリングを描く。 図5に示されるように作られた交換器の長さに沿う空気流および表面温度のグラフである。 図5に示されるように作られた交換器の長さに沿う空気の湿度レシオ(humidity ratio)のグラフである。 図5に従って作られた熱交換器を通して流れる液体乾燥剤の濃度を示すグラフである。 図5に示されるように作られた冷却および除湿工程を示す湿度図表である。 他の代表的な熱交換器の上面図であって、図1〜3で示されるような、または本明細書で提示または記載される他の実施形態で示されるような、膜に基づくアセンブリによって提供される複数のチャネルまたはチャンバを通る空気流を描く。 図4および図10に示されるものと同様の、他の代表的な熱交換器の上面図であって、異なる排出空気流を伴う異なるユニットの配置を示す。 図10に示される熱交換器の構成のために、図5に示されるモデリングと同様に作られた冷却および除湿工程を示す湿度図表である。 間接蒸発冷却器を用いて調和空気を建物に提供するHVACを描く。 図2の積層アセンブリを用いる図4の実施形態と同様に組み立てられたプロトタイプの1つの検査の結果を提供する湿度図表である。] 図1 図10 図2 図3 図4 実施例 [0019] 以下では、除湿を伴う代表的な間接蒸発冷却器、およびこのような冷却器のための質量/熱伝達アセンブリを記述し、これらアセンブリは、流入空気流チャンバに、液体乾燥剤を含有する浸透性の膜シートによって規定される横壁を備える。これらアセンブリはまた、水などの冷却剤を含有する浸透性の膜シートによって規定される横壁を備える流出または排出空気流チャンバ(流入空気流に対して逆流のものなど)も含む。前述の実施形態において、膜は、一般的に蒸気状の水分(例えば、蒸気の状態の水)が、流入供給空気および蒸発を介した液体冷却剤などから、すぐに膜に浸透できるという意味では「浸透性」である。しかしながら、膜は一般的に、液状の水分がチャネルまたはチャンバを貫流することを阻止または遮断するものであって、実際にはチャネルまたはチャンバ内で流れるように導くものである。いくつかの場合においては、液状の水はおよそ20psi未満、より一般的にはおよそ5psi未満の圧力で、膜により阻止される。いくつかの実施形態において冷却剤および液体乾燥剤は、およそ2psi未満の圧力で維持され、浸透性の膜は液状の水などの水分を阻止するが、一方で水蒸気は膜に浸透する。] [0020] 以下の記載から明らかになることであるが、蒸発冷却器または質量/熱交換器などにアセンブリを用いることは、多くの利益を提供する。流入またはプロセス空気流は、同時または単一のチャンバ/段階で冷却され、かつ除湿され得る。一体化されたこの動作は、システムの大きさおよびコストを低下させると共に、要求される構成要素および装置も減らす(例えば、冷却した後に除湿し、および/または冷却剤などでさらに冷却するための、多段階ユニットまたは装置を必要としない)。液体乾燥剤による除湿を間接蒸発冷却に組み合わせることは、蒸発および吸収による、非常に高いエネルギー伝達率を提供する。この設計は、液体乾燥剤の冷却のための分離した装置(例えば、冷却塔または冷却装置)を必要としない液体乾燥剤システムを作り出す。積層配置または多層の質量/熱伝達アセンブリ(または種々のフローチャンバ/チャネル)は、極めて低流動性の液体乾燥剤の設計を可能にする。これは、1つには向上されたアセンブリの配置、および液体乾燥剤の温度を、従来の冷却塔技術で達成できる温度よりも低い温度まで減少させるアセンブリの能力によるものである。ゆえに、冷却器において、より高い濃度勾配の液体乾燥剤(例えば、20パーセント・ポイントよりも高い塩化リチウム(LiCl)および他の乾燥剤に関しても同様の勾配)が存在し、これは以下の利点、すなわち、(a)冷却器で再利用するように乾燥剤を再度作り出すため(例えば、乾燥剤から水分を取り除くため)の、より高い熱性能係数(COP)、(b)より良い稼働率による、より少ない乾燥剤の保管要件、(c)塩化カルシウム(CaCl)などの、LiClよりも安価な乾燥剤を使用する能力、を提供する。塩化カルシウム(CaCl)は、吸収性質がLiClほど好ましくないことから従来のシステムでは使用されてこなかったが、本明細書に記載の冷却器の実施形態によって提供される低温での運転が、CaClおよび他の「より弱い」乾燥剤の性質を、より受容可能な、または好ましいものにする。] [0021] チャンバの横壁として膜を使用することは、逆流およびあらかじめ冷却された流出空気に対して逆流である実施形態の組立てを容易にする。水分子が浸透する膜による液体乾燥剤の封じ込めは、直接接触する配置の際の懸念であった、乾燥剤の少量の水滴が空気流に到達する液体乾燥剤の「持ち越し(carry over)」を排除する。本明細書に記載の実施形態はまた、水分の蒸発または吸収工程の間に生じる固形物の沈着を相当に減少させ、またはなくす(液体の流速は、潜在的な沈着物をさらに制御するのに充分な高さの水準で維持され得る)が、従来の蒸発冷却器では、付着物が保守管理および運転コストの増加を導く。] [0022] 図1は、プロセスまたは流入空気流120(例えば、建物の換気システム中に供給される前に冷却および調整されるべき外気またはプロセス空気)を、共同または同時に除湿および冷却するのに有用な、蒸発冷却器(または質量/熱交換器)100を概略的に描く。冷却器100は、点線で示されるハウジングを備える単純な形式で示され、流入および流出ダクト、配管、および/または多岐管は示されていない。また、冷却器100は、単一の質量/熱伝達積層110を伴って示されているが、一般的な冷却器100においては、アセンブリに複数の空気および液体フローチャネルまたはチャンバを備え、積層110に関して記載される所望の質量および熱伝達機能を提供するために、示されている構造を繰り返すことにより(例えば、膜および壁によって規定されるチャンバを貫流する液体を交互にすることにより)提供される多数の積層110が存在する。] 図1 [0023] 示されているように、流入空気流120は、1つには膜のシートまたは層112によって規定されるチャンバまたはチャネル内に導かれる。液体乾燥剤124は、膜112のもう一方の側にある隣接するチャンバまたはチャネルを流れる。液体乾燥剤124は、液状または蒸気状の水分子に浸透性であって、一方で一般的には液体乾燥剤124の成分には不浸透性である膜112によって阻止される。乾燥剤フロー124のためのチャンバも、チャンバまたは流路において液体乾燥剤124を阻止するために、流体フローに対して不浸透性である物質のシートまたは層(つまり、分離壁)114によって規定される。流れ120のためのチャンバもまた、液体乾燥剤の他のフローを阻止するために用いられる対向する膜(図示せず)により規定される。このような方法で、熱は流入空気流120を通り抜け、またはそこから取り除かれ、液体乾燥剤フロー124(および対向する横壁/膜の後ろの乾燥剤(図示せず))へと伝達される。水分130は浸透性の膜112を通って液体乾燥剤124へと流れることにより取り除かれるので、流入空気流120は同時に除湿される。] [0024] 液体(または気体)乾燥剤124は、空気流120が膜112を通り抜ける際に、空気流120を除湿および冷却するよう作用するために、多くの形状で具体化できる。乾燥剤124は一般的に、流れ120などの空気流から水分および水蒸気を除去または吸収するために用いられるあらゆる吸湿性の液体である。好適には、選択される乾燥剤124はグリコール(ジエチレン、トリエチレン、テトラエチレンなど)などの再生可能な乾燥剤(例えば、吸収された水分を分離および/または除去できる乾燥剤)、LiCl、CaClなどの塩濃縮またはイオン塩溶液、または他の乾燥剤である。膜112は、液体乾燥剤124、および一般的には冷却剤126(例えば、水など)を阻止するために機能する一方で、液状または蒸気状の水分子に浸透性であるあらゆる物質によって形成され得る。例えば、水分子と同程度の大きさまたは水分子よりも少し大きい気孔を有する高分子膜を用いることができ、いくつかの場合においてこの膜は、膜112を通して高い流動性を備える水分子を提供するよう適合されることも可能である。ある特定の実施形態においては、膜112はWnekに付与された米国特許第6,413,298号明細書に詳細に記載されているような膜材料によって形成され、これより、この特許の内容全体を参照によって本明細書に引用したものとする。また、膜材料は多くの卸業者または製造業者からも得ることができ、例えば、これに限定するわけではないが米国フロリダ州のDias-Analytic Corporation, Odessaから得られる。膜112、118および分離壁114もまた、好適には乾燥剤の腐食作用に抵抗する材料から形成される。この点で、これらは壁を有する重合体またはプラスチックから加工され、いくつかの場合においては、プラスチックと比較してより高い熱伝導性を提供する耐食金属または合金から形成される。] [0025] 示されている実施形態100は、あらかじめ冷却された排出空気流128の逆流(流入空気流120に関して)のために構成される。他の実施形態は、交差流(およそ90度の流路)または順逆流(ちょうど逆または反対の方向ではないが、空気流120に関して90度よりも大きい流路などの横軸)を用いる。排出空気流128は、膜のシートまたは層(例えば、第2のまたは下側の膜)118および他の積層(図示せず)の上側の層によって規定されるチャネルまたはチャンバ中を流れる。分離壁114および膜118は、冷却剤フロー126のためのフローチャンバまたはチャネルを規定し、冷却剤フロー126は一般的には水などのフローである。熱は分離壁を通して液体乾燥剤124から冷却剤126へと伝達され、冷却剤126は、熱および質量(例えば、水または他の湿度132)が膜118を介して排気流128へと伝達されるにつれ冷却される。熱伝達は図示されていないが、一般的には膜112を通って液体乾燥剤124へと流れ、分離壁114を通って液体乾燥剤124から冷却剤126へと流れ、さらに膜118を通って冷却剤126から排出空気流128へと流れる。膜112、118は比較的薄く、一般的には0.25インチ未満、より一般的には100〜130ミクロンなどの0.1インチ未満の厚さtmemを有する。膜112、118は制御されない場合外側へ広がる傾向を有し、図3に示されるものなどのいくつかの実施形態においては、隣接する膜(例えば、空気流のための穴または開口部、およびジグザグ、S字またはW字状の、もしくは膜112、118との比較的小さな接合点を多く提供する他の断面(または横面)を備えるプラスチックまたは金属網)の分離を維持するために、流入空気流120および流出空気流128において(つまり、空気流チャンバにおいて)仕切り板または「流れ場(flow field)」支持材が備えられる。分離壁114もまた一般的には、乾燥剤124と冷却剤126との間の熱伝達を容易にするため比較的薄く、例えば0.125インチ未満の厚さtwallを有する。空気、乾燥剤、および冷却剤のためのフローチャンバもまた比較的薄く、いくつかの実施においては1インチの厚さ(または深さ)未満のチャンバを用い、一方で他の実施ではおよそ0.25インチ以下など、0.5インチ未満のチャンバを用いる。] 図3 [0026] 図2は、除湿および冷却が単一の段階内で生じ、ゆえに一体または単一の装置である質量/熱交換装置を提供するために、膜/分離壁/膜の積層またはアセンブリの構成を利用する間接蒸発冷却器210を描く。いくつかの実施形態(図示せず)においては、乾燥剤側の膜または乾燥剤フローは存在しない。ゆえにこれらの実施形態は、膜が液体冷却剤を含有するが液体乾燥剤を含有せず、また分離壁によりよい熱伝達面を提供するために、膜が一般的に供給空気側(または供給空気側のチャネル)に設けられない間接蒸発冷却器を提供するのに有用である。図2に示されるように、冷却器210は、積層または装置212、230、240から形成される質量/熱伝達アセンブリを含み、このような積層アセンブリは一般的に、冷却器210中に複数の流入および流出空気、冷却剤、および乾燥剤のフローチャネルまたはチャンバを設けるために、繰り返される。示されるように、それぞれの積層のセット(または層状アセンブリまたは装置)212、230、240は、膜、分離壁、膜を含むために、質量および熱伝達を可能にするよう分子程度の水に浸透性である膜と、熱伝達のみを可能にし質量伝達を許可しないように不浸透性(またはほぼ不浸透性)である壁により、同様に形成される。] 図2 [0027] とりわけ、積層212は上側の膜層214、分離壁216、および下側の膜層218を含む。仕切り板またはスペーサ(図示せず)は一般的に、冷却剤215および液体乾燥剤217のためのフローチャネルを規定するために、層の間隔をあける目的で提供される。例えば、隔離板を、冷却剤および再度作り出される乾燥剤のための供給ラインに接続をもたらし、様々な積層212、230、240を通るフローを規定する多岐管を提供し、冷却剤および希釈された乾燥剤のための戻りラインに接続をもたらすように構成することもできる。積層230および240も同様に、上側の膜層232、242、分離壁234、244、下側の膜層238、248を含む。積層240は積層212と同様に、上側の膜242および壁244の間のチャンバ中に導かれる(水などの)冷却剤243、および壁244と下側の膜層248との間を流れる乾燥剤246を有する。対照的に、積層230は、上側の膜層232および壁234により規定されるチャンバ内を流れるように導かれる液体乾燥剤233、および壁234および下側の膜層238により規定されるチャンバまたはチャネル内を流れるように導かれる冷却剤236を有する。] [0028] 冷却器210は、供給流入空気250を、積層212および積層230の間のチャネルまたは流路を通して導くために、ダクトなど(図示せず)を含む。積層212、230、240および含有される流体のこのような配置は、供給流入空気250が、液体乾燥剤217、233を含有する膜218、232の表面を通り越すことを招く。結果として、空気250中の湿度が、浸透性の膜218、232を介して乾燥剤217、233によって吸収されるにつれて、除湿される供給流出空気254が排出される。冷却器210における冷却効果は、1つには、あらかじめ冷却された排出空気255として積層230、240の間のチャネルまたは流路を通って流れ、後に加温および加湿空気258として排出されるように、ダクト/多岐管(図示せず)によって冷却器210内に再度導かれる供給流出空気254の組立てによりもたらされる。熱は、壁236を通って乾燥剤233から冷却剤236へと移動し(同様の熱伝達が積層212、240においても生じる)、冷却剤236は膜238を介して熱および質量(例えば、水分子)を次の排出空気255へと伝達できる。前述のように、212、230、240により提供される積層パターンまたはセットは、空気、冷却剤、および乾燥剤のための膨大な数の平行するフローチャネルを備えた質量/熱伝達アセンブリを作成するために、一般的には冷却器210中で繰り返される。] [0029] 冷却器210は逆流形交換器として示されているが、本発明に記載の乾燥剤に基づく除湿および冷却を実施するために、他のフローパターンを用いてもよい。例えば、直交流形のパターンを容易に設置することができ、また準(または完全に対向しない)逆流形のパターンについても同様である。これらのパターンは、冷却器の多岐管および/またはダクトおよび/または配管、および積層間に設けられる仕切り板を変えることにより、達成され得る。また、逆流通路は冷却器210の場合と同様に、積層アセンブリの外側というよりもむしろ内蔵して提供され得る。例えば、冷却器310は、図2の冷却器210に示されるものと同様の積層配置を有するが、流入空気250および流出空気258のためのフローチャネルの端部にある、逆流バッフルまたは仕切り壁360を含む。逆流の仕切り板360は、冷却された空気の大部分が供給流出空気354として積層から排出することを可能にする(例えば、50%よりも多く、より一般的には60〜90%、または空気流250よりも多い)。より少量の部分(例えば、補給外気などと同量)は、仕切り板360によって、積層230、240の間をあらかじめ冷却された排出空気355として流れるように導かれる。図3はまた、積層212、230、240において膜の分離を分かれたままの状態(またはいくつかの浸透性の膜を用いる際に生じ得る、膨らんだまたは拡張した厚さではなく、当初の厚さ程度)に維持するよう機能する仕切り板または流れ場バッフル370の使用を描く。仕切り板370は波形型を有する網目など、多くの形状をとることができ(例えば、S字またはW字状の側面または断面図)、網目は、実用的である限りは空気流になるべく少ない抵抗をもたらし、一方で充分な強度を提供するものが選択される。さらに、膜との接触点または接触場所は、空気250からおよび空気355への水分の移送を遮断し得るので、これらの数を制限することが望ましい。] 図2 図3 [0030] 図4は、ある実施形態による間接蒸発冷却器400を描く。例えば図1〜3に示される積層セットを用いて形成されるような質量/熱伝達アセンブリを支持するために、ハウジング410が提供される。示されるように、ハウジング410は供給流入空気流415のための入口414、および排出空気流417のための出口416を備える第1端部412を含む。冷却器4100はさらに、第1端部412の反対側にある第2端部418を含み、この第2端部は、供給流出空気流420を最終用途の装置またはシステム(例えば、建物への戻り空気のための入口または供給)へ導くための出口またはベントを提供する。第2端部418はまた、供給流入空気流415の逆流冷却で用いるために、冷却された(また、いくつかの運転モードにおいては除湿された)空気426の部分426を向けなおすように構成される。冷却器400の試作品は、32個の乾燥剤チャネルを備えた、図2に示されるような積層アセンブリを用いて組み立てられた。この試作品は、毎分10リットル(LPM)のフロー(または各乾燥剤チャネルにつき0.3LPMほど)でテストされた。冷却剤は、蒸発速度の1.25〜2.00倍の流速で、水として提供された。この試作品の蒸発速度は、およそ1.33gallons/ton−hrまたはおよそ5liters/ton−hrであって、これは、およそ6〜10liters/ton−hrの冷却の水または冷却剤の流速をもたらす。当然ながら、これらは例示的なもので流速を制限するものではなく、液体乾燥剤および冷却剤の流速は膨大な要因に依存し、特定のチャネル設計および冷却の必要性、また他の検討材料に適合されるだろう。] 図1 図2 図3 図4 [0031] 図2に示されるような積層セットを用いる冷却器400のような間接蒸発冷却器は、冷却剤および液体乾燥剤に浸透性の膜を使用することの有効性を判定するようにモデリングされ得る。図5は、同一の段階また工程において流入またはプロセス空気を冷却および除湿するために、図2に関して記載される積層212、230および240の使用を示し、このようなモデリングの図表500を提供する。モデル500への入力値が示され、一般的な流入空気の条件が提供される。この場合、結果およびモデリングはEES(Engineering Equation Solver)を用いて行われている。箱の中で、または罫線に囲まれて示される数値は入力値(または推測される一般的な運転条件)であって、箱の外または箱のない値はモデリングの出力値または結果である。図表500で示されるモデリング結果は、加熱、換気、および空調(HVAC)技術における当業者にとっては自明であると考えられるので、間接蒸発冷却器において膜による封じ込めを用いる実施形態に関して達成された有効性を詳細に説明する必要はない。しかしながら以下の記載は、モデル500中の結果のいくつかについて図式的な説明を提供する。] 図2 [0032] 図6は、積層間のチャネルにおける空気流の温度を示すグラフまたは図表610を描く(例えば、本明細書に記載される質量/熱伝達アセンブリなどを用いる蒸発冷却器において)。グラフ610はまた、逆流の質量/熱交換器(例えば、図2に示されるような積層配置を備える交換器400)の長さに沿った表面温度を示す。とりわけ、グラフ610は線612で示される供給空気の温度、線614で示される排気/パージ空気の温度、線616で示される乾燥剤側の膜表面(例えば、膜および供給空気の境界面)の温度、線620で示される乾燥剤側の膜表面(例えば、膜および供給空気の境界面)の露点温度、および線618で示される水分側の膜表面(例えば、膜および排気/パージ空気の境界面)の温度を示す。] 図2 図6 [0033] 図7は、逆流の熱/質量交換器の長さに沿う空気の湿度レシオを示すグラフまたは図表710である。とりわけ、グラフ710は、線712で示される供給空気のバルク湿度レシオ(bulk humidity ratio)、線714で示される排気/パージ空気のバルク湿度レシオ、線716で示される乾燥剤側の膜表面(例えば、膜および供給空気の境界面)に近接する空気の湿度レシオ、線718で示される水分側の膜表面(例えば、膜および排気/パージ空気の境界面)に近接する空気の湿度レシオを示す。図8は線815を用いて、逆流の質量/熱交換器の全長を流れ落ちる供給空気流と同時に流れる際の、乾燥剤(この特定のモデリングにおいて、乾燥剤はLiClである)の濃度を示すグラフ810を描く。線815で示されるように、乾燥剤は空気から水分子を吸収するので、膜と分離壁の間のチャネルを通って流れるにつれて弱まり、例えばこの特定のモデリング例においては、乾燥剤の濃度はおよそ44%からおよそ24%まで低下する(これは、これらの運転条件で流れる空気において、水分子に対し浸透性(特定の入力率または設定で)であることを特徴とする膜に起因する)。] 図7 図8 [0034] 図9は、図5のモデル500の過程を、湿度図表910で示す。線912を用いて示される供給空気は、徐々に湿度を失うことが分かる(数キログラムの乾燥空気に対して数キログラムの水蒸気、すなわちkgv/kgdaで)。供給空気912は、乾燥剤への蒸気吸収の多量の熱流によって、最初にわずかに温度を上昇する。供給空気912が交換器の全長(または液体乾燥剤を含有する隣接する積層の膜層または壁の間のフローチャネルまたはチャンバ)を降下するにつれて、温度はその後入口における冷却器/乾燥機の条件まで低下する。交換器の出口において、供給空気912は2つの流れに分けられる。空気の過半数は冷却された場所に供給され、少量の空気(例えば容積の50%未満、より一般的には30%未満)は熱/質量交換器または冷却器の排気/パージ側(または冷却剤を含有する膜壁の間の排気/逆流チャネル)へと流し込まれ、これは線916を用いて示される。排出空気916は露点が低いので、大量の熱を蒸発させて捕らえることができる。あらかじめ冷却された排出またはパージ空気916は、湿気がある側のチャネルから水蒸気(および関連する気化熱)を捕らえる。空気916は、線912で示される供給流入または流出のどちらよりもかなり高いエンタルピーを伴って、ユニットから出る。図表910はまた、線918を用いて、乾燥剤側の膜表面(ds)に近接する供給空気の湿度レシオおよび温度を示す。] 図9 [0035] 以下の表は、流入および流出空気流に関する図5のモデリングの結果を、表形式で示す。示されるように、広範囲の温度および湿度レベルを選択し、モデル500に入力することができる。以下の表で結果が示されている構成において、停止される乾燥剤フローに対する相当湿球の有効性は(例えば、いくつかの運転モードにおいては、空気を除湿するために乾燥剤を利用することは必要ではないか、または有用でない)は113%であって、これは冷却器が、供給空気を入口の湿球温度よりも低い温度まで冷却できることを意味する。 この表において、LiClの流入濃度は44%、流速(フロー排出÷(フロー排出+フロー供給))は0.3、供給流出の面速は175SCFM、および周囲圧力は101.3kPaである。] [0036] 図2の冷却器210は、所望の液体を封じ込めるために、水分子に浸透性である膜または膜物質の層を利用する、乾燥力が強化された間接蒸発冷却器と考えられる。基準となる湿度図表(例えば14.7psiの周囲圧力および他の一般的なパラメータにおける湿度図表)は、一般的な室内の設定において生じる等しい顕熱率(SHRs)の線を見るために用いられ得る。蒸気圧縮除湿のために、およそ0.7未満のSHRは再加熱なしでは到達するのが困難である(例えば、所定の適切な蒸発器温度)。また、再加熱なしでおよそ0.6未満のSHRに到達することは、湿度計測学的に不可能であり、このようなSHRを試みることはしばしば、霜取りサイクルを必要とする蒸発器コイルの凍結を導く。図2の200で示されるような乾燥力が強化された間接蒸発冷却器は、(上述され、以下でさらに詳細に提示されるような)特異な、新しいプロセスを用いて、この問題を扱う。] 図2 [0037] ここで、図2および図3を参照してプロセスを見直すことが有用である。図2および図3は、蒸発冷却器210、320において使用するためのユニットまたはアセンブリの内側のフローチャネルを描く図表を示す。混合された戻り空気/外気は、矢印250によって示される(例えば、400cfm/tonの供給空気および175cfm/tonの外気など、外気の補給空気を伴う調整された場所からの戻り空気)。空気250は、膜218、232を通して、乾燥剤217、233によって除湿される。これは、この空気流が254または354で流出するまで、空気流の露点と温度の両方を低下させる。供給空気通路の出口(液体乾燥剤を含有する膜の間)で、空気の一部は矢印255および355で示されるように細分化され、膜238、242を通して水分層236、243から湿度をとる隣接通路(冷却剤含有膜238、242の間)に送られる。蒸発熱は、顕熱および吸収熱を取り除くために作用する冷却の供給源となる。この空気はその後、254、354で除去(parge:パージ)される。] 図2 図3 [0038] 図4中の400で示される熱交換器の構造は、発明者によって実験室で形成され、図5に示されるようにモデリングされた。フロー/ハウジングの設計に関する他の選択肢は、図10の冷却器1000および図11の冷却器1100を用いる構造で示される。冷却器1000は、第1部分または端部1012および第2部分または端部1020を備えるハウジング1010を有するものとして示される。第1部分1012は、供給流入空気流1013および入力排出空気流1014を受け取るための入口またはベントを備えて構成され、また第1部分1012は、ユニット1000から排出空気流1015を出力するためのベントまたは出口も含む。第2部分1020は、供給流出空気流1022のための出口(例えば、多岐管および空気流を導くための他の構成要素を伴って)を備えて構成され、この供給流出空気流は、供給流入空気流1013(チャネルの他のまたは開始部分における直交流として提供される排出空気流1014を伴って)のために提供されるチャネルの一部分に対して逆流を提供するために、矢印1027で示されるようにハウジング1010中へと再び導かれる部分1025を有し、この空気はその後1028で、ハウジング部分1020から排出される。入力排出空気流1014は、排出された空気または外気へと戻されてもよい(例えば、建物の場所から)。この流入路1000は、より少ないパージ空気1025、1027を利用することによって効率性を改良し、とりわけ、所望の効率性を増大または維持するためにパージ空気を制限することに好適である。] 図10 図11 図4 [0039] 再び図4を参照すると、冷却器400の運転は、図9の湿度図表910で示される冷却プロセスを有することが予測される。示されるように、線912は供給空気流を表し、線916はパージ空気流の流れを表す。乾燥剤側空気の境界層は、線918を用いて表される。この図は、冷却器400用の除湿駆動体が、どのようにしてより効率的な冷却器を提供するために利用されているのかを図式的に示す。冷却器400は、有意な除湿をもたらすために、CaCl溶液のような弱い乾燥剤も使用でき、これは1つには、弱い乾燥剤が高い除湿素質に到達することを可能にする冷却器400の構造によって低温が達成されることによるものである。] 図4 図9 [0040] 図10の冷却器1000で示される構造は、性能の好ましさを測定するために作られ、結果は図12の湿度図表1200で提供される。図表1200において、線1210は供給空気を、線1212は周囲の排出空気を、線1214は乾燥剤側の表面温度を、線1220は冷却後の供給空気を、線1224は冷却後のパージ空気をそれぞれ表し、線1230は建物にかかる負荷が流れる顕熱率の線(SHR)である。ゆえに例えば、建物は0.67ユニットの顕熱および戻り空気の状態に到達するために空間に加えられる0.33ユニットの潜熱を有し、これは華氏80度でおよそ70グレイン/ポンド(grains/lb)の、ミドルダイアモンド(middle diamond)であって、この地点が戻り空気の状態であると考えられる。線1210の第1地点は、「混合空気」状態で、外気および戻り空気が30:70の混合物である。冷却器1000によりもたらされる冷却に対する2段階のアプローチは、プロセスが、後の冷却段階を加えた2つの異なる除湿部分に分けられることを可能にする(例えば、乾燥剤の層および除湿が存在せずに蒸発冷却のみがもたらされるような、有意な冷却のみの段階)。この冷却器1000は当然ながら、本明細書に記載される膜を封じ込める特徴を用いて、2段階以上の冷却を提供するために実施され得る多大な構造の一例でしかなく、ほぼ全ての所望のSHR(例えば、この場合、およそ0.67のSHR)に到達する可能性を示す。図表1200を提供するためのモデリングにおいて、1立方フィートの磁心(または質量/熱伝達アセンブリ)が、176SCFM、およびおよそ0.3の流速と共に用いられる(例えば、30%のパージ空気および70%の供給空気)。また、戻り空気は華氏80度および相対湿度40%、周囲空気は華氏86度および相対湿度60%であった。アセンブリへと供給される液体乾燥剤は44%のLiClであった(ただし、塩分がおよそ20〜40重量%である塩(例えば、これに限定するわけではないがハライド塩)と水の溶液など、他の乾燥剤も使用できる)。アセンブリは、約7Btu/lbでこの1立方フィートのみで0.5トンの建物に冷却をもたらすことができた。この例およびモデリングから認識されるように、(例えば、液体を含有するために)乾燥剤および冷却剤を含有するために膜を使用することは、間接蒸発冷却器が従来の設計よりも小型に製造されることを可能にし、より小型な設計は保守管理しやすく(例えば、付着物の問題がより少ないか、またはない)、また冷却を引き起こす(例えば、同時に除湿および冷却を行うことにより、プロセス空気を調整および冷却できる蒸発冷却器を提供する)際により効率的である。] 図10 図12 [0041] 図11は蒸発冷却器1100を描き、逆流の冷却空気(またはあらかじめ冷却された供給空気)が、積層またはフローチャンバの選択された長さ(全長の半分から80〜90%またはそれ以上)以外は直接反対方向であるような、他の逆流配置を提供する(例えば、完全な逆流が要求されない、または望まれない場合)。示されるように、冷却器1100は、供給流入空気流1112および逆流空気(例えば、再度導かれる供給流出空気流1114)のためのフローチャネルの変更を伴う(上記のような)質量/熱伝達アセンブリとして構成される複数の積層または積層のセットを含有するハウジング1110を含む。ハウジング1110は、供給流入空気流1112(例えば、外から補給される空気および戻り空気)を、乾燥剤を含有する膜の間のチャネルに導き、冷却され、かつしばしば除湿される供給流出空気流1114を産出するために、ベントおよび/または多岐管を含む。冷却器1100は、供給流出空気流の一部をハウジング1110内へと再び導き、1116で示されるような冷却逆流空気を提供するために(例えば、冷却剤を含有する膜の間のフローチャネルに)、ダクト、多岐管などをさらに含む。逆流空気1116は一般的には、ハウジング1110の全ての長さを移動せず、代わりに、チャネルの全長に沿うある点においてサイドベントから排出される(例えば、全長のおよそ60〜80%の距離で)。このような構造は、冷却器1100を特定の運転環境に合わせるために有用である(例えば、外気の気温、湿度および他の運転パラメータに基づいて、所望の量の冷却を供給流出空気流にもたらすために)。] 図11 [0042] 本明細書に記載される積層および膜は、多数の間接蒸発冷却器の設計(除湿のための液体乾燥剤を備えるものおよび備えないもの)および応用にすぐに適用可能である。しかしながら、当業者が、この技術が他の多くのシステムにおいても有用であると容易に理解するという信条の下、空調設備またはHVACシステム中での技術の使用を論じることが有用であるかもしれない。図13は、建物1310(例えば、住居用または商業用の建物、または調整され冷却された空気を必要とする他の構造物)内の条件空気に乾燥剤による除湿および蒸発冷却をもたらすために、膜技術が備えられる空調設備システム1300を単純化して描く。示されるように、システム1300は、図1〜12に関して上述されたような膜積層アセンブリを収納するために用いられるハウジング1322を伴った冷却器1320を含む。ファンまたは送風機13224は、外または補給空気1325を引き込み、建物1310から戻り空気1326を移動させるために、提供される。このファン1324は、上述されたような積層(例えば、除湿をもたらす実施形態においては隣接する、膜に含有された液体乾燥剤、または蒸発冷却のみを伴う実施形態においては隣接する分離壁)を通して、これら2つの空気流を流入供給空気として押し進める。冷却された(および一般的には調整された)空気は、建物1310への供給物として1330で排出され、一部がパージまたはあらかじめ冷却された排出空気として1332へ戻される。戻された空気は、ハウジング1322中の積層の冷却剤または蒸発冷却の側を進み、その後排気1328として排出される。冷却剤は給排水路1334の形状でハウジング(および積層アセンブリを通って)に提供され、液体乾燥剤は給排水路として1338で提供される。乾燥剤1338は、この実施例では乾燥剤ボイラー1342を含む蓄熱器1340を用いて再び生じさせられる。] 図1 図10 図11 図12 図13 図2 図3 図4 図5A 図5B [0043] 乾燥力のある向上した間接蒸発冷却器(DE−IDEC)1320は、建物1310に冷却をもたらすために強い乾燥剤および水を取り込むシステム1300の一部である。システム1300は、要望に応じて、また要望に準じて、建物1310に感知し得る冷却および潜在的な冷却の両方をもたらす。例えばシステム1300は、100%感知し得る形状で冷却をもたらすことも、100%潜在的な形状で冷却をもたらすこともでき、またそれらのあらゆる組み合わせも可能である。DE−IDEC1320は、建物1310の外側の熱負荷を取り除くために、外気の一部1325を、同量の排出空気1328を伴って用いる。DE−IDEC1320は湿った表面を有さず、液体流1334、1338は閉ループであるので、DE−IDEC1320そのものは建物外装の内側にも外側にも置くことができる。これは、システム1300を、屋内の使用、および建物1310の内側での冷却器1320の設置に好ましいものにする。水または冷却剤1334の水源(または冷却剤の源、図示せず)は、飲用に適したものである必要はなく、システム1300は、建物の管理者によって容認可能であるのに充分な小型さである。電力の使用は、一般的な蒸気圧縮システムまたはユニットよりも大変少ない(例えば、従来の圧縮ユニットに一般的である1.2kW/tonと比較すると、最大でも0.2kW/ton未満)。] [0044] 蓄熱器1340は、システム1300の運転にために重大な構成要素のもう一方である。このユニット1340は、DE−IDEC1320から弱くなった乾燥剤を取り込み、乾燥剤1338に含有される湿気を取り除くために、ボイラー1342を用いて熱を加える(以下の熱源一覧を参照)。この結果、高い塩濃度を有する乾燥剤1338が生じ、DE−IDEC1320により再び用いられ得る(例えば、供給流入空気1325、1326に隣接するフローチャネルを含有する/規定する膜において)。乾燥剤を再び生じさせるのに適した熱源の一覧は、(a)ガスまたは他の化石燃料、(b)太陽熱、(c)結合加熱および動力装置などのあらゆる廃熱流からの廃熱、および(d)蒸気圧縮サイクルに起因する濃縮装置からの廃熱を含む。] [0045] 本発明者は、図2に示されるような積層アセンブリを用いて、図4に示される冷却器と同様に組み立てられた試作品のテストを行った。図14は、華氏104度および93グレイン/ポンドの流入空気で組み立てられ、かつ検査された試験用の概念試作品の検査結果を提供する。この試作品は、乾燥剤フローを伴って、または伴わずに検査されるが、液体乾燥剤のフローチャネルを規定するために提供される膜を伴ってテストされる。乾燥剤フローが存在しない場合、間接蒸発冷却器は73%の湿球効果を有した。乾燥剤が用いられた場合(乾燥剤として41%のLiClを用いて)、効果は63%で、12グレイン/ポンドの除湿を有した。これは0.73の有意な熱消費率という結果を招いた。この試作品は、上で説明したようなモデル期待値には達しなかった。これは、この試作品が空気、水、および乾燥剤の不等流を作り出すことにおいて欠陥があったためと考えられる。] 図14 図2 図4 [0046] 多くの代表的な態様および実施形態が論じられてきたが、当業者はこれらの実施形態のいくつかの変更、置換え、付加および小結合を認識するだろう。したがって、以下に添付される特許請求の範囲およびこれより展開される特許請求の範囲は、特許請求の範囲の正確な精神および範囲内にある限り、上述されたような代表的な態様および実施形態に対し、変更、置換え、付加および小結合を含むものと理解されることを意図する。上記の記載は、特異な間接蒸発冷却器の提供において使用するための熱/質量伝達アセンブリの設計に焦点を当て、またはそれら設計を強調した。当業者は、記載された冷却器が、住居または商業上の使用のためのより完全なHVACシステムにおいて、容易に含まれ得るということを認識するだろう。このようなHVACシステムは、所望かつ制御可能な流速で、液体乾燥剤を冷却器へ、また冷却器から循環させるための配管および構成要素を含む。これらのシステムはまた、乾燥剤のための蓄熱器を含む(例えば、太陽電池パネル、電気ヒーターなど、吸収された水分を取り除くために液体乾燥剤を加熱するもの)。この蓄熱器はまた、乾燥剤から飲用に適した水を回収するための水だめおよびラインを含み、冷却器中に注入または供給される前の乾燥剤のために貯蔵庫が提供される。乾燥剤と接触するシステムの部分は、一般的にはある種の金属など腐食作用に抵抗のある物質、またより一般的にはプラスチックで構成される。HVACシステムはまた、建物からの戻り空気を、冷却器を通して移動させ冷却された場所に戻すため、補給空気を、冷却器を通して移動させ冷却された場所に戻すため、およびパージまたは排出空気を排出するために、ダクトおよびファンまたは送風機など他の構成要素を含む。飲用に適した水などの冷却剤を冷却器の積層(例えば、膜および分離壁の間のチャネル)に提供するために、配管およびポンプ/バルブ(必要に応じて)を備える冷却剤供給システムもまた備えられる。] [0047] 示される実施形態は一般的に、供給またはプロセス空気を除湿する液体乾燥剤の継続的な使用を論じた。しかしながら、多くの運転条件において、冷却器は乾燥剤フローなしでも運転でき、これらの運転条件は「自由蒸発冷却」条件(または湿度図表上の区域)と考えられる。「自由冷却」は高い冷却効果によって体言されるので、システムを稼動させるエネルギーのコストは重大でない。例えば、湿度がおよそ80%よりも低い場合(および乾球温度が華氏60度を超える場合)、乾燥/除湿を伴わない冷却は本明細書に記載される冷却器によって行われ得るが、80%を超える湿度の場合冷却および乾燥が要求され、この時点では冷却器は流れる液体乾燥剤と共に運転され得る。このような「自由」冷却は、世界中で湿度の少ない日が比較的多い場所(米国の南西部など)で実用的である。] [0048] 上記の記載および付随する図面による間接蒸発冷却器の実施形態は、多くの分離壁を利用する内蔵の熱および質量伝達装置を提供する単一ユニットとして提供され得る。伝達装置およびアセンブリは、膜による封じ込めを用い、空気流は乾燥剤または水(冷却剤)と直接には接触しない。冷却器は熱および質量の交換を引き起こすために(例えば、膜を横切る空気流からの水の)蒸発冷却を使用し、ここで熱は液体乾燥剤および冷却剤の間の分離壁を通して伝達されている。熱交換は2つの逆流および/または直交流空気流の間である。除湿中などの質量交換は一般的に、流入供給空気またはプロセス空気から、水分子に対し浸透性である膜を通って液状になる水蒸気の伝達である(例えば、液体乾燥剤による吸収のために)。冷却器の蒸発部分は、分離壁を通して熱を導き、冷却剤/水から空気流への蒸発によってその熱を放出する(例えば、水蒸気は浸透性の膜を通って再び伝達されるが、この時排出または逆流/直交流空気流において水蒸気の状態である)。]
权利要求:
請求項1 液体冷却剤および排出またはパージ空気流を用いて、流入供給空気の空気流を、第1温度から第2のより低い温度へと冷却するための間接蒸発冷却器であって、前記流入供給空気の空気流を受け取る第1フローチャネルと、前記第1フローチャネルに隣接し、前記第1温度よりも低い温度で排出空気の空気流を受け取る第2フローチャネルとを含み、前記第2フローチャネルが、水蒸気に対して少なくとも部分的に浸透性である膜シートによってある程度規定され、前記液体冷却剤の空気流が、前記第2フローチャネルと反対側の前記膜の側を流れる間接蒸発冷却器。 請求項2 前記液体冷却剤が、前記第1フローチャネルにおいて前記流入供給空気流から伝達された熱を受け取ることに応じて、前記膜を通して前記排出空気流に、蒸気として質量を伝達する請求項1記載の冷却器。 請求項3 前記液体冷却剤の流れのための液体冷却剤フローチャネルを規定する前記膜シートから離れて配置される分離壁をさらに含み、前記分離壁が、液体冷却剤に対して不浸透性かつ流入供給空気の流れからの熱に対し伝導性である物質からなる請求項2記載の冷却器。 請求項4 前記第1膜シートの反対側で分離壁から離れて配置される第2膜シートをさらに含み、該第2シートが前記第1フローチャネルをある程度規定し、前記第2膜シートおよび前記分離壁が液体乾燥剤の流れを受け取る乾燥剤フローチャネルを規定し、水蒸気が前記第2膜シートを通して前記流入供給空気から前記液体乾燥剤の流れへと伝達される請求項3記載の冷却器。 請求項5 前記第1および第2膜シートが、該膜を通る前記液体冷却剤および前記液体乾燥剤の流れを阻止し、これにより、前記液体乾燥剤および前記液体冷却剤が、前記第1および第2フローチャネルへ流入することをそれぞれ阻止される請求項4記載の冷却器。 請求項6 前記液体乾燥剤が塩溶液からなり、前記液体冷却剤が水からなる請求項5記載の冷却器。 請求項7 前記液体乾燥剤が弱い乾燥剤である請求項6記載の冷却器。 請求項8 前記排出空気が、前記第2のより低い温度で前記第2フローチャネルに入る前期流入空気の流れの一部を含む請求項1記載の冷却器。 請求項9 前記流入供給空気の流れが前記第1フローチャネルにおいて第1の方向に流れ、前記排出空気の流れが前記第2フローチャネルにおいて第2の方向に流れ、前記第2の方向が、少なくとも前記第2の方向に対して交差または反対方向である請求項1記載の冷却器。 請求項10 蒸発冷却器において使用するための質量および熱伝達アセンブリであって、上側の膜、下側の膜、および該上側および下側の膜の間の分離壁を含み、前記上側および下側の膜が水蒸気に対して浸透性であって、前記分離壁が液体および蒸気に対して実質的に不浸透性である第1の積層と、上側の膜、下側の膜、および該上側および下側の膜の間の分離壁を含み、前記上側および下側の膜が水蒸気に対して浸透性であって、前記分離壁が液体および蒸気に対して実質的に不浸透性である第2の積層と、上側の膜、下側の膜、および該上側および下側の膜の間の分離壁を含み、前記上側および下側の膜が水蒸気に対して浸透性であって、前記分離壁が液体および蒸気に対して実質的に不浸透性である第3の積層とを含み、前記第1の積層および第2の積層が、第1空気流を受け取るフローチャネルを規定するために離れて配置され、前記第2および第3の積層が、第2空気流のためのフローチャネルを規定するために離れて配置される質量および熱伝達アセンブリ。 請求項11 前記第1、第2および第3の積層が積層の組を含み、前記アセンブリが、前記第1空気流および前記第2空気流のための前記フローチャネルの、平行なものを複数規定する2つ以上の前記積層の組をさらに含む請求項10記載のアセンブリ。 請求項12 前記第1空気流および前記第2空気流が、フローチャネルにおいて交差方向に流れる請求項10記載のアセンブリ。 請求項13 前記第1空気流および前記第2空気流が、フローチャネルにおいて反対方向に流れる請求項12記載のアセンブリ。 請求項14 前記第1および第2積層の間の前記フローチャネルに存在する仕切り板、および前記第2および第3の積層の間の前記フローチャネルに存在する仕切り板をさらに含み、前記仕切り板が、前記積層の前記膜の間隔を維持し、前記第1および第2空気流の流れを可能にするよう構成される請求項10記載のアセンブリ。 請求項15 前記第1の積層においては、前記上側の膜および前記分離壁の間を流れる液体冷却剤、および前記分離壁および前記下側の膜の間を流れる液体乾燥剤を、前記第2の積層においては、前記上側の膜および前記分離壁の間を流れる液体乾燥剤、および前記分離壁および前記下側の膜の間を流れる液体冷却剤を、前記第3の積層においては、前記上側の膜および前記分離壁の間を流れる液体冷却剤、および前記分離壁および前記下側の膜の間を流れる液体乾燥剤をさらに含む請求項10記載のアセンブリ。 請求項16 前記液体冷却剤が水からなり、前記液体乾燥剤が塩溶液からなり、前記膜の各々が水分子に対して浸透性である物質からなる請求項15記載のアセンブリ。 請求項17 プロセス空気を調整する方法であって、第1フローチャネルを通して前記プロセス空気を導入する第1導入工程と、前記第1フローチャネルの壁に隣接する液体乾燥剤の流れを導入する第2導入工程であって、前記液体乾燥剤は、前記液体乾燥剤を含有し、前記プロセス空気からの水蒸気が前記液体乾燥剤に流入することを許容する膜によって、前記第1フローチャネルにおける前記プロセス空気から離れて配置され、これにより、前記プロセス空気が除湿される工程と、前記第1フローチャネルに近接する第2フローチャネルを通してパージ空気の流れを導入する、前記第1および第2導入工程と同時に生じる第3導入工程であって、前記パージ空気は少なくとも前記プロセス空気の一部よりも低い温度である工程と、前記第2フローチャネルの壁に隣接する液体冷却剤の流れを導入する、前記第1、第2および第3導入工程と同時に生じる第4導入工程であって、前記液体冷却剤は、前記液体冷却剤を含有し、前記液体冷却剤からの蒸気が前記パージ空気に流入することを許容する膜によって、前記第2フローチャネルにおける前記パージ空気から離れて配置され、これにより、熱が液体冷却剤から放出され、前記プロセス空気が冷却され、かつ同時に除湿される工程とを含む方法。 請求項18 前記パージ空気が、前記プロセス空気が前記第1フローチャネルと通して導入される方向と、少なくとも部分的に反対の方向で導入される請求項17記載の方法。 請求項19 前記パージ空気が、前記第1フローチャネルを通した導入後の前記プロセス空気の一部を含む請求項18記載の方法。 請求項20 前記液体冷却剤が水であり、前記液体乾燥剤が塩溶液を含む弱い乾燥剤であって、前記膜が、前記塩溶液が前記第1フローチャネルに流入することを阻止する請求項17記載の方法。
类似技术:
公开号 | 公开日 | 专利标题 JP6669813B2|2020-03-18|デシカント空調方法及びシステム JP6211644B2|2017-10-11|Method and system using liquid desiccant for air conditioning and other processes US10584884B2|2020-03-10|Control system and method for a liquid desiccant air delivery system JP6568516B2|2019-08-28|ミニ分割液体デシカント空調のための方法及びシステム US20190032931A1|2019-01-31|Method and Apparatus for Conditioning Air JP6674382B2|2020-04-01|屋上型液体乾燥剤システム及び方法 US9982901B2|2018-05-29|Air conditioning method using a staged process using a liquid desiccant CN206361857U|2017-07-28|热回收式膜法溶液热泵系统 US7188480B2|2007-03-13|Membrane desiccation heat pump US7428821B2|2008-09-30|Dehumidifying system AU2017204552B2|2019-07-18|Energy exchange system for conditioning air in an enclosed structure US7197887B2|2007-04-03|Method and plate apparatus for dew point evaporative cooler CA2823421C|2019-05-14|Heat pump system having a pre-processing module EP1334325B1|2009-04-01|Method and plate apparatus for dew point evaporative cooler EP3486577B1|2020-04-29|Evaporative cooling system with liquid-to-air membrane energy exchanger Sahlot et al.2016|Desiccant cooling systems: a review EP2767771B1|2019-05-15|Air temperature and humidity control device US20170292722A1|2017-10-12|Methods and systems for liquid desiccant air conditioning system retrofit CN107110525B|2020-02-11|用于微分体液体干燥剂空气调节的方法和系统 DE60311090T2|2007-08-16|Sorptionswärmetauscher und ein entsprechendes verfahren US9188349B2|2015-11-17|Air-conditioning system and use thereof Woods2014|Membrane processes for heating, ventilation, and air conditioning Lowenstein et al.2006|A zero carryover liquid-desiccant air conditioner for solar applications JP6506266B2|2019-04-24|天井内液体乾燥剤空調システム US9885486B2|2018-02-06|Heat pump humidifier and dehumidifier system and method
同族专利:
公开号 | 公开日 EP2250446B1|2020-02-19| CN102165268B|2014-04-30| JP5248629B2|2013-07-31| US20170074530A1|2017-03-16| US8769971B2|2014-07-08| WO2009094032A1|2009-07-30| US20100319370A1|2010-12-23| EP2250446A4|2014-06-04| US9518784B2|2016-12-13| US20140326433A1|2014-11-06| EP2250446A1|2010-11-17| CN102165268A|2011-08-24|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPS5966692A|1982-10-08|1984-04-16|Hitachi Ltd|Dehumidifying heat exchanger| JPS63503162A|1986-04-22|1988-11-17||| JPH0199631A|1987-10-13|1989-04-18|Choichi Furuya|Dehumidifier| JPH03500923A|1988-08-26|1991-02-28|||WO2013038708A1|2011-09-16|2013-03-21|ダイキン工業株式会社|調湿用モジュールおよび調湿装置| JP2014522307A|2011-06-03|2014-09-04|セルガードエルエルシー|フラットパネルコンタクタ並びにその製造方法及び使用方法| JP2015526690A|2012-09-04|2015-09-10|セカンドエア・ベスローテン・フェンノートシャップ2ndAir B.V.|空調システム及びその使用方法| US9625194B2|2010-10-29|2017-04-18|Major Bravo Limited|Apparatus for drying and/or cooling gas| KR101765277B1|2015-11-18|2017-08-07|주식회사 한누리공조|재생 증발 열교환기| US10619867B2|2013-03-14|2020-04-14|7Ac Technologies, Inc.|Methods and systems for mini-split liquid desiccant air conditioning| US10619895B1|2014-03-20|2020-04-14|7Ac Technologies, Inc.|Rooftop liquid desiccant systems and methods| US10619868B2|2013-06-12|2020-04-14|7Ac Technologies, Inc.|In-ceiling liquid desiccant air conditioning system| US10731876B2|2014-11-21|2020-08-04|7Ac Technologies, Inc.|Methods and systems for mini-split liquid desiccant air conditioning| US10753624B2|2010-05-25|2020-08-25|7Ac Technologies, Inc.|Desiccant air conditioning methods and systems using evaporative chiller| US10760830B2|2013-03-01|2020-09-01|7Ac Technologies, Inc.|Desiccant air conditioning methods and systems|US4263967A|1977-08-23|1981-04-28|Hayes Timber Pty. Limited, Et Al.|Heat transfer pack| US4224927A|1978-08-30|1980-09-30|Ppg Industries, Inc.|Solar collector for heating a fluid| US4419835A|1981-04-30|1983-12-13|H.D. Research Company|Hair dryer| US4544513A|1983-04-15|1985-10-01|Arvin Industries, Inc.|Combination direct and indirect evaporative media| JPS6447116A|1987-08-17|1989-02-21|Sharp Kk|Correction system for dc control voltage| JPS6447117A|1987-08-17|1989-02-21|Yokogawa Electric Corp|Digital signal phase correction device| US4827733A|1987-10-20|1989-05-09|Dinh Company Inc.|Indirect evaporative cooling system| JPH0815541B2|1988-06-24|1996-02-21|富士通株式会社|制御機能付きバルブ及び減圧室のリーク方法| CN1044527A|1989-01-24|1990-08-08|十月革命50周年基辅工业大学|气体间接蒸发冷却装置| US5020334A|1990-02-23|1991-06-04|Gas Research Institute|Localized air dehumidification system| US5176005A|1991-06-24|1993-01-05|Baltimore Aircoil Company|Method of conditioning air with a multiple staged desiccant based system| US5493871A|1991-11-12|1996-02-27|Eiermann; Kenneth L.|Method and apparatus for latent heat extraction| US5351497A|1992-12-17|1994-10-04|Gas Research Institute|Low-flow internally-cooled liquid-desiccant absorber| US5390505A|1993-07-23|1995-02-21|Baltimore Aircoil Company, Inc.|Indirect contact chiller air-precooler method and apparatus| GB9405249D0|1994-03-17|1994-04-27|Smithkline Beecham Plc|Container| AUPM777294A0|1994-08-30|1994-09-22|William Allen Trusts Pty Ltd|Spaced evaporative wicks within an air cooler| US5638900A|1995-01-27|1997-06-17|Ail Research, Inc.|Heat exchange assembly| DE19545335C2|1995-12-05|2001-04-12|Dornier Gmbh|Verfahren und Vorrichtung zur kontinuierlichen Entfeuchtung eines Gasstroms| US6018953A|1996-02-12|2000-02-01|Novelaire Technologies, L.L.C.|Air conditioning system having indirect evaporative cooler| JP3124929B2|1996-06-21|2001-01-15|川崎重工業株式会社|湿度制御装置| US5860284A|1996-07-19|1999-01-19|Novel Aire Technologies, L.L.C.|Thermally regenerated desiccant air conditioner with indirect evaporative cooler| US5743942A|1996-09-19|1998-04-28|United Catalysts Inc.|Desiccant container| US5860285A|1997-06-06|1999-01-19|Carrier Corporation|System for monitoring outdoor heat exchanger coil| US6216483B1|1997-12-04|2001-04-17|Fedders Corporation|Liquid desiccant air conditioner| US6178762B1|1998-12-29|2001-01-30|Ethicool Air Conditioners, Inc.|Desiccant/evaporative cooling system| AU776359B2|1999-03-14|2004-09-02|Ducool Ltd.|Dehumidifier/air-conditioning system| US20040031282A1|2000-04-14|2004-02-19|Kopko William Leslie|Desiccant air conditioner| US6731523B2|1999-05-12|2004-05-04|Ascom Energy Systems Ag|Modularized power supply| US6684649B1|1999-11-05|2004-02-03|David A. Thompson|Enthalpy pump| US6497107B2|2000-07-27|2002-12-24|Idalex Technologies, Inc.|Method and apparatus of indirect-evaporation cooling| US6413298B1|2000-07-28|2002-07-02|Dais-Analytic Corporation|Water- and ion-conducting membranes and uses thereof| US7197887B2|2000-09-27|2007-04-03|Idalex Technologies, Inc.|Method and plate apparatus for dew point evaporative cooler| US6514321B1|2000-10-18|2003-02-04|Powermax, Inc.|Dehumidification using desiccants and multiple effect evaporators| DE10059910C2|2000-12-01|2003-01-16|Daimler Chrysler Ag|Vorrichtung zur kontinuierlichen Befeuchtung und Entfeuchtung der Zuluft von Fertigungsprozessen oder Raumlufttechnik-Anlagen| US6739142B2|2000-12-04|2004-05-25|Amos Korin|Membrane desiccation heat pump| US6634165B2|2000-12-28|2003-10-21|General Electric Company|Control system for gas turbine inlet-air water-saturation and supersaturation system| JP3348848B2|2000-12-28|2002-11-20|株式会社西部技研|間接気化冷却装置| GB2389701A|2001-01-19|2003-12-17|World Properties Inc|Apparatus and method for electrochemical cell components| IL141579D0|2001-02-21|2002-03-10|Drykor Ltd|Dehumidifier/air-conditioning system| US6711907B2|2001-02-28|2004-03-30|Munters Corporation|Desiccant refrigerant dehumidifier systems| US6841601B2|2001-03-13|2005-01-11|Dais-Analytic Corporation|Crosslinked polymer electrolyte membranes for heat and moisture exchange devices| WO2002072242A1|2001-03-13|2002-09-19|Dais-Analytic Corporation|Heat and moisture exchange device| US7179860B2|2001-03-13|2007-02-20|Liwei Cao|Crosslinked polymer electrolyte membranes for heat, ion and moisture exchange devices| US6539731B2|2001-03-30|2003-04-01|Arthus S. Kesten|Dehumidification process and apparatus| CN1283958C|2001-04-23|2006-11-08|德里科尔有限公司|调节空气装置| AU2002331628A1|2001-08-20|2003-03-03|Idalex Technologies, Inc.|Method of evaporative cooling of a fluid and apparatus therefor| AU2003210911A1|2002-02-06|2003-09-02|Jose Moratalla|Desiccant dehumidification system| US6848265B2|2002-04-24|2005-02-01|Ail Research, Inc.|Air conditioning system| US20040061245A1|2002-08-05|2004-04-01|Valeriy Maisotsenko|Indirect evaporative cooling mechanism| US6837056B2|2002-12-19|2005-01-04|General Electric Company|Turbine inlet air-cooling system and method| KR100463550B1|2003-01-14|2004-12-29|엘지전자 주식회사|냉난방시스템| CN1206485C|2003-06-13|2005-06-15|贵州汇通华城楼宇科技有限公司|中央空调节能模糊控制方法及模糊控制器| WO2005033585A2|2003-09-30|2005-04-14|Albers Walter F|Systems and methods for conditoning air and transferring heat and mass between airflows| EP1716369B1|2004-02-18|2010-05-19|Idalex Technologies, Inc.|Plate heat and mass exchanger with edge extension| US7338548B2|2004-03-04|2008-03-04|Boutall Charles A|Dessicant dehumidifer for drying moist environments| WO2005090870A1|2004-03-17|2005-09-29|Idalex Technologies, Inc.|Indirect evaporative cooling of a gas using common product and working gas in a partial counterflow configuration| US7181918B2|2004-03-25|2007-02-27|Oxycell Holding B.V.|Vehicle cooler| GB0415549D0|2004-07-12|2004-08-11|Oxycell Holding Bv|Heat exchange device| AP2375A|2005-03-25|2012-03-07|Cool Ltd Du|System and method for managing water content in a fluid.| JP4388512B2|2005-07-14|2009-12-24|昭和電線ケーブルシステム株式会社|ブッシングおよびこれを用いた壁貫通ブッシング| US7281390B2|2005-09-09|2007-10-16|Delphi Technologies, Inc.|Self-powered evaporative cooler| US7765827B2|2005-11-08|2010-08-03|Everest Acquisition Holdings, Inc.|Multi-stage hybrid evaporative cooling system| JP2007147117A|2005-11-24|2007-06-14|Max Co Ltd|間接気化冷却エレメント、空調装置及び建物| JP2007147116A|2005-11-24|2007-06-14|Max Co Ltd|間接気化冷却エレメント、空調装置及び建物| GB0600274D0|2006-01-09|2006-02-15|Oxycell Holding Bv|Cooling and ventilation device| US7758671B2|2006-08-14|2010-07-20|Nanocap Technologies, Llc|Versatile dehumidification process and apparatus| WO2008039779A2|2006-09-25|2008-04-03|Dais Analytic Corporation|Enhanced hvac system and method| GB0622355D0|2006-11-09|2006-12-20|Oxycell Holding Bv|High efficiency heat exchanger and dehumidifier| US20100048942A1|2006-12-11|2010-02-25|Basf Se|Process for preparing isocyanates| CN101730679A|2007-05-09|2010-06-09|艺杰斯生物科学有限责任公司|分子磺化方法| CN102165268B|2008-01-25|2014-04-30|可持续能源联盟有限责任公司|用膜包夹的液体干燥剂进行除湿的间接蒸发冷却器| US20090236317A1|2008-03-21|2009-09-24|Midwest Research Institute|Anti-reflection etching of silicon surfaces catalyzed with ionic metal solutions| US20100000247A1|2008-07-07|2010-01-07|Bhatti Mohinder S|Solar-assisted climate control system| WO2010042209A1|2008-10-09|2010-04-15|Bandgap Engineering, Inc.|Process for structuring silicon| US8278191B2|2009-03-31|2012-10-02|Georgia Tech Research Corporation|Methods and systems for metal-assisted chemical etching of substrates| WO2011016847A2|2009-07-29|2011-02-10|Beutler Corporation|Evaporative pre-cooler for air cooled heat exchangers| US8613839B2|2009-10-13|2013-12-24|Idalex Technologies|Water distillation method and apparatus| US9204578B2|2010-02-09|2015-12-01|It Aire Inc.|Systems and methods for cooling data centers and other electronic equipment| JP3159566U|2010-02-26|2010-05-27|株式会社アースクリーン東北|間接式気化式冷却装置| US8974274B2|2010-04-16|2015-03-10|Google Inc.|Evaporative induction cooling| US9429332B2|2010-05-25|2016-08-30|7Ac Technologies, Inc.|Desiccant air conditioning methods and systems using evaporative chiller| EP2585784A4|2010-06-24|2016-02-24|Venmar Ces Inc|Liquid-to-air membrane energy exchanger| WO2012047938A2|2010-10-04|2012-04-12|Global Solar Water And Power Systems, Inc.|Multiplatform heating ventilation and air conditioning control system| SG190292A1|2010-11-22|2013-06-28|Munters Corp|Desiccant dehumidification system with chiller boost| US9032742B2|2010-12-30|2015-05-19|Munters Corporation|Methods for removing heat from enclosed spaces with high internal heat generation| US20130340449A1|2012-06-20|2013-12-26|Alliance For Sustainable Energy, Llc|Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow| US9140471B2|2013-03-13|2015-09-22|Alliance For Sustainable Energy, Llc|Indirect evaporative coolers with enhanced heat transfer| US9140460B2|2013-03-13|2015-09-22|Alliance For Sustainable Energy, Llc|Control methods and systems for indirect evaporative coolers|US20080283221A1|2007-05-15|2008-11-20|Christian Blicher Terp|Direct Air Contact Liquid Cooling System Heat Exchanger Assembly| CN102165268B|2008-01-25|2014-04-30|可持续能源联盟有限责任公司|用膜包夹的液体干燥剂进行除湿的间接蒸发冷却器| EP2427917A2|2009-05-08|2012-03-14|7AC Technologies, Inc.|Solar energy systems| EP2585784A4|2010-06-24|2016-02-24|Venmar Ces Inc|Liquid-to-air membrane energy exchanger| US10274210B2|2010-08-27|2019-04-30|Nortek Air Solutions Canada, Inc.|Heat pump humidifier and dehumidifier system and method| US9885486B2|2010-08-27|2018-02-06|Nortek Air Solutions Canada, Inc.|Heat pump humidifier and dehumidifier system and method| US8915092B2|2011-01-19|2014-12-23|Venmar Ces, Inc.|Heat pump system having a pre-processing module| WO2012170887A2|2011-06-08|2012-12-13|Ail Research Inc.|Heat and mass exchangers having extruded plates| US8564952B2|2011-07-25|2013-10-22|International Business Machines Corporation|Flow boiling heat sink structure with vapor venting and condensing| US9069532B2|2011-07-25|2015-06-30|International Business Machines Corporation|Valve controlled, node-level vapor condensation for two-phase heat sink| US9061382B2|2011-07-25|2015-06-23|International Business Machines Corporation|Heat sink structure with a vapor-permeable membrane for two-phase cooling| US9810439B2|2011-09-02|2017-11-07|Nortek Air Solutions Canada, Inc.|Energy exchange system for conditioning air in an enclosed structure| GB2497789A|2011-12-21|2013-06-26|Sharp Kk|Heat and mass exchanger for liquid desiccant air conditioners| US9976822B2|2012-03-22|2018-05-22|Nortek Air Solutions Canada, Inc.|System and method for conditioning air in an enclosed structure| WO2013188388A2|2012-06-11|2013-12-19|7Ac Technologies, Inc.|Methods and systems for turbulent, corrosion resistant heat exchangers| US9207018B2|2012-06-15|2015-12-08|Nexajoule, Inc.|Sub-wet bulb evaporative chiller system with multiple integrated subunits or chillers| US20130340449A1|2012-06-20|2013-12-26|Alliance For Sustainable Energy, Llc|Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow| US20140041830A1|2012-08-11|2014-02-13|Architectural Applications P.C.|Heat and moisture transfer apparatus integrated into an exterior partition| US9816760B2|2012-08-24|2017-11-14|Nortek Air Solutions Canada, Inc.|Liquid panel assembly| EP2900354B1|2012-09-26|2019-04-03|Dow Silicones Corporation|Method of separating a gas using at least one membrane in contact with an organosilicon fluid| EP2929256A4|2012-12-04|2016-08-03|7Ac Technologies Inc|Methods and systems for cooling buildings with large heat loads using desiccant chillers| US9835363B2|2013-01-14|2017-12-05|Massachusetts Institute Of Technology|Evaporative heat transfer system| US9267696B2|2013-03-04|2016-02-23|Carrier Corporation|Integrated membrane dehumidification system| US9140460B2|2013-03-13|2015-09-22|Alliance For Sustainable Energy, Llc|Control methods and systems for indirect evaporative coolers| US9772124B2|2013-03-13|2017-09-26|Nortek Air Solutions Canada, Inc.|Heat pump defrosting system and method| US9140471B2|2013-03-13|2015-09-22|Alliance For Sustainable Energy, Llc|Indirect evaporative coolers with enhanced heat transfer| US9109808B2|2013-03-13|2015-08-18|Venmar Ces, Inc.|Variable desiccant control energy exchange system and method| US9709285B2|2013-03-14|2017-07-18|7Ac Technologies, Inc.|Methods and systems for liquid desiccant air conditioning system retrofit| US10352628B2|2013-03-14|2019-07-16|Nortek Air Solutions Canada, Inc.|Membrane-integrated energy exchange assembly| US9140396B2|2013-03-15|2015-09-22|Water-Gen Ltd.|Dehumidification apparatus| US20140260369A1|2013-03-15|2014-09-18|Venmar Ces, Inc|Evaporative cooling system with liquid-to-air membrane energy exchanger| US10584884B2|2013-03-15|2020-03-10|Nortek Air Solutions Canada, Inc.|Control system and method for a liquid desiccant air delivery system| US9308491B2|2013-03-15|2016-04-12|Carrier Corporation|Membrane contactor for dehumidification systems| US9273876B2|2013-03-20|2016-03-01|Carrier Corporation|Membrane contactor for dehumidification systems| WO2014210157A1|2013-06-25|2014-12-31|3M Innovative Properties Company|Flexible liquid desiccant heat and mass transfer panels| US20150047382A1|2013-08-19|2015-02-19|The Trustees Of The Stevens Institute Of Technology|Fully regenerative liquid desiccant system for residential applications| CN106170660A|2014-02-16|2016-11-30|Be电力技术股份有限公司|传热传质设备以及包括传热传质的系统| US20160377302A1|2014-02-28|2016-12-29|3M Innovative Properties Company|Flexible liquid desiccant heat and mass transfer panels with a hydrophilic layer| CN104121792B|2014-07-31|2016-08-24|叶立英|间接蒸发冷却芯体| CA2958480A1|2014-08-19|2016-02-25|Nortek Air Solutions Canada, Inc.|Liquid to air membrane energy exchangers| WO2016053099A1|2014-10-02|2016-04-07|2Ndair B.V.|Heat and mass exchange module and use thereof| NL2013565B1|2014-10-02|2016-09-07|2Ndair B V|Air-conditioner module and use thereof.| NL2013566B1|2014-10-02|2016-09-27|2Ndair B V|Laminate and use thereof.| NL2013586B1|2014-10-07|2016-09-07|2Ndair B V|A method for dehumidification of air and system thereto.| DE202015009384U1|2014-10-20|2017-05-10|Architectural Applications P.C.|Regenschutz mit integriertem Wärme- und Feuchtigkeitsaustauscher| WO2016085894A2|2014-11-24|2016-06-02|Ducool Usa Inc. D/B/A Advantix Systems|System and method for autonomous management of water content of a fluid| US20170363305A1|2014-12-15|2017-12-21|3M Innovative Properties Company|Heat and mass transfer devices with wettable layers for forming falling films| SG10201503433XA|2015-04-30|2016-11-29|Matthias Enzenhofer|Humidity Management Device And Method| CA2986055A1|2015-05-15|2016-11-24|Nortek Air Solutions Canada, Inc.|Using liquid to air membrane energy exchanger for liquid cooling| CA3016808A1|2016-03-08|2017-09-14|Nortek Air Solutions Canada, Inc.|Systems and methods for providing cooling to a heat load| WO2016206714A1|2015-06-22|2016-12-29|Dutch Innovation In Air Treatment Bv|Building provided with an air treatment system| CN108027221A|2015-06-26|2018-05-11|北狄空气应对加拿大公司|三流体液-气膜能量交换器| CN105080346B|2015-08-31|2018-02-16|东莞理工学院|高传质效率的膜接触器和高效除湿系统| GB2548590A|2016-03-22|2017-09-27|Gulf Organisation For Res And Dev|Smart cooling system for all climates| AT518082B1|2016-03-31|2017-07-15|Gerhard Kunze Dr|Klimatisierung durch Mehrphasen-Plattenwärmetauscher| WO2018009947A1|2016-07-08|2018-01-11|Bernheim Henrik F|System method and apparatus for enclosure environmental control| WO2019089971A1|2017-11-01|2019-05-09|7Ac Technologies, Inc.|Control systems for liquid desiccant air conditioning systems| WO2019089957A1|2017-11-01|2019-05-09|7Ac Technologies, Inc.|Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems| CN110822936A|2018-08-14|2020-02-21|青岛海尔空调电子有限公司|冷却塔|
法律状态:
2012-05-28| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120528 | 2012-06-06| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 | 2012-09-06| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120905 | 2013-03-04| TRDD| Decision of grant or rejection written| 2013-03-13| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 | 2013-04-18| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130410 | 2013-04-19| R150| Certificate of patent or registration of utility model|Ref document number: 5248629 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2013-04-22| FPAY| Renewal fee payment (event date is renewal date of database)|Free format text: PAYMENT UNTIL: 20160419 Year of fee payment: 3 | 2016-04-19| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2017-04-11| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2018-04-10| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2019-04-09| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2020-03-31| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2021-03-31| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|