![]() 不揮発性状態インジケータスイッチ
专利摘要:
不揮発性状態インジケータスイッチを提供する。一実施形態では、本発明は、リレーに接続された故障検出回路と、故障検出回路とリレーの制御入力とに接続された故障インジケータ回路とを含む、航空機の電気システムに関し、ここで、故障インジケータ回路は不揮発性メモリ素子を含み、故障検出回路は故障を検出し且つ故障を示す信号を故障インジケータ回路に供給するように構成され、更に、故障インジケータ回路は、予め決定された制御信号をリレーに供給することにより、及び、故障の検出を示す情報を不揮発性メモリ素子に記憶することにより、故障を示す信号に応答するように構成されている。 公开号:JP2011509065A 申请号:JP2010541446 申请日:2008-01-04 公开日:2011-03-17 发明作者:カーン,イムティアズ;シー. マロン,ロバート 申请人:リーチ インターナショナル コーポレイション; IPC主号:H02H3-04
专利说明:
[0001] 本発明は、一般に、航空機の電気システムにおけるリレーの使用に関し、更に特定すると、リレーにおいて検出された故障の状態を保存し表示するためのシステム及び方法に関する。] 背景技術 [0002] 航空機の電気システムにおける重要な機能は、航空機全体にわたって電力を生成し、規制し且つ配電することである。航空機には数個の異なる電源があり、これらは航空機の電気システムに電力を供給するために使用される。これらの電源には、エンジン駆動AC発電機、補助電源ユニット、外部電源及びラムエアタービンを含むことができる。航空機の電気部品は、交流及び直流の両者を用いて、多くの異なる電圧レベルで動作する。しかしながら、航空機システムの殆どは、400Hz、115Vの交流か28Vの直流を使用する。更に、幾らかの航空機では照明目的のために26V交流も使用されている。直流電源は一般に、電磁石を含む“自励式”発電機によって提供され、この発電機では電力は整流器によって生成され、そのため出力電圧が28Vの直流に規制される。通常、相電圧115VのAC電力が、通常3相システムで且つ周波数400Hzで、オルタネータによって生成される。] [0003] 航空機の電気システムにおいて、リレーは、一般に、種々の負荷への電力の供給を制御するために使用される。典型的なリレーは、電源に接続するためのコンタクトと、負荷への接続のためのコンタクトを含む。電気機械式コンタクトは、コイルによって生成された磁場によってクローズされる。コイルは、制御入力を介してリレーに提供された制御電流によって励起される。コンタクトのクローズは、負荷電流が流れることを可能とする。] [0004] 航空機の電気システムにおける故障は危険であり得る。特に、例えば燃料ポンプのような電気負荷における故障は、結果として爆発を生じる場合もある。航空機の電気システムにおいて起こり得る故障の例として、接地故障(グランドへの短絡)及びアーク故障(電力線間の短絡)が含まれる。接地故障は、結果として正味電流の不均衡を生じ、アーク故障は正味電流の不均衡を生じない。] [0005] 航空機の電気システムに対して、種々の安全装置が使用されている。これらの安産装置は、ユニバーサル(普遍的)安全装置(UFI)、アーク故障回路安全装置(AFCI)、及び現在コックピットに一般的に設置されている、熱的に感知される回路遮断器(CBs)を含み得る。] [0006] 本発明は、不揮発性状態インジケータスイッチに関する。一実施形態では、本発明は、リレーに接続された故障検出回路と、この故障検出回路とリレーの制御入力とに接続された故障インジケータ回路とを含む、航空機電気システムに関し、ここで、故障インジケータ回路は不揮発性メモリ素子を含み、故障検出回路は故障を検出して故障インジケータ回路に故障を示す信号を供給するように構成されており、故障インジケータ回路は予め決定された制御信号をリレーに供給することにより、且つ、故障の検出を示す情報を不揮発性メモリ素子に記憶することによって、故障を示す信号に応答するように構成されている。] [0007] 他の実施形態において、本発明は、航空機の電気システムにおけるリレーを制御するための方法に関し、この方法は、少なくとも1つの故障を検出すること、固体不揮発性メモリを使用してこの少なくとも1つの故障の記録を記憶すること、この少なくとも1つの故障の記録を電力が存在しない状態で維持すること、リセット信号を受信した場合この少なくとも1つの記録をクリアすること、及び、少なくとも1つの故障が記憶された場合航空機の電気システムにおいて負荷への電力の流れを停止するためにリレーをオープンすること、を含んでいる。] [0008] 更に他の実施形態において、本発明は、故障の検出を示す故障信号と故障リセットの要求を示すリセット信号とを受信するように構成された入力論理回路と、この入力論理回路の出力に接続された電気機械式スイッチとを含む故障インジケータ回路に関し、ここで、入力論理回路の出力は故障信号とリセット信号とから生成され、電気機械式スイッチは入力論理回路の出力に応答してリレーを制御するように構成され、電気機械式スイッチはその動作時に外部磁場の影響を減少させる遮蔽物質によって取り囲まれている。] 図面の簡単な説明 [0009] 本発明の一実施形態に係る航空機電気システムの概略図である。 本発明の一実施形態に係る故障被保護リレーの概略図である。 本発明の一実施形態に係る故障インジケータ回路の概略図である。 本発明の一実施形態に従って故障インジケータ回路に電力を供給するために使用され得る電源の概略図である。 本発明の一実施形態に従って故障検出に応答してリレーの動作を制御するための方法を示すフローチャートである。 本発明の一実施形態に従って故障インジケータ回路において使用され得る、入力論理回路と不揮発性メモリの概略図である。 図6の入力論理回路と不揮発性メモリ素子の、故障を記憶するための動作を示すタイミング図である。 図6の入力論理回路と不揮発性メモリ素子の、記憶された故障をクリアするための動作を示すタイミング図である。 本発明の一実施形態に従って故障インジケータ回路において使用される駆動回路の概略図である。 本発明の一実施形態に従って故障インジケータ回路において使用されるリレー制御スイッチの概略図である。 本発明の一実施形態に従って故障インジケータ回路において使用される視覚インジケータの概略図である。 本発明の一実施形態に係る故障インジケータ回路の回路図である。 本発明の一実施形態に従って故障インジケータ回路と共に使用される電源アッセンブリの回路図である。 本発明の一実施形態に従って電磁シールドを有する電気機械式スイッチを含む、故障インジケータ回路の概略ブロック図である。 本発明の一実施形態に従って非故障状態を示す視覚インジケータを含む、故障インジケータ回路の概略ブロック図である。 本発明の一実施形態に従って故障状態を示す視覚インジケータを含む、故障インジケータ回路の概略ブロック図である。] 図6 実施例 [0010] 図面を参照すると、航空機電気システムにおいて使用するためのリレーを含むことが可能な、本発明に係る故障インジケータ回路の実施形態が示されている。故障インジケータ回路は、故障状態が検出された場合に、リレーに提供される制御信号を遮断するために使用することができる。制御信号の遮断によって、リレーは、負荷から電力を切り離すことができる。本発明の幾つかの実施形態では、故障インジケータ回路は、故障の存在を示す情報を記憶するために不揮発性メモリを含んでいる。故障インジケータから電力が取り除かれると、不揮発性メモリは故障状態情報を保存する。リレーに電力が回復すると、故障インジケータ回路は、故障がクリアされ且つモニタ装置が手動でリセットされるまで、リレーが起動されるのを防止することができる。] [0011] 多くの実施形態において、故障インジケータ回路は固体回路部品を使用して実現される。例えば、種々の固体不揮発性メモリ素子を、故障状態を記憶するために使用することができる。他の実施形態において、故障インジケータ回路を、電気機械式スイッチを使用して実現することができる。磁場の干渉から電気機械式スイッチを遮蔽するために電磁シールド材料を使用することができる。] [0012] 固体及び電気機械式故障インジケータ回路には、それぞれ、故障インジケータスイッチが関連するリレーをモニタする故障検出回路から、通常は、故障の検出を示す信号が供給される。故障インジケータは次に、不揮発性メモリ中に故障を記憶し且つこの故障に応答してリレーの制御を遮る。本発明の実施形態に係る故障インジケータ回路は、更に、不揮発性メモリをクリアするために使用することができる、リセット機構を含んでいる。固体故障インジケータ回路に対して、このリセット機構は、不揮発性メモリに記憶された故障をクリアすることを促すリセット信号を含むことができる。電気機械式故障インジケータスイッチに対して、リセット機構は、例えば、ボタンを押すことによって電気機械式スイッチの物理的位置を変えることを含んでいる。] [0013] 故障インジケータ回路の多くの実施形態は、オペレータ又は保守要員に故障の存在を警告するためのセンサインジケータを含んでいる。このセンサインジケータは視覚(ビジュアル)又は音響(オーディオ)インジケータを含むことができる。固体故障インジケータ回路の実施形態は、視覚インジケータとして発光ダイオード(LEDs)を含むことができる。電気機械式スイッチを使用する故障インジケータ回路の実施形態は、故障の存在を示すポップアップボタンを含むことができる。] [0014] 図1は、本発明の一実施形態に係る航空機電気システム100の概略図である。航空機電気システム100は電源101を含み、この電源101は故障被保護リレー105を介して負荷103に接続されている。故障被保護リレーは、故障インジケータ回路120とリレー140とに接続された、故障検出回路110を含んでいる。故障インジケータ回路120も又、リレー140に接続されている。故障被保護リレー105は外部制御入力152、接地入力154及びリセット入力155を含んでいる。] 図1 [0015] リレー140は電源から負荷への電力の流れを制御する。このリレーは、通常、制御入力152に供給される外部制御信号によって制御される。通常の動作期間中、故障インジケータ回路120は外部制御信号をリレー制御入力142に送る。故障検出回路が故障を検出した場合、故障インジケータ回路120は、外部制御信号を無視しその代わりにリレー回路をオープンするリレー制御入力を提供することによって、リレーの動作を中断させることができる。] [0016] 図示した実施形態では、故障検出回路110は、航空機電気システムにおける故障の表示のためにリレーをモニタする。本発明に係る故障検出回路は1つ又はそれ以上の種々の異なる故障を検出することができる。故障検出回路110が故障を検出した場合、故障検出回路は故障信号を故障インジケータ回路120に提供する。故障信号は、現在発生している故障の存在又は不在を表示する情報を含んでいる。] [0017] 故障検出回路110によって故障が検出された場合、故障インジケータ回路120はリレー140を制御する信号を遮断し、その故障を不揮発性メモリ中に記憶する。不揮発性メモリは、電力が失われた場合に故障の存在を保存する。幾つかの実施形態において、不揮発性メモリからの故障をクリアするために、リセット信号が使用される。リセット信号は、リレー回路が安全動作に対して用意ができていることを確認した後に、航空機の整備員によって提供されても良い。] [0018] リレー140は商業的に入手可能な全てのタイプのリレー、又は、特定の航空機電気システム100に対して特別に設計されたリレーを使用して実現することができる。故障インジケータ回路120は、表示器に接続された論理回路又はマイクロプロセッサを使用して実現することができる。多くの実施形態では、インジケータは発光ダイオード(LED)又はポップアップスイッチの様な全てのタイプの視覚インジケータである。故障検出回路110は、例えば接地故障検出および/またはアーク故障検出回路のような電流不均衡検出回路を使用して実現することができる。他の適切な回路として、過電流検出回路及び更に高機能の回路、例えば電流および/または電力プロファイルを用いて故障を検出する回路、が含まれる。多くの場合、故障検出回路は、航空機電気システム100内での異常な動作を検出することが可能な全ての回路を使用して、実現することができる。] [0019] 図2は故障被保護リレー200の概略図である。故障被保護リレー200は故障検出回路210、故障インジケータ回路220、電源230およびリレー240を含んでいる。制御ライン252は故障被保護リレー200に接続され、制御信号を故障被保護リレーに搬送する。故障被保護リレー200の出力256は、負荷(図示せず)に接続されている。故障検出回路210は故障インジケータ回路220とリレー240に接続されている。リレー240も又、故障インジケータ回路220に接続されている。電源230は、制御信号を搬送する制御ライン252、接地255及び故障インジケータ回路220に接続されている。] 図2 [0020] 故障被保護リレー200は、図1のリレー105と同様に動作し、且つ、リレー240を用いて電源から負荷への電力の流れを制御する。リレー240は、故障インジケータ回路220を介して外部制御信号を受信する。リレーを流れる電流は故障検出回路210によってモニタされ、この回路210は故障状態を示す信号を、出力253を介して故障インジケータ回路220に供給する。故障が検出された場合、故障インジケータ回路220は、リレー240が負荷へ電力を供給するのを禁止する制御信号を生成する。] 図1 [0021] 多くの実施形態において、故障インジケータ回路220は、リレーコイルを励起する電流ループをオープンにするか或いはクローズするかによって、リレー240の動作を制御する。故障インジケータ回路は、故障検出回路から故障を表示する信号を受信するように構成されている。故障が存在するか否かによって、故障インジケータ回路は電流ループを完成するか或いは電流ループを中断する。幾つかの実施形態では、故障インジケータ回路は故障が存在しない場合に電流ループを完成する。外部制御信号252は又、リレーの動作を制御する。外部制御信号は、リレーによって制御される航空機の電気部品をオンしようと試みるパイロットに応答して、発生させることができる。故障の検出に伴って、故障インジケータ回路は電流ループを遮断する。幾つかの実施形態では、故障インジケータ回路は外部制御信号に対する代替として、予め決定した制御信号を提供する。故障インジケータ回路は、リセット命令を受信するまで、予め決定した制御出力信号を提供し続ける。リセット信号254は、リレー回路が安全動作に対して準備されていることを確認した整備員によって供給される。一実施形態では、リセット信号は他の回路によって供給される。] [0022] 電源230は、故障インジケータ回路220において使用される部品に電力を供給する。電源は外部制御信号252からの比較的小さな量の電流を受信し、電力を故障インジケータ回路に提供する。] [0023] リレー240と故障検出回路210は、商業的に入手可能な或いは特別に設計された全てのタイプの回路を用いて、既知の原則に従って実現することができる。本発明の実施形態に従って、故障インジケータ回路を実現するために使用される回路を以下に示す。] [0024] 図3は、本発明の一実施形態に係る故障インジケータ回路320の概略図である。故障インジケータ回路320は、共に直列に接続された入力論理回路322、不揮発性メモリ素子324及び駆動回路326を含んでいる。故障インジケータ回路は更に、駆動回路326に共に接続されたスイッチ328と視覚インジケータ329を含んでいる。故障インジケータ回路への故障350とリセット354の入力は、入力論理回路322に供給される。故障インジケータスイッチの制御入力352と制御出力356はスイッチ328に接続されている。] 図3 [0025] 故障インジケータ回路320は、故障入力350から故障信号を、リセット入力354からリセット信号を、制御入力352から制御イン信号を受信するように構成されている。入力信号の値に基づいて、故障インジケータ回路320は故障が存在することを決定し、このような故障の存在を視覚的に表示しおよび/またはリレーをオープンすることができる。以下に、これらの動作の更なる詳細を説明する。] [0026] 図示する実施形態では、入力論理回路322はリセット及び故障信号を供給するラインに接続されている。故障信号は現在の故障の存在を示す。リセット入力354は、故障インジケータ回路320のメモリに以前の故障を示す全ての記録をクリアすることを指示する、リセット信号を提供する。入力論理回路322はこれらの信号を使って、現在の故障が報告されているか否か、且つ、過去の故障をメモリ中に残すか或いはクリアすべきかを決定する。入力論理回路322の出力は、システムの故障状態を表示する信号を供給するように構成された、不揮発性メモリ素子324に供給される。] [0027] 不揮発性メモリ素子324はシステムの故障状態を記憶し、入力論理回路322から受信した信号に応答する。不揮発性メモリ素子の不揮発性によって、この素子が、電力が無い場合であっても故障状態を維持することが可能となる。その結果、故障が不揮発性メモリ中に一旦記憶されると、不揮発性メモリ素子324は故障インジケータ回路320の下流の素子に故障の存在を指示し続ける。不揮発性メモリ素子中に記憶される故障状態は、入力論理回路322によって受信される信号によって決定される。入力論理回路が不揮発性メモリ素子に、メモリ中に保存された故障をリセットすべきであることを指示すると、不揮発性メモリ素子は保存された全ての故障をクリアする。入力論理回路322が、それ以降故障が検出されたことを指示するまで、故障の無い状態が維持され、故障インジケータ回路320の下流素子に通信される。] [0028] 駆動回路326は、不揮発性メモリ素子324から故障の存在又は不存在を示す信号を受信する。この信号は現在の故障又は過去の未解決の故障を示すことができる。駆動回路326は、故障の存在に応答してスイッチ328へ入力を提供し、制御入力信号が制御出力ラインに供給されるのを防止する。更に、駆動回路は、視覚インジケータ329を起動することにより故障の存在を表示する。幾つかの実施形態では、故障インジケータ回路320によるリセット入力の受信の結果、駆動回路326は視覚インジケータを停止し、且つ、スイッチ328をクローズして制御入力ライン上の信号を制御出力ラインに通過させる。その他の実施形態では、視覚インジケータはマニュアルでリセットされる。幾つかの実施形態では、視覚インジケータがマニュアルでリセットされた場合、故障インジケータ回路320にリセット入力が供給される。] [0029] スイッチ328は、駆動回路326から受信された信号に基づいてオン、オフされる。スイッチ328は、このスイッチに制御イン信号を搬送しこのスイッチから制御アウト信号を搬送するための制御ラインに接続されている。スイッチ328は、制御入力352と制御出力356間の回路をオープンし又はクローズするように構成されている。要約すると、スイッチは制御信号を遮断することができる。制御出力がリレーの制御入力に接続された場合、制御信号の不存在はリレーをオープンさせ、電源から負荷に電流が流れることを防止する。] [0030] 上記で議論したように、視覚インジケータ329は、駆動回路326から受信した信号によって起動され且つ停止される。不揮発性メモリ素子は故障を記憶し、且つ、駆動回路326の出力は視覚インジケータを起動してオペレータに故障の存在を表示する。図示する実施形態では、駆動回路326は、スイッチ328と視覚インジケータ329の両者を同時に作動させる。そのため、駆動回路326が不揮発性メモリから故障の指示を受信すると、駆動回路はスイッチを駆動してオープンさせ、同時に視覚インジケータを駆動して故障の存在を人間であるオペレータに表示する。電子回路インジケータを使用する実施形態において、リセット信号が入力論理回路によって受信された場合、駆動回路は視覚インジケータを停止する。電気機械式視覚インジケータを使用する実施形態では、視覚インジケータはオペレータによってマニュアルでリセットされねばならない。] [0031] 入力論理回路322は、論理ゲートのような組合せデバイスを使用して実現することができる。フィルタ素子及びスイッチを同様に論理回路322に含めることができる。不揮発性メモリ素子324は種々の1ビット不揮発性メモリ素子を用いて実現することができる。本発明の一実施形態は不揮発性メモリ素子324として電位差計を用いる。この電位差計はデジタル電位差計である。駆動回路326は、トランジスタ及び論理ゲートのようなデバイスを使用して実現することができる。スイッチ328は、トランジスタ及びフィルタのようなデバイスを使用して実現することができる。視覚インジケータ329は、トランジスタ又はLED又は電気機械式ポップアップインジケータに接続された他のタイプのスイッチを使用して実現することができる。故障インジケータ回路の素子は、高周波電流のようなノイズを除去するためのフィルタ部品を含むことができる。幾つかの実施形態では、故障インジケータの部品は適切に構成されたマイクロプロセッサ、ゲートアレイ或いはASICを使用して実現される。] [0032] 図4は、本発明の一実施形態に従って、故障インジケータ回路に電力を供給するために使用することができる電源430の概略図である。図示の実施形態において、電源430は制御ラインとグラウンド間に接続されている。電源に接続された制御ラインとグラウンドは、更に、故障インジケータ回路のような他の要素に接続されている。多くの実施形態では、電源からの少なくとも1つの送出ラインを用いて電圧信号を供給することができる。多くの実施形態では、電源は制御ラインを流れる電流の一部を用い、この電流を安定な電圧信号に変換する。電源によって生成された電圧信号を故障インジケータ回路の種々の部品を駆動するために使用することができる。図示する実施形態では、供給電圧Vccが電源430によって生成され、故障インジケータ回路中のデバイスによって使用される。多くの実施形態では、Vccの値は5Vである。その他の実施形態では、他の出力電圧が供給される。本発明の実施形態による電源430は、商業的に入手可能な全てのタイプの電源又は既知の電源回路構造を使用して実現することができる。] 図4 [0033] 図5は、本発明の一実施形態に従って故障の検出に応答してリレーの動作を制御する方法を示す、フローチャートである。] 図5 [0034] 方法500は、現在故障が検出されているか否かを決定すること(510)を含む。現在故障が検出されている場合、故障の存在がメモリに記憶され(520)、リレーがオープンされる(530)。現在故障が検出されていないと決定された場合(510)、以前の故障が存在するか否かに関して決定が行われる(540)。現在故障が検出されず且つ過去の故障も存在しない場合、メモリはリセット(又はクリア)され(550)、そしてリレーは通常の動作を実行することが許可される(560)。] [0035] 以前の故障が存在すると決定された場合(540)、その以前の故障が修復されているか否かについて、更なる決定が為される(570)。故障が修復されていない場合(570)、故障の存在のメモリは維持され(520)、更に、リレーがオープンされる(530)。一方、故障が既に修復されていると決定された場合(570)、メモリはリセットされ(550)、リレーは通常に動作することを許される(560)。リレーをオープンした後(530)或いは通常の動作を許可した後(560)、故障又はリセットを連続してチェックするために、この方法は、現在故障が検出されるか否かを決定すること(510)まで復帰する。] [0036] 図5の実施形態に従ってリレーの動作を制御するための方法を説明するために、決定表を使用することができる。以下に示す表1は、本発明の一実施形態に従った、故障インジケータ回路への入力と出力を示す。入力変数は、故障の状態、現在のメモリ状態、及びリセット信号を含む。出力変数は、メモリの次の状態の値及びリレーに電力を供給するスイッチのオープン又はクローズ状態を含む。表1において、故障=0は現在故障が無いこと、故障=1は故障を示している。メモリ=0は故障が記憶されていないこと、メモリ=1は故障が記憶されていること、リセット=0は現在リセット信号が無いこと、リセット=1は過去の故障をリセットする要求を示し、スイッチ=0はオープンスイッチであり、スイッチ=1はクローズされたスイッチを示している。] 図5 [0037] 最初の2行において、現在の故障も以前の故障の記憶も無い。従って、リセット値の値に関わらず、メモリの次の状態は変化しない。図示の表において、スイッチの出力はメモリ出力の反転バージョンである。このように、メモリがクリアされている間、スイッチはクローズであり、リレーは電力を負荷に搬送することを許されている。第3行において、現在故障は無いが記憶された故障がありリセットされていない。従って、記憶された故障は維持されそしてスイッチはオープンされている。第4行において、現在故障は無く、記憶された故障及びリセット要求がある。従って、故障の無い状態を示すためにメモリがクリアされ、スイッチがクローズされる。最後の4行において、現在故障が検出されている。従って、メモリ又はリセットの以前の状態に関わらず、故障の存在を示し、スイッチはオープンされる。] [0038] 表1に要約される動作は、本発明の実施形態に従って論理回路及び不揮発性メモリ素子を用いることによって、実現することができる。ここで、論理回路は、故障及びリセットを示す信号を結合し、且つ、適正な入力をメモリ素子に提供して故障状態を維持するために使用される。] [0039] 上記で議論したように、故障検出回路はリレーデバイスにおいて故障の存在を検出するために使用することができ、故障インジケータ回路はその故障を記憶するために使用することができる。不揮発性メモリ素子は、電力が存在しない状態で故障の記憶を維持するために使用することができる。不揮発性メモリ素子に対する1つの可能な選択は、不揮発性メモリを含む電位差計である。この電位差計はデジタル電位差計であり得る。電位差計の抵抗は制御信号に応答して変化し、電位差計中の不揮発性メモリ内に記憶される。故障の存在は1個の抵抗値に対応してセットされ、故障の不存在は別の抵抗値に対応してセットされる。その他の実施形態において、他のタイプの不揮発性メモリ素子が使用される。一実施形態では、EEPROMが不揮発性メモリ素子として使用される。] [0040] 論理回路への故障及びリセット入力に応答して不揮発性メモリ素子に適切な入力を供給するために、論理回路を使用することができる。論理回路の性質は、不揮発性メモリ素子の性質に依存する。例えば、電位差計を不揮発性メモリ素子として用いた場合、故障の存在によって論理回路は出力を生成し、この出力によって電位差計は高抵抗値にプッシュされる。リセット信号の受信によって論理回路は出力を生成し、電位差計を低抵抗値にセットする。] [0041] 図6は、本発明の一実施形態に従って故障インジケータ回路で使用される、入力論理回路622と不揮発性メモリ素子624の概略図である。上記で議論したように、入力論理回路622の性質は不揮発性メモリ素子624の性質に依存している。図示の実施形態において、不揮発性メモリ素子624は、メモリ及びカウンタを有するデジタル電位差計である。この電位差計は、次のような信号を含む3つの入力を有している。即ち、これらの信号は、電位差計が選択されているか否か、カウンタをカウントアップ(ハイ)するべきかカウントダウン(ロウ)するべきか(アクティブロウチップ選択)、及び、カウンタを増加させるか否か(アクティブロウインクレメント)、を指示する。カウンタインクレメント信号は往々にして“パルス列”として現れる。電位差計は、デバイスが選択された場合のみ変化することができる。更に、パルス列中の各パルスに対して、カウンタは、アップ/ダウン信号の状態に依存してカウントアップし或いはカウントダウンする。メモリは、パルス列の最後において、カウンタの値を維持する。この値は、デバイスが再び選択され別のパルス列が受信されるまで記憶される。幾つかの実施形態において、ハイ(大きい)カウントが故障を示すために使用され、ロウ(小さい)カウントが故障が無いことを示すために使用される。] 図6 [0042] 電位差計を不揮発性メモリ素子624として使用する実施形態において、論理回路622は、電位差計に適正な情報を記憶させるための入力を生成することによって、故障に応答し且つ入力信号をリセットするように構成されている。図示の実施形態において、入力論理回路は、故障及びリセット入力を使用して、デバイス選択信号、カウントアップ/ダウン信号及びパルス列を生成する。その他の実施形態では、不揮発性メモリは異なる入力を有しており、入力論理回路はこれらの入力に供給するための適切な信号を生成する。] [0043] 図6に示す実施形態において、不揮発性メモリ素子624は、カルホルニア州MilpitasのIntersil Americas,Incによって製造されたIntersil(TM)X9315デジタル制御電位差計を使用して実現できる。この電位差計の仕様及び動作原理は、2005年9月15日付けのデータシートFN8179.1に記載されており、これは参照によって本出願に組み込まれる。Intersil(TM)電位差計は更に、カウンタと不揮発性メモリを含んでいる。更に、Intersil(TM)電位差計は、第1、第2及び第3の入力端子1,2,7と出力端子5を含んでいる。図示されていないが、不揮発性メモリ素子624は更に、Vcc及びVss動作電圧に接続された端子を含む。] 図6 [0044] Intersil(TM)電位差計は、通常、上述したような方法で動作する。インクレメント(増加)信号が入力端子1に供給され、入力端子2にアップ/ダウン信号が、入力端子7にデバイス選択信号が供給される。インクレメント信号はデジタル電位差計の増加又は減少を制御する。アップ/ダウン信号は、故障を示すために不揮発性メモリ素子の抵抗を増加させるべきか、或いは故障が無いことを示すために減少させるべきかを指示する。デバイス選択信号は電位差計の動作をイネーブルとする。カウンタの値は、デバイスを選択しない場合、不揮発性メモリ中に記憶される。] [0045] 図6に示す実施形態において、入力論理回路622は、Intesil(TM)デジタル制御電位差計を用いて情報を記憶し且つクリアするために必要な入力を生成する。入力論理回路622は2つの入力(602、603)、3つの出力(631、632、633)、NORゲート601、NANDゲート(611,612,613,614)、インバータ605及び遅延素子(604,606,607)を含んでいる。入力602及び603はNORゲート601の入力と、リセット及び故障入力信号にそれぞれ接続されている。入力602は更に出力632に接続されており、この出力632はデジタル電位差計624のピン2(ロウの場合、カウントダウンするアップ/ダウン入力)に接続されている。] 図6 [0046] NORゲート601の出力はNAND611の両入力(事実上インバータとして動作する)に接続されている。NAND611(ノードA)の出力は、NAND612の1つの入力に接続されている。NAND612の出力は、NAND612の第2の入力(即ち、フィードバック)に遅延素子604を介して接続され、且つ、NAND613の第1の入力に接続されている。NAND613の出力は、出力631に接続され、出力631はデジタル電位差計624のピン1(アクティブロウインクレメント入力)に接続されている。ノードAは、更に、インバータ605に接続された遅延素子606に接続されている。インバータ605の出力はNAND613の第2の入力と遅延素子607に接続されている。遅延素子607の出力は、NAND614の第1の入力に接続されている。ノードAは更にNAND614の第2の入力に接続されている。NAND614の出力は、出力633に接続され、この出力633はデジタル電位差計624のピン7アクティブロウ(チップ又はデバイス選択)に接続されている。] [0047] 動作時において、ノードAは、リセット信号(R)と故障信号(F)入力の論理結合であって、“R+F”(即ちR・OR・F)と等価である。リセット入力と同様故障入力もハイでは無く従って故障が無く且つリセット要求が無いことを示す、典型的な定常状態の動作を仮定すると、“R+F”即ちノードAはロウである。ノードAがロウの場合、NAND612の出力は定常状態でハイとなり、インバータ605の出力も同様に定常状態でハイとなる。そのため、故障又はリセットが無い(即ち、ノードAがロウ)ことによって定義される定常状態動作期間中、NAND613の出力は、出力631とデジタル電位差計624のピン1(アクティブロウインクレメント入力)と共にロウとなる。更に、ノードAがロウである定常状態動作期間中、NAND614の出力は、出力631とデジタル電位差計624のピン7(アクティブロウチップ選択入力)と共にハイとなる。このように、ノードAがロウである定常状態動作期間中、デジタル電位差計デバイスは選択されず、且つ、インクレメント入力(ピン1)とアップ/ダウン入力(ピン2)における変化に応答しない。] [0048] 故障入力がロウからハイへ遷移して現在の故障を示すと、ノードAはロウからハイへ遷移する。NAND612の出力が定常状態動作に対して以前ハイであったために、遅延素子604の出力はハイとなる。次に、NAND612の出力は、両入力がハイであるためロウとなる。ある遅延の後、遅延素子604の出力はロウとなり、且つ、その結果、NAND612の出力は再びハイとなる。従って、ノードAがロウからハイに遷移した後、NAND612の出力は、遅延素子604によって提供される遅延期間に依存する周波数で発振する。一実施形態において、NAND612の発振出力の周波数は(クロックと同様に)、遅延素子604の遅延期間の2倍である。ノードAがロウからハイに遷移するに伴って、インバータ605の出力は、遅延素子606によって起こされる遅延の後、ロウとなる。インバータ605の出力がロウになるまで(即ち、遅延素子606によって生じる遅延の間)、NAND613の出力(インクレメント信号)は、NAND612の発振出力(クロック)を反転したものとなる。遅延素子606の遅延期間が過ぎると、インバータ605の出力はロウとなって、その結果、NAND613の出力(インクレメント信号)はハイを維持する。] [0049] ノードAが定常状態からロウからハイに遷移する以前、遅延素子607の出力はハイでありNAND614の出力はハイである。従って、ノードAがロウからハイに遷移するやいなや、NAND614の出力はロウとなり、遅延素子606と607の両方からの遅延の期間中ロウに留まる。このとき、遅延素子607の出力はロウとなり、従ってNAND614の出力は再びハイに戻る。このように、ノードAがロウからハイに遷移すると、アクティブロウパルスが、チップ又はデバイス選択として、NAND614の出力によって提供される。アクティブロウチップ選択パルスの期間は、遅延素子606と遅延素子607によって生じる遅延を加算して決定される。] [0050] 図7は、故障の間の、図6の入力論理回路及び不揮発性メモリ素子の動作を示すタイミング図を示している。この図は、上から下に向かって、リセット(602)及び故障(603)入力信号、ノードA(R+F)、NANDゲート612,613,614の出力、及びピン5におけるデジタル電位差計624の出力を表している。上記で議論したように、リセット及び故障がロウである定常状態の動作に対して、ノードAはロウであり、NAND612の出力はハイであり、NAND13の出力はロウであり、且つ、NAND14の出力はハイである。デジタル電位差計の出力(ピン5)は故障の無いことを示し、この場合、電位差計の内部抵抗及び定常状態の対応出力電圧は駆動回路326に供給するために充分ハイである(図3参照)。] 図3 図6 図7 [0051] 故障信号がロウからハイに遷移して現在の故障を示すと、ノードAはハイとなり、NAND612は遅延素子604によって決定される周期で発振し、NAND13(デジタル電位差計624のアクティブロウインクレメント入力への入力)は遅延素子606によって毛一定される期間NAND612の反転型を出力し、且つ、NAND614(デジタル電位差計624のアクティブロウチップ選択入力への入力)は遅延素子606と607によって決定される期間、ロウとなる。これに応答して、デジタル電位差計624は、チップ選択信号がロウの間、インクレメント信号の各立ち下がりにおいて、内部抵抗とピン5における対応出力電圧を減少させる。図7に示す、ピン5に対する信号トレースは、出力電圧を減少することによって結果的に生じるこのような4つの遷移を図示している。] 図7 [0052] デジタル電位差計624は、デジタル電位差計が電力を失ってもその値が失われないように、インクレメント信号がハイの期間のチップ選択信号の立ち上がりにおいて、実際は電位差計の設定抵抗を記憶することによって、ピン5における出力電圧の値を記憶する。故障の発生の後であるがしかしその故障がクリアされる前にリセットが発生すると、このリセットは、図7に示す様に、デジタル電位差計の出力上に何の効果も有さない。いくつかの実施形態において、入力論理回路及び不揮発性メモリの動作は、上記表1と一致している。] 図7 [0053] 図8は、図6に示す入力論理回路と不揮発性メモリ素子の、リセットに応答して故障をクリアするための動作を示すタイミング図である。この図は、上から下に向かって、リセット(602)と故障(603)の入力信号、ノードA(R+F)、NANDゲート612,613,614の出力、及び、ピン5におけるデジタル電位差計624の出力を示している。上記で議論したように、リセットと故障がロウである定常状態動作に対して、ノードAはロウであり、NAND612の出力はハイであり、NAND13の出力はロウであり、且つ、NAND14の出力はハイである。デジタル電位差計(ピン5)の出力は以前の故障を示し、この場合、電位差計の内部抵抗及び定常状態における対応出力電圧は内部デフォルトポジションに比べてロウである(図7参照)。] 図6 図7 図8 [0054] リセット信号がロウからハイに遷移して故障をクリアする要求を指示すると、アップ/ダウン信号(リセット)が図示するようにデジタル電位差計にピン5における出力をインクレメントさせるように命令する場合を除いて、入力論理回路は故障を示すために図7に関して上記で説明したように機能する。デジタル電位差計624は再び、実際は電位差計の抵抗設定値を記憶することによって、ピン5における出力電圧値をインクレメント信号がハイである間のチップ選択信号の立ち上がりにおいて記憶する。ここで、デジタル電位差計は、故障が無いこと、実際は存在する故障をクリアしたことを示すハイ値を記憶する。] 図7 [0055] 幾つかの実施形態において、遅延素子606の期間は、予め決定した整数個の発振がデジタル電位差計624のアクティブロウインクレメント入力に配信されるように、設定される。一実施形態では、発振の予め決定された整数値とは、デジタル電位差計の最大計数値に等しいか或いはこれを超えるものである。一実施形態では、遅延素子604によって生成された発振は71KHzの周波数で起こり、遅延素子606に対する遅延期間は10msであり、且つ、遅延素子607に対する遅延期間は0.1msである。] [0056] 入力論理回路622において使用される種々の論理ゲートは、商業的に入手可能なNOR,NAND及びNOTゲートによって実現することが可能である。NORゲートは、ワシントンDCのPhilips Semiconductor社によって製造された、低電力構成可能な多機能ゲート(PhilipsSemiconductor(TM)74LVC1G57)を使用することによって実現することが可能である。NANDゲートは、テキサス州ダラスのTexasInstruments社によって製造された、シュミット−トリガー入力を有するデュアル2−入力NANDゲート(TexasInstrument(TM)Sn74LVC2G132)を用いることによって実現することが可能である。NOTゲートは、5V耐性入力を有するトリプル反転シュミットトリガー(PhilipsSemiconductor(TM)74LVC3G14)を用いて実現することができる。遅延素子604に対する遅延期間は、20KΩの抵抗と500pFの容量からなるRC回路を使用して生成することができる。遅延素子606に対する遅延は、49.9KΩの抵抗と10Vで0.1μFの容量からなるRC回路を用いて実現することができる。遅延素子607に対する遅延は、100KΩの抵抗と10Vで0.01μFの容量とからなるRC回路を使用して実現することができる。] [0057] 図6に示す実施形態において、リセット及び故障入力信号を有する入力論理回路は、デジタル電位差計と共に故障状態を記憶し且つクリアするように作用する。他の実施形態では、他のデジタル電位差計又はメモリを有する従来の非デジタル電位差計を使用することができる。一実施形態では、入力論理回路をEEPROM又はその他の不揮発性メモリ装置と共に使用することができる。一実施形態において、フリップフロップタイプの部品を、適切な入力論理回路と共に不揮発性メモリ素子として使用することができる。一実施形態において、フリップフロップタイプ又は1ビット不揮発性メモリ部品はASICとして実現することができる。他の実施形態では、フリップフロップタイプ部品は、プログラマブル論理デバイスとして実現することができる。別の実施形態では、入力論理回路及びフリップフロップタイプ部品を、プログラマブル論理デバイス(即ち、PLD,CPLD,FPGA)および/またはASICを使用して実現することができる。] 図6 [0058] 図9は、本発明の一実施形態に係る、故障インジケータ回路において使用される駆動回路726の概略図である。駆動回路726は、互いに直列に接続された2個のインバータを含んでいる。駆動回路726は1つの入力と2つの出力を含んでいる。入力は駆動回路726にロウ又はハイ信号を供給する。ロウ信号は、故障が無いことを通信するために使用することができ、ハイ信号は故障の存在を通信するために使用することができ、あるはその逆もできる。図示の実施形態において、入力信号と入力信号を反転したものは、スイッチ328と視覚インジケータ329の両方へ出力信号として供給される。一実施形態では、これらのインバータは、5Vの耐性入力を有するトリプル反転シュミットトリガーインバータ(PhilipsSemiconductor(TM)74LVC3G14)である。他の実施形態では、インバータとして構成されたNANDゲートを使用することができる。他の実施形態では、その他の適切なインバータを使用することができる。] 図9 [0059] 図10は、本発明の一実施形態に係る、故障インジケータにおいて使用するためのリレー制御スイッチ828の概略図である。リレー制御スイッチ828は、ドレインとゲートを接続したNMOSトランジスタ830とPMOSトランジスタ831とを含んでいる。抵抗R8は、NMOSトランジスタ830のドレインをPMOSトランジスタ831のソースに接続する。例えば、追加の抵抗及びフィルタ部品のような他の部品を本実施形態において含むことができる。リレー制御スイッチ828は、1つの入力端子と1つの出力端子を有している。第1の入力信号は、駆動回路によって供給されるオン/オフ信号に対応している。第1の入力信号はトランジスタ830のゲートに供給され、トランジスタ830をオフ又はオンすることができる。トランジスタ830がオンの場合、トランジスタ830のドレイン電流は、第2のトランジスタ831のゲートに適切なスイッチ電圧を供給して第2のトランジスタをオン又はオフする。] 図10 [0060] 第2の入力信号は、リレーを制御するために使用することができる外部制御信号であり得る。トランジスタ831がオンの場合、外部制御信号はトランジスタ831のソースにおいて受信される。第2のトランジスタ831がオンの場合、外部制御信号に相当する電流を制御入力からリレー制御スイッチ828の制御出力まで搬送する回路がクローズされる。制御入力信号は更にトランジスタ830に対してドレイン電圧を供給する。] [0061] リレー制御スイッチは、NMOSトランジスタ又はPMOSトランジスタの異なる配置を使用して実現することができる。他の実施形態では、トランジスタの代わりに電磁スイッチを用いることができる。幾つかの実施形態において、第1のトランジスタは、メーン州ポートランドのFairchild Semiconductor社によって製造された、FairchildSemiconductor(TM)2N7002N−チャンネルエンハンストモードFETDMOSトランジスタを使用して実現することができ、第2のトランジスタは、PhilipsSemiconductor(TM)BSH202P−チャンネルエンハンストモードMOSトランジスタである。] [0062] 図11は、本発明の一実施形態に係る、故障インジケータ回路において使用するための電気的視覚インジケータを含む、視覚インジケータ回路929の概略図である。視覚インジケータ回路929は、発光ダイオード(LED)に接続されたNMOSトランジスタを含む。NMOSトランジスタのドレインはこのLEDの陰極に接続されている。NMOSのソースは接地されている。LEDの陽極は電源に接続されている。抵抗R9は、電源とLEDの陽極間に接続されている。他の実施形態では、PMOSトランジスタをNMOSトランジスタの代わりに使用することができる。他の実施形態において、視覚インジケータ回路は、抵抗又はフィルタのような他の部品を含む。] 図11 [0063] 駆動回路からの入力信号は、トランジスタのゲートにおいて視覚インジケータに供給される。図示の実施形態では、ハイ入力信号がNMOSトランジスタをオンとする。トランジスタがオンになると、電源からの電流がLEDを通って流れるようになり、LEDは発光する。LEDは故障の視覚表示を提供する。] [0064] 視覚インジケータにおいて使用されるスイッチは、NMOSトランジスタ、PMOSトランジスタ又は電気機械式スイッチを使用して実現することができる。例えば、このトランジスタは、FairchildSemiconductor(TM)2N7002N−チャンネルエンハンストモードFETDMOSトランジスタとして、又は、PhilipsSemiconductor(TM)BSH202P−チャンネルエンハンストモードMOSトランジスタとして実現することができる。他の実施形態では、LEDを駆動するために適切な他のタイプのスイッチを使用することができる。] [0065] 図12Aおよび12Bは、本発明の一実施形態に係る故障インジケータ回路1000の回路図である。故障インジケータ回路1000は、図6の入力論理回路と不揮発性メモリ素子、図7の駆動回路、図8のリレー制御スイッチ及び図9の視覚インジケータに対応するサブ回路を含んでいる。これらのサブ回路は、それぞれのサブ回路に対して上記で説明したように動作することができる。] 図12A 図6 図7 図8 図9 [0066] 入力信号の高周波数部分をフィルタし、故障インジケータ回路1000の残りの部分とこの入力信号がインターレースすることを防止するために、多くの並列RCフィルタが含まれている。多くの直列RC部品が遅延素子として使用されている。] [0067] リセットスイッチ1002は、このスイッチがクローズされた場合故障インジケータ回路100にリセット信号を供給する。リセット信号は、電源1001からのハイ電圧レベルによって供給される。図示の実施形態では、リセットスイッチ1002がクローズされた場合、電源は、故障インジケータ回路1000の入力に5Vを供給する。入力1005は故障インジケータ回路1000に故障信号を供給する。故障信号は航空機の電気システムの何処で生成されても良く、入力1005を介して故障インジケータ回路1000に供給される。] [0068] 図13は、本発明の一実施形態に係る、故障インジケータ回路に電力を供給するために使用される電源アッセンブリ1400の回路図である。] 図13 [0069] 電源アッセンブリ1400は、抵抗1431を介して電源1430に接続された制御ライン1401を含む。電源1430は、その入力1402に接続された第1のバイパスコンデンサ1432を介して、且つ、電源1430の出力1403に接続された第2のバイパスコンデンサ1432を介して接地されている。電源1430は、共に接地された2つのその他の端子を有している。ダイオード1435が、電源1435の入力1402及び出力1403を横断して接続されている。電源アッセンブリ1400は全体で制御ライン1401から1つの入力を受信し、更に接地されている。電源アッセンブリ1400は1つの出力1403を有している。] [0070] 電源1430は制御ライン1401から少量の電流を受信し、その出力1403を介して安定した電力を故障インジケータ回路1000の種々の素子に供給する。ダイオード1435は、制御ライン1401から電源の出力1403に直接電流が流れるのを防止するが、電流が反対の方向に流れることを可能とする。第1及び第2のバイパスコンデンサ1432,1434は、電源1430への損傷を防止するために電流及び電圧の高周波成分を濾波する。一実施形態では、制御ライン1401は15Vを搬送し、電源アッセンブリ1430は、出力1403において安定な5Vの電源電圧を生成するために充分な電流を使用する。電源電圧は、Vcc信号として、故障インジケータ回路1000の種々のトランジスタ及びその他の部品に供給される。別の実施形態では、制御ラインはAC電圧を供給することができ、且つ、電源はそのように構成されている。] [0071] 一実施形態では、消費電力が小さく且つ小型のトランジスタ(SOT)を電源1430を実現するために使用することができる。一実施形態では、カルホルニア州MilpitasのLinear Technology社で製造された、Linear Technology(TM)LT1790micropower SOT−23 low dropout reference power supplyを使用している。ダイオードは、例えば1N4148Fairchild Semiconductor(TM)のような高コンダクタンスの高速ダイオードを使用して実現することができる。入力における第1のバイパスコンデンサ1432は、0.1μFコンデンサ(25V)を使用して実現することができる。出力における第2のバイパスコンデンサ1432は、1μFコンデンサ(10V)を使用して実現することができる。抵抗は、2.43KΩの抵抗であっても良い。] [0072] 図14は、本発明の一実施形態に係る電磁シールを含む故障インジケータ回路の概略図である。故障インジケータ回路1100は、リレー1110のコイルに接続されており、リレー1110は次に負荷1120に接続されている。故障インジケータ回路1100は入力論理回路1103、電気機械式スイッチ1105及び電磁シールド1140を含む。] 図14 [0073] 故障インジケータ回路1100は故障信号及び制御イン信号を受信し、制御アウト信号を生成する。入力論理回路1103は故障信号とリセット信号を受信して、故障インジケータ回路1100内の電気機械式スイッチ1105を制御する。入力論理回路は、故障信号が故障の存在を指示すると、電気機械式スイッチ1105を切る。これに応答して、電気機械式スイッチ105は、リレー1110に電流を供給する電流ループをオープンする。この電気機械式スイッチは不揮発性メモリとして動作し、故障インジケータ回路がリセットされるまでその回路の状態を維持することによって故障の記憶を維持する。リセット信号又は刺激が同様に故障インジケータ回路1100に供給される。電気機械式スイッチは、適切な場合、リレーを制御する外部制御信号を遮断(即ち、切断)することにより、リレーを制御する。故障インジケータ回路1100のリセットは故障をクリアし、且つ、電気機械式スイッチ1105に制御信号を通過させるように命令する。リセット信号は過去の故障をクリアし、故障信号は現在の故障を示す。多くの実施形態において、リセット信号はスイッチによって供給される。多くの実施形態において、このスイッチはポップアップインジケータの一部分である。その他の実施形態において、このスイッチは全ての故障を表示する回路から分離されている。] [0074] 電気機械式スイッチは、リレーコイルによって生成されるような電磁場の影響により、意図せず切断される場合がある。電磁シールド1140は、本発明の実施形態に従って、故障インジケータ回路1100の内部の電気機械式スイッチの動作に電磁場が干渉する可能性を減少させる。] [0075] 故障インジケータ回路1100とリレー1110は、商業的に入手可能な種々の製品を使用して実現することができる。電磁シールド1140は、電磁場と相互作用し、吸収し或いは妨害する全てのタイプの材料を用いて実現することができる。一実施形態では、金属材料を電磁シールドのために使用する。] [0076] 幾つかの実施形態では、高い透磁率を有する鉄合金を使用して、磁気シールドを形成する。このような材料の幾つかの事例として、冷延鋼板、低炭素鋼、電気アイロン、軟鋼、珪素鋼(SiFe)、高いレベルの透磁率(mu)を有する一般クラスの合金を意味するHyMu合金を含んでいる。磁気シールドを実現するために使用することができる幾つかの材料の事例として、Supermalloy,Hymu 800,Silectron Z,Supermendur,Permalloy,Hy−Ra 80,Orthanol,Deltamax,Hypernik及びMu−metalが含まれる。] [0077] 電気機械式スイッチ1105は、リードスイッチ又はリードリレーを使用して実現することができる。リードスイッチは、磁場を印加することによって作動する電気スイッチである。磁場は、永久磁石を使用し又は電磁石によって印加することができる。リードスイッチの1つのタイプとして、ガラス容器内に密封された磁気材料から形成された一対のコンタクトを含む。このコンタクトは、通常はオープンで、磁場が存在するとクローズし、或いは通常クローズで磁場が印加されるとオープンする。リードリレーは典型的に1つ又はそれ以上のリードスイッチを含み、このリードスイッチは電磁石によって制御される。] [0078] リードスイッチ及びリードリレーは、これらが磁場を使用して切断され、実際の機械的又は電気的切断を要しないように形成される。リードスイッチは、対応する電磁石によって操作されるように意図されている。しかしながら、リードスイッチは、スイッチの周りの大気中に存在し得る寄生磁場に対して脆弱である。リードスイッチの感度に依存して、種々の周辺磁場がこのリードスイッチと干渉し、動作論理回路によって切断することを意図していない場合に、このスイッチを切断することがある。] [0079] 電気機械式スイッチの1つの重要な品質はその感度であり、これはスイッチを励起するために必要な磁気エネルギーの量を示す。例えば、電気機械式スイッチをコイル電磁石を用いて起動した場合、感度は、巻きの回数を掛け合わせたコイル中の電流に相当する、アンペア・ターンの単位で測定される。予期しない切断から電気機械式スイッチを守るために使用される電磁シールドは、この電気機械式スイッチの感度に合致するように選択される。例えば、感度の低いリードスイッチは起動するために高い磁場を必要とし、薄いシート状の鉄材料によって保護することができる。同じ目的のために、簡単に切断される高感度のリードスイッチは寄生電磁場の小さな部分であっても通すことが無い、厚いシールドを必要とする。] [0080] 故障が一旦クリアされると、リセット刺激が故障インジケータ回路に供給される。図15Aは故障インジケータ回路1100’と共に使用されるべき視覚インジケータとマニュアルリセット機構を示す。故障インジケータ回路1100’は、ポップアップボタンのようなポップアップインジケータ1210を含んでいる。故障信号は、故障インジケータ回路1100’内で電気機械式スイッチ1105’を切断する。電気機械式スイッチは電流ループをオープンし、ポップアップインジケータ1210を位置1220から位置1230まで押し上げる(図15B参照)。電気機械式スイッチのポップアップインジケータ1210は、アップ位置(1230)においてこの故障の記憶を効果的に維持する。故障が一旦クリアされると、ポップアップインジケータをアップ位置1230からダウン位置1220まで押し下げることによって、故障インジケータ回路1100’をリセットし、電気機械式スイッチ1105’が制御信号をリレーまで通過させることが可能となる。] 図15A 図15B [0081] 図15A及び15Bの実施形態において、ポップアップインジケータは故障に応答してポップアップし故障の視覚インジケータを提供する一方で、リセットまで故障の不揮発性メモリとして作用する。図示の実施形態において、故障インジケータ回路は、ポップアップインジケータが押し下げられた場合、マニュアルでリセットされる。他の実施形態において、電気機械式スイッチは、異なるマニュアルリセット機構を使用して、マニュアルでリセットされる。] 図15A [0082] 本発明をある例示的な実施形態を参照して説明してきたが、添付の請求の範囲及びその均等範囲によって定義される本発明の精神及び範囲から逸脱することなく、本発明に対して種々の修正及び変更が可能であることを理解すべきである。]
权利要求:
請求項1 リレーに接続された故障検出回路、及び前記故障検出回路及び前記リレーの制御入力に接続された故障インジケータ回路、を備え、前記故障インジケータ回路は不揮発性メモリ素子を含み、前記故障検出回路は、故障を検出し且つ前記故障インジケータ回路に故障を示す信号を供給するように構成され、さらに、前記故障インジケータ回路は、前記リレーに予め決定された制御信号を供給することによって、且つ、前記不揮発性メモリ素子中に故障の検出を示す情報を記憶することにより、前記故障を示す信号に応答するように構成されている、航空機電気システム。 請求項2 請求項1に記載の航空機電気システムにおいて、前記故障インジケータ回路は、リセット信号を受信し、且つ、該リセット信号に基づいて前記不揮発性メモリ素子をクリアするように構成されている、航空機電気システム。 請求項3 請求項1に記載の航空機電気システムにおいて、前記故障インジケータ回路は、外部制御信号を受信し、前記不揮発性メモリ素子が故障の検出を示す情報を含んでいない場合、前記外部制御信号を前記故障インジケータ回路を介して前記リレーの制御入力まで通過させ、更に、前記不揮発性メモリ素子が故障の検出を示す情報を含んでいる場合、前記外部制御信号が前記リレーの制御入力まで通過するのを防止する、航空機電気システム。 請求項4 請求項1に記載の航空機電気システムにおいて、前記故障インジケータ回路は、故障を示す信号を受信し、且つ、前記不揮発性メモリ素子をリセットするための要求を示す信号を受信するように構成された入力論理回路と、及び前記入力論理回路の出力に接続されたスイッチであって、前記不揮発性メモリ素子が故障の検出を示す情報を含んでいる場合、前記制御信号が前記リレーへ流れるのを防止するように構成されたスイッチと、を含む、航空機電気システム。 請求項5 請求項4に記載の航空機電気システムにおいて、前記スイッチは少なくとも1つのトランジスタを含む、航空機電気システム。 請求項6 請求項4に記載の航空機電気システムにおいて、前記スイッチは電気機械式スイッチである、航空機電気システム。 請求項7 請求項4に記載の故障インジケータ回路において、前記入力論理回路は、故障の存在を示す第1の出力信号を生成するように構成され、前記第1の出力信号は前記リセット信号と前記故障信号から得られる、故障インジケータ回路。 請求項8 請求項4に記載の故障インジケータ回路において、前記入力論理回路と前記不揮発性メモリ素子は、少なくとも1つのプログラマブル論理デバイスとASICによって実現される、故障インジケータ回路。 請求項9 請求項1に記載の航空機電気システムにおいて、前記故障インジケータ回路は更に、記憶された故障の視覚表示のために視覚インジケータを含む、航空機電気システム。 請求項10 請求項9に記載の航空機電気システムにおいて、前記視覚インジケータは少なくとも1つのLEDを含む、航空機電気システム。 請求項11 請求項9に記載の航空機電気システムにおいて、前記視覚インジケータはポップアップボタンである、航空機電気システム。 請求項12 請求項11に記載の航空機電気システムにおいて、前記故障インジケータ回路は更に、リセット刺激を受信し、且つ、前記リセット刺激に応答してリセット要求信号を発生するように構成された、マニュアルリセット機構を含み、更に、前記ポップアップボタンは押された場合、前記リセット刺激を供給する、航空機電気システム。 請求項13 請求項1に記載の航空機電気システムにおいて、前記不揮発性メモリ素子は、ポップアップボタンを使用して情報を記憶する、航空機電気システム。 請求項14 請求項1に記載の航空機電気システムにおいて、前記リレーは電源から負荷への電流の流れを制御する、航空機電気システム。 請求項15 請求項1に記載の故障インジケータ回路において、前記不揮発性メモリ素子は、不揮発性メモリを有する電位差計を含む、故障インジケータ回路。 請求項16 請求項15に記載の故障インジケータ回路において、前記電位差計は、少なくとも1つの高抵抗位置と少なくとも1つの低抵抗位置を有するデジタル電位差計であり、前記故障インジケータ回路は、前記少なくとも1つの高抵抗位置と前記少なくとも1つの低抵抗位置の1つとして故障を記憶するように構成されている、故障インジケータ回路。 請求項17 請求項1に記載の故障インジケータ回路において、前記不揮発性メモリ素子は1ビットメモリ素子を含む、故障インジケータ回路。 請求項18 航空機電気システムのリレーを制御するための方法において、本方法は、少なくとも1つの故障を検出すること、固体不揮発性メモリを用いて前記少なくとも1つの故障の記録を記憶すること、電力の不在中に前記少なくとも1つの故障の前記記録を維持すること、リセット信号が受信された場合、前記少なくとも1つの故障の記録をクリアすること、及び、前記少なくとも1つの故障が記憶された場合、航空機電気システムへの電力の流れを停止するためにリレーをオープンすること、を含む、方法。 請求項19 故障の検出を示す故障信号と前記故障をリセットする要求を示すリセット信号とを受信するように構成された入力論理回路と、及び前記入力論理回路の出力に接続された電気機械式スイッチであって、前記入力論理回路は前記故障信号及びリセット信号から得られる、電気機械式スイッチと、を備え、前記電気機械式スイッチは、前記入力論理回路の出力に応答してリレーを制御するように構成されており、且つ、前記電気機械式スイッチは、該電気機械式スイッチの動作への外部磁場の影響を減少させるシールド材料によって取り囲まれている、故障インジケータ回路。 請求項20 請求項19に記載の故障インジケータ回路において、前記電気機械式スイッチはリードスイッチである、故障インジケータ回路。 請求項21 請求項19に記載の故障インジケータ回路において、前記シールド材料のシールド能力は前記電気機械式スイッチの磁気感度よりも大きい、故障インジケータ回路。 請求項22 請求項19に記載の故障インジケータ回路において、前記シールドは磁性鉄鋼材を備える、故障インジケータ回路。
类似技术:
公开号 | 公开日 | 专利标题 US9762049B2|2017-09-12|Ground fault circuit interrupter | monitor JP6126137B2|2017-05-10|電源装置付き安全開閉装置 DE10210920B4|2005-02-03|Leistungsschalter mit elektronischem Auslöser KR100843366B1|2008-07-02|부하구동장치 US5600524A|1997-02-04|Intelligent ground fault circuit interrupter US7843197B2|2010-11-30|Protective device with end-of-life indication before power denial KR100614423B1|2006-08-21|스위칭 소자의 과전류 검출 및 보호 장치 DE60119102T2|2006-09-28|Elektronischer Schutzschalter EP1627402B1|2006-10-11|Sicherheitsschaltgerät zum fehlersicheren abschalten eines elektrischen verbrauchers sowie entsprechendes verfahren US9573540B2|2017-02-21|On-vehicle electronic control device CN100544148C|2009-09-23|飞机适用的电流不平衡检测和电路断续器 JP4521779B2|2010-08-11|直巻きモータ及びその制御方法 US5889466A|1999-03-30|Apparatus and method of providing power control based on environmental conditions US7667611B2|2010-02-23|High voltage detection system US5144517A|1992-09-01|Intrinsically safe barrier device US7692904B2|2010-04-06|Ground fault circuit interrupter US6714393B2|2004-03-30|Transient suppression apparatus for potentially explosive environments ES2401103T3|2013-04-17|Dispositivo de conmutación de seguridad para la desconexión a prueba de errores de un consumidor eléctrico US7486492B2|2009-02-03|Electrical switching apparatus including a second trip circuit responding to failure of a first trip circuit to provide a repetitive signal JP4261798B2|2009-04-30|電流分配システム US7598708B2|2009-10-06|Battery protecting apparatus and battery protecting circuit US20070014060A1|2007-01-18|Sensor for detecting arcing faults JP4180597B2|2008-11-12|給電回路の異常検出装置 CN101203930B|2012-05-30|安全断开电力负载的安全开关装置 US20070115135A1|2007-05-24|Switch state assurance system
同族专利:
公开号 | 公开日 HK1151393A1|2012-01-27| WO2009088500A1|2009-07-16| JP5485910B2|2014-05-07| EP2232660A4|2013-11-27| CN101911417A|2010-12-08| CN101911417B|2014-04-23| EP2232660A1|2010-09-29|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPH0721893A|1993-06-30|1995-01-24|Mitsubishi Electric Corp|開閉装置の補助開閉器| JPH10125199A|1996-10-15|1998-05-15|Matsushita Electric Works Ltd|電磁継電器| JP2002304217A|2001-04-06|2002-10-18|Sumitomo Precision Prod Co Ltd|Electronic control system| JP2005531268A|2001-09-14|2005-10-13|ハイドロ−エアー、インコーポレイテッド|電流障害検出器および回路遮断器とそれらの実装方法| JP2007318922A|2006-05-26|2007-12-06|Toshiba Corp|ディジタル保護継電装置|JP2016213924A|2015-04-30|2016-12-15|マックス株式会社|Equipment|CA2414273C|2000-06-26|2012-04-10|Premier Aviation, Inc.|Method and apparatus for detecting electrical faults and isolating power source from the electrical faults| US7362551B2|2001-02-01|2008-04-22|Hydro-Aire, Inc.|Aircraft applicable circuit imbalance detection and circuit interrupter and packaging thereof| US7007179B2|2001-02-08|2006-02-28|Honeywell International Inc.|Electric load management center| CN1220236C|2002-10-09|2005-09-21|浙江东正电气有限公司|具有反接线保护功能的接地故障断路器| US7254004B2|2003-06-13|2007-08-07|Tdg Aerospace, Inc.|Systems and methods for fault-based power signal interruption| US7215519B2|2003-10-20|2007-05-08|The Boeing Company|Ground and line fault interrupt controller/adapter| US20050286184A1|2004-06-22|2005-12-29|Steve Campolo|Electrical power outlet strip| US7508638B2|2006-02-28|2009-03-24|Siemens Energy & Automation, Inc.|Devices, systems, and methods for providing electrical power| US7505820B2|2006-03-30|2009-03-17|Honeywell International Inc.|Backup control for solid state power controller |US8981265B2|2008-12-30|2015-03-17|Ppg Industries Ohio, Inc.|Electric circuit and sensor for detecting arcing and a transparency having the circuit and sensor| GB2513133B|2013-04-16|2015-07-08|Ge Aviat Systems Ltd|Methods for predicting a speed brake system fault|
法律状态:
2012-08-27| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120827 | 2012-09-05| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 | 2012-12-05| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121204 | 2013-06-26| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 | 2013-09-25| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130924 | 2013-10-02| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131001 | 2013-12-20| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131219 | 2014-01-15| TRDD| Decision of grant or rejection written| 2014-01-22| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 | 2014-02-27| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140220 | 2014-02-28| R150| Certificate of patent or registration of utility model|Ref document number: 5485910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2017-02-28| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|