![]()
专利摘要:
A wavelength converting element (102) converts a wavelength of a portion of an excitation light to generate a fluorescent light and thereby to generate a combined light in which the fluorescent light is combined with a unconverted light whose wavelength is identical to that of the excitation light. The element comprises a fluorescent body (1), a binder (3) in contact with the fluorescent body, and multiple scattering particles (2) contained in the binder. A minimum particle diameter of the multiple scattering particles is equal to 1/4 or more and 4 times or less a wavelength of the fluorescent light, and a ratio of a volume of the multiple scattering particles to a total volume of the binder and multiple scattering particles is 25% or more and 50% or less. 公开号:FR3051925A1 申请号:FR1754666 申请日:2017-05-29 公开日:2017-12-01 发明作者:Minoru Ohkoba;Yuya Kurata;Ryota Kadowaki 申请人:Canon Inc; IPC主号:
专利说明:
[0048] Par conséquent, un rapport du volume de tous les diffuseurs à un volume total de tous les diffuseurs et du liant, c'est-à-dire une concentration X des diffuseurs, peut être exprimé par : [0049] Il en résulte que la distance d peut être exprimée comme indiqué ci-après en utilisant la concentration X et le diamètre de particule minimum D des diffuseurs. (1) [0050] La distance d à laquelle le rendement d'extraction de lirmière fluorescente est amélioré est étroitement liée à la concentration des diffuseurs. Lorsque la lumière d'excitation est une lumière bleue et lorsque la lumière fluorescente est une lumière jaune, une distance d de 600 nm ou moins améliore le rendement d'extraction de lumière fluorescente. A titre d'exemple, lorsqu'on utilise des diffuseurs A et C, qui seront décrits plus loin dans les modes de réalisation 1 et 2, une concentration (exprimée en pourcentages) X de 25 % ou plus conduit à une distance d de 600 nm ou moins. [0051] Une distance d de 500 nm ou moins améliore encore le rendement d'extraction de lumière fluorescente, et une distance d de 300 nm ou moins améliore encore davantage le rendement d'extraction de lumière fluorescente. [0052] On fournit ci-après une description de modes de réalisation spécifiques (exemples expérimentaux). Dans la description présentée ci-après, la concentration X est exprimée en pourcentages. [Mode de réalisation 1] [0053] La figure 4 illustre une relation entre les concentrations (%) des diffuseurs et les rendements d'émission de lumière fluorescente (extraction) dans un premier mode de réalisation (Mode de réalisation 1). Ce mode de réalisation a consisté à utiliser un corps fluorescent d'YAG.'Eu. Le corps fluorescent présentait un diamètre de particule moyen de 10 ym et un diamètre minimum de 5 ym. Le substrat était constitué d'Al et avait une épaisseur de 1 mm. Les diffuseurs étaient constitués de sulfate de baryum. Les diffuseurs comportaient deux types de diffuseurs, à savoir des diffuseurs A dont les diamètres de particules moyen et minimum étaient respectivement de 2 ym et de 1 ym et des diffuseurs B dont les diamètres de particules moyen et minimum étaient respectivement de 6 ym et de 3 ym. Les concentrations des diffuseurs étaient réglées à 20 %, 30 %, 40 %, et 60 %. Le liant était constitué d'une résine époxyde produite par Shin-Etsu Chemical Co., Ltd. [0054] Ce mode de réalisation a consisté à mélanger, aux diffuseurs et au liant dont le volume total était égal à 1, les corps fluorescents dont le rapport volumique était égal à 0,5 afin de produire une pâte, à effectuer une agitation et une déformation sur la pâte, à imprimer la pâte agitée sur le substrat d'Al puis à durcir la pâte imprimée au moyen d'un four à 200°C. [0055] Ce mode de réalisation a consisté à évaluer un échantillon de la couche de corps fluorescent ainsi produite, en utilisant un laser bleu dont la longueur d'onde était de 455 nm en tant que lumière d'excitation. [0056] Ce mode de réalisation a consisté à utiliser, en tant que source de lumière laser, une LD bleue produite par Nichia Co., Ltd. La projection du laser bleu sur la couche de corps fluorescent avec une intensité d'exposition de 30 W/mm2 a conduit à un rendement d'émission de lumière fluorescente jaune illustré sur la figure 4. [0057] Les diffuseurs A dont les concentrations étaient de 30 % et de 40 % produisaient un effet d'amélioration du rendement d'émission de lumière fluorescente, et par ailleurs, les diffuseurs A dont les concentrations étaient de 20 % et de 60 % ne produisaient pas cet effet. De plus, lorsque la concentration était de 60 %, un taux élevé de solides dans la pâte rendait difficile la mise en place d'une couche unique de pâte sur le substrat et rendait impossible la planarisation d'une surface irrégulière de la pâte par nivellement, ou autre, lors d'un processus de production. Cela augmentait la réflexion de surface en réduisant ainsi le rendement d'émission de lumière fluorescente. [0058] Le diamètre de particule minimum de 1 pm des diffuseurs A était égal à 1/4 ou plus et à 4 fois ou moins la longueur d'onde de la liamière jaune fluorescente. Par ailleurs, l'utilisation des diffuseurs B dont le diamètre de particule minimum de 3 pm est supérieur à 4 fois la longueur d'onde de la lumière jaune fluorescente, n'a pas amélioré le rendement d'émission de lumière fluorescente indépendamment de leur concentration. Par conséquent, l'effet d'amélioration du rendement d'émission de lumière fluorescente est obtenu lorsque le diamètre de particule minimum des diffuseurs est égal à 1/4 ou plus et à 4 fois ou moins la longueur d'onde de la lumière fluorescente et le rapport (concentration) du volume de tous les diffuseurs au volume total de tous les diffuseurs et du liant est de 25 % ou plus et de 50 % ou moins. [0059] La condition décrite ci-dessus selon laquelle le diamètre de particule minimum des diffuseurs est égal à 1/4 ou plus et à 4 fois ou moins la longueur d'onde de la lumière fluorescente et le rapport du volume de tous les diffuseurs au volume total de tous les diffuseurs et du liant est de 25 % ou plus et de 50 % ou moins peut être appliquée à des cas autres que celui où la lumière d'excitation est la lumière bleue et où la lumière fluorescente est la lumière jaune. [0060] Lorsque les diamètres de particules minimum et moyen des diffuseurs A sont respectivement de 1 pm et de 2 pm et lorsque leur concentration est de 30 %, l'expression précédente (1) fournit, en tant que distance d(=d0), 407 nm. [0061] Dans ce mode de réalisation, une transmittance optique T de la couche de corps fluorescent est modifiée par un effet tunnel optique typique, comme illustré sur la figure 5. Comme illustré sur la figure 5, l'effet tunnel optique apparait de façon significative lorsque d/λ est égal à 0,5. La longueur d'onde (ou une longueur d'onde dominante) de la lumière fluorescente est d'environ 550 nm, de sorte que la distance d est d'environ 275 nm lorsque d/λ est égal à 0,5. [0062] Lorsqu'on observe une image SEM (microscopie électronique à balayage) en coupe transversale effective de l'échantillon de couche de corps fluorescent, toutes les particules diffusantes mutuellement adjacentes ne sont pas situées à des intervalles égaux, mais sont situées à divers intervalles allant de dO/2 à 2d0. Il résulte de ce fait que dO/2 peut être considéré comme étant pratiquement égal à d, et par conséquent d0/2«d est égal à 204 nm, de sorte que l'on comprendra que la distance d calculée par l'expression (1) produit l'effet d'amélioration du rendement d'émission de lumière fluorescente. [Mode de réalisation 2] [0063] La figure 6 illustre, dans sa partie gauche, une relation entre les concentrations (%) des diffuseurs et les rendements d'émission de lumière fluorescente dans un deuxième mode de réalisation (Mode de réalisation 2). Ce mode de réalisation a consisté à utiliser, en plus des diffuseurs A et B décrits dans le mode de réalisation 1, des diffuseurs C dont les diamètres de particules minimum et moyen étaient respectivement de 0,5 ym et de 1 ym. Les caractères gras apparaissant sur la figure 6 indiquent une gamme pour laquelle les rendements d'émission de lumière fluorescente étaient améliorés de 1 % ou plus. Cette gamme est une gamme pour laquelle, comme illustré dans une partie de droite de la figure 6, la distance d calculée par l'expression (1) est de 300 nm ou moins. [Mode de réalisation 3] [0064] Un troisième mode de réalisation (Mode de réalisation 3) a consisté à modifier un rapport du volume de tous les corps fluorescents à un volume total de tous les corps fluorescents et des diffuseurs dans une gamme de 0,5 à 1,5, et plus précisément de 0,5, 0,75, 1, 1,25, et 1,5. La modification du rapport a permis d'ajuster un rapport de quantité de lumière entre la lumière non convertie et la lumière fluorescente qui sont émises par la couche de corps fluorescent. Cet ajustement a permis de produire une lumière blanche ayant une bonne chromaticité. [Mode de réalisation 4] [0065] Un quatrième mode de réalisation (Mode de réalisation 4) a consisté à utiliser un liant constitué d'un verre à faible point de fusion. Dans ce cas, le liant n'est pas passé dans un état de faible viscosité, c'est-à-dire différent d'une résine de silicone et d'une résine époxyde, de sorte qu'il a été facile de disperser uniformément les corps fluorescents et les diffuseurs dans le liant et qu'il a ainsi été possible de produire une couche de corps fluorescent dont le rendement d'émission de lumière fluorescente était élevé. [Mode de réalisation 5] [0066] Un cinquième mode de réalisation (Mode de réalisation 5) a consisté à utiliser des diffuseurs dont le diamètre de particule moyen était de 0,1 pm ou plus et de 5 pm ou moins. Les diffuseurs de ce mode de réalisation fournissaient une diffusivité satisfaisante de la lumière et un effet satisfaisant d'amélioration du rendement d'émission de lumière fluorescente. [Mode de réalisation 6] [0067] Un sixième mode de réalisation (Mode de réalisation 6) a consisté à utiliser, en tant que matériau des corps fluorescents, un YAG-Ce dont l'indice de réfraction est de 1,82, et a consisté à utiliser, en tant que matériau du liant, une résine de silicone dont l'indice de réfraction est de 1,43. De plus, ce mode de réalisation a consisté à utiliser, en tant que matériau des diffuseurs, un sulfate de baryum dont l'indice de réfraction est de 1,64. La sélection de ces matériaux a permis de produire une couche de corps fluorescent capable d'émettre une lumière dont la valeur de luminance absolue est supérieure de 20 % à celle observée dans le mode de réalisation 1. [Mode de réalisation 7] [0068] Un septième mode de réalisation (Mode de réalisation 7) a consisté à produire une couche de corps fluorescent en forme de roue (ou annulaire ou en forme de disque) dans laquelle les corps fluorescents, les diffuseurs et le liant sont mutuellement mélangés selon des rapports volumiques égaux. Ce mode de réalisation a consisté à mettre en rotation cette couche de corps fluorescent circonférentiellement et à projeter la lumière d'excitation sur une partie circonférentielle de la couche de corps fluorescent mise en rotation. Cela a permis de générer de la liamière à partir de la couche de corps fluorescent tout en réduisant les variations de sa luminance et de sa couleur du fait de la chaleur produite dans la couche de corps fluorescent. Plus précisément, l'utilisation de la couche de corps fluorescent en forme de roue dont l'épaisseur est de 100 pm et dont le diamètre est de 10 cm, a permis de réduire la variation de luminance à environ 3 %. Par ailleurs, un cas consistant à utiliser une couche de corps fluorescent ne comportant pas de diffuseurs et un cas consistant à utiliser une couche de corps fluorescent comportant deux couches dont une couche est formée en mélangeant les diffuseurs au liant et dont l'autre couche est formée en mélangeant les corps fluorescents au liant, ont provoqué une variation de luminance d'environ 12 %. [Mode de réalisation 8] [0069] Un huitième mode de réalisation (Mode de réalisation 8) a consisté à produire la couche de corps fluorescent en mélangeant les corps fluorescents et les diffuseurs au liant et à placer (imprimer) le mélange sur le substrat. Ce procédé de production ne nécessite qu'un seul processus d'impression et réduit ainsi le coût de production de la couche de corps fluorescent, par comparaison à un cas consistant à placer séparément un mélange des corps fluorescents et du liant et un mélange des diffuseurs et du liant. [Mode de réalisation 9] [0070] Un neuvième mode de réalisation (Mode de réalisation 9) a consisté à produire, sur un corps fluorescent polycristallin (corps fluorescent en forme de plaque), la couche de corps fluorescent (mélange des diffuseurs et du liant de résine de silicone) dont la concentration des diffuseurs est l'une de celles décrites dans les modes de réalisation 1 et 2. Ce mode de réalisation a amélioré le rendement d'émission de lumière fluorescente de 4 %, par comparaison à un cas consistant à placer un liant de résine de silicone ne comportant pas de diffuseurs sur le corps fluorescent polycristallin. Un résultat semblable a été obtenu dans un cas consistant à utiliser un corps fluorescent monocristallin au lieu du corps fluorescent polycristallin. [0071] Comme décrit ci-dessus, chacun des modes de réalisation 1 à 9 a permis de produire un élément de conversion de longueur d'onde dont la structure est simple et dont le rendement d'émission de lumière fluorescente est élevé. Par conséquent, l'utilisation de cet élément de conversion de longueur d'onde permet de produire un appareil à source lumineuse dont la luminance est supérieure à celle des éléments classiques et de fournir un projecteur capable de projeter des images plus lumineuses que les éléments classiques. [0072] Bien que la présente invention ait été décrite en référence à des modes de réalisation, il est à noter que l'invention n'est pas limitée aux modes de réalisation décrits. BACKGROUND OF THE INVENTION Field of the Invention [0001] The present invention relates to a wavelength conversion element configured to convert a wavelength of an excitation light to generate a fluorescent light, in particular a wavelength converting element suitable for use in a light source apparatus for an image projection apparatus (projector). Description of the Related Art [0002] Wavelength converting elements or light source devices include an element that converts a portion of an excitation light such as a laser light to generate a fluorescent light. whose wavelength (i.e., the color) is different from that of the excitation light and generates a combined light in which the fluorescent light is combined with an unconverted light, i.e. to say a light whose wavelength is not converted by a fluorescent body (phosphor) and is therefore identical to that of the excitation light. In the excitation light, the unconverted light is a light that is scattered (reflected) by scattering particles without reaching the fluorescent body. [0003] Japanese Patent Laid-Open No. 2011-180353 discloses a wavelength conversion element whose wavelength conversion efficiency is improved so as to increase the thermal radiation emanating from its body. fluorescent, by adding fillers (fine particles) as diffusers whose thermal conductivity is high towards the fluorescent body and a resin to maintain the fluorescent body. Furthermore, Japanese Patent Laid-Open No. 2015-089898 discloses a wavelength conversion element whose fluorescent light extraction efficiency from fluorescent body particles is improved by adhering inorganic oxide particles to the fluorescent body particles. However, in the wavelength conversion element disclosed in Japanese Patent Laid-Open No. 2011-180353, the resin contains particles with high thermal conductivity (charges), so that it is difficult to obtain, using only the wavelength conversion element, an effect of increasing the thermal conductivity so as to cool the fluorescent body. Therefore, it is difficult to expect a luminance enhancement effect in a light source apparatus using this wavelength conversion element. Furthermore, although the wavelength conversion element disclosed in Japanese Patent Laid-open No. 2015-089898 can improve in principle the extraction efficiency of a fluorescent light, in particular. In reality, the inorganic oxide particles separate from the fluorescent body particles by a mixing process of uniformly mixing the fluorescent body particles to which the inorganic oxide particles are adhered in the resin (binder). In addition, even if the inorganic oxide particles do not separate from the fluorescent body particles, air bubbles are trapped between these particles. In this case, the effect of improving the luminance becomes low. SUMMARY OF THE INVENTION The present invention provides a wavelength conversion element capable of improving the extraction efficiency of a fluorescent light, i.e., the fluorescent light emission efficiency, by comparison. to classical elements while having a simple structure. The present invention further provides a light source apparatus using the above-mentioned wavelength conversion element and provides an image projection apparatus using the light source apparatus. The present invention, according to its first aspect, provides a wavelength conversion element according to claims 1 and 4 to 14. The present invention, according to its second aspect, provides a wavelength conversion element according to claims 2 and 3. The present invention, according to its third aspect, provides a light source apparatus according to claim 15. The present invention, according to its fourth aspect, provides an image projection apparatus according to claim 16. Features of the present invention will become apparent from the following description of embodiments with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a configuration of a projector using a wavelength conversion element constituting an embodiment of the present invention. Figure 2A illustrates a fluorescent body layer in the wavelength conversion element of the embodiment. FIG. 2B illustrates a fluorescent body layer in a wavelength conversion element constituting a conventional example. Figure 3A illustrates a transmissive fluorescent body layer. Figure 3B illustrates a reflective fluorescent body layer. FIG. 4 illustrates the presence or absence of an improvement effect of the emission efficiency of the fluorescent light in embodiment 1. FIG. 5 illustrates an optical tunnel effect in embodiment 1. FIG. 6 illustrates the presence or absence of an effect of improving the emission efficiency of the fluorescent light in embodiment 2. DESCRIPTION OF THE EMBODIMENTS Embodiments of the present invention will be described hereinafter with reference to the accompanying drawings. As the wavelength conversion element described above and disclosed in Japanese Patent Laid-Open No. 2015-089898, the fact of adhering fine particles such as particles of Inorganic oxide on surfaces of the fluorescent body has the effect of extracting light that has conventionally been absorbed into the fluorescent body. However, even when the fine particles are not adhered to the fluorescent body, i.e. even when the fine particles (scattering particles in this embodiment) are separated from the fluorescent body, a fluorescent light can be extracted. from the inside of the fluorescent body, as shown below. Fluorescent light present inside the fluorescent body and which is silenced to a total internal reflection on its surface, immediately leaks (exudes) out of the fluorescent body in the form of evanescent light in the vicinity of its surface. It is necessary to extract this evanescent light before it returns to the fluorescent body. In other words, arranging the fine particles in the vicinity of the surface of the fluorescent body to capture the evanescent light before it returns to the fluorescent body and to modify its direction of propagation, reduces a light emanating from no fluorescent body due to the total internal reflection on the surface of the fluorescent body. This improves the extraction efficiency of a fluorescent light. Fig. 1 illustrates a configuration of an image projection apparatus (projector) 200 using a wavelength conversion element which will be described in each of specific embodiments of the present invention. The projector 200 comprises a blue laser diode (LD) 101 as a light source, and the wavelength conversion element 102. The projector 103 further comprises a dichroic mirror 103, a panel unit 104 having an optical separation and color combination system and a liquid crystal element as a light modulation element, and a projection lens 105. The light modulation element may be a digital micro-mirror device . A blue laser (blue light) emitted by the blue LD 101 is reflected by the dichroic mirror 103 to be projected to the wavelength conversion element 102 as the excitation light. The wavelength conversion element 102 comprises a substrate (not shown), and a fluorescent body layer (phosphor layer) formed on the substrate. The fluorescent body layer converts a wavelength of a portion of the excitation light to generate a yellow light as a fluorescent light and generates white light as a combined light in which the yellow light is combined to a blue light as an unconverted liamière whose wavelength is identical to that of the excitation light. Blue LD 101 and wavelength converting element 102 constitute a light source apparatus. The liominous source apparatus may include the dichroic mirror 103. The white light is transmitted through the dichroic mirror 103 or passes through it to the outside of the dichroic mirror 103, then enters the panel unit 104. The optical separation and color combination system of the panel unit 104 separates the white light into three colored lights (R, G and B) to introduce the respective three colored lights in corresponding liquid crystal panels. The three colored lights subjected to image modulation by the liquid crystal panels are mutually combined by the optical separation and color combination system and are projected through the projection lens 105 onto a projection surface (not shown) such as a screen. A colored image is thus displayed as projected image. Figure 2A illustrates a structure of the fluorescent body layer provided in the wavelength conversion element 102 of this embodiment. Figure 2B illustrates a structure of a fluorescent body layer as a comparative example with respect to this embodiment. The fluorescent body layer comprises multiple fluorescent body particles 1 and multiple scattering particles 2. In FIGS. 2A and 2B, the diffusing particles 2 have a smaller diameter than the fluorescent body particles 1. The fluorescent body layer further comprises a binder 3 containing the fluorescent body particles 1 and the diffusing particles 2. The arrows 4, 5 and 6 indicate optical paths of fluorescent lights. In the first place, we will describe a principle of extraction of fluorescent light from the fluorescent body particle 1 of this embodiment. The comparative example of FIG. 2B indicates a case where a concentration of the diffusing particles 2 in the binder 3 is lower than that observed in this embodiment. In this case, the fluorescent light generated within the fluorescent body particle 1 comprises light reaching a surface of the fluorescent body particle 1 at substantially right angles to exit the fluorescent body particle 1, as indicated by the optical path 4, and light reaching an interface between particles at an angle less than the substantially straight angle so that it is subjected to total internal reflection thereon and thus remain within the fluorescent body particle 1 (i.e. light absorbed by the fluorescent body particle 1), as indicated by the optical path 6. The fluorescent light generated within the fluorescent body particle 1 further comprises a light reaching the interface between particles at an intermediate angle between the angles of the optical paths 4 and 6. A portion of this liamière having an intermediate angle emanates from the a fluorescent body particle 1 and a remaining portion thereof is absorbed by the fluorescent body particle 1, depending on the transmittance and the reflectance corresponding to this intermediate angle. The fluorescent light absorbed by the fluorescent body particle 1 is directly converted into heat. This causes a loss of fluorescent light, i.e., it reduces the extraction efficiency of a fluorescent light. This embodiment illustrated in Figure 2A increases the concentration of the fluorescent body particles 1 so that a condition described below is satisfied, and thus averages the scattering particles 2 in the vicinity of each of the Fluorescent body particles 1. This arrangement of the diffusing particles 2 produces an optical tunneling effect. As indicated by the optical path 5, the optical tunnel effect causes the fluorescent light reaching the particle interface at the lower angle, which is initially subjected to total internal reflection in the fluorescent body particle 1, to propagate to the diffusing particles 2 present in the vicinity of this fluorescent body particle 1. Thus extracting the fluorescent light from the fluorescent body particle 1 via the diffusing particles 2 present in the vicinity of this fluorescent body particle 1 makes it possible to improve the fluorescent light extraction efficiency from the wavelength conversion element 102, in other words, the fluorescent light emission efficiency of the length conversion element. wave 102. Then the fluorescent body particle 1 (hereinafter simply referred to as "fluorescent body"), the diffusing particle 2 (hereinafter simply referred to as "diffuser"), the binder 3 will be described. and the substrate (shown in Figures 3A and 3B) of the wavelength conversion element 102 of this embodiment. <Fluorescent body> As a fluorescent body, any material may be used in that it has a property that converts a wavelength of an excitation light to generate a fluorescent light. An inorganic material is generally used which is excited by a blue light having a wavelength of from about 440 nm to about 470 nm. This embodiment also makes it possible to use this material. By way of example, as a fluorescent body which generates a fluorescent yellow light such as the wavelength conversion element 102 illustrated in FIG. 1, Y3A15012: Ce3 +, (Sr, Ba) 2 SiO 4: Eu 2+, C max (Si, Al) 12 (O, N) 16: Eu 2+. Cax (Si, Al) 12 (O, N) 16: Eu 2+ is generally referred to as a-Sialon fluorescent body and generates fluorescent light from yellow to orange. As a fluorescent body which generates a red fluorescent light, it is possible to use CaAlSiNS: Eu2 +, (Ca, Sr) AlSiNS: Eu2 +, Ca2Si5N8: Eu2 +, (Ca, Sr) 2Si5N8: Eu2 +, KSiF6: Mn4 +, and KTiF6: Mn4 +. As a fluorescent body which generates a green fluorescent light, one can use Lu3A15012: Ce3 +, (Lu, Y) 3A15012: Ce3 +, of 1Ύ3 (Ga, Al) 5012: Ce3 +, Ca3Sc2Si3012: Ce3 +, CaSc204: Eu2 +, (Ba, Sr) 2 SiO 4: Eu 2+, Ba 3 Si 2 O 12 N 2: Eu 2+, (Si, Al) 6 (O, N) 8: Eu 2+, and Sr 4 Al 2 O 4: Eu 2+. As particles of the fluorescent body (fluorescent bodies), those with particle diameters of 1 μm or more and 100 μm or less are often used. This embodiment also makes it possible to use fluorescent body particles having such diameters. This embodiment further allows the use of fluorescent body nanoparticles with particle diameters of 1 μm or less. The use of such fluorescent body particles improves the fluorescent light emission efficiency. However, it is desirable that a mean (average) particle diameter of the fluorescent bodies be greater than that of the diffuser particles (diffusers) described hereinafter. This embodiment uses for the description of the particle sizes "a particle diameter", "a mean particle diameter", and "a minimum particle diameter". The particle diameter is a diameter of a sphere having the same volume as that of the particle. The average particle diameter is an average value of the minimum and maximum particle diameters of all the particles. When a variation (standard deviation) of the particle diameters of all the particles is equal to 0, the minimum particle diameter may be "the average particle diameter -30", and the maximum particle diameter may be "the diameter of the particle. average particle + 3o ". The minimum and maximum particle diameters can be estimated statistically without measuring the particle diameters of all the particles. It is desirable that the fluorescent body has, at the wavelength of the fluorescent light, a refractive index of from 1.7 or greater to 2.0 or less. <Diffuser> [0038] As broadcasters, particles (powders) having low absorptance and having optical transmissivity in visible light such as optical glass, barium sulfate, TiO 2, ΙΆΙ 2 3, and diamond are used. . This embodiment also makes it possible to use these materials. Optical glass can be used taking into account a refractive index of the diffuser. By way of example, it is possible to use an optical glass having a refractive index between those of the fluorescent body and the binder, such as FS5 (refractive index equal to 1.675) and FS15 (refractive index equal to 1.675). 1.698). Barium sulfate having such a refractive index can be used. It is desirable that the minimum particle diameter of the diffusers is equal to 1/4 or more and 4 times or less the wavelength of the fluorescent light. The fact of using diffusers whose minimum particle diameters are not within this range does not make it possible to sufficiently extract the fluorescent light from the fluorescent body. This does not improve the fluorescent light emission efficiency. By way of example, when the fluorescent light is a yellow light, it is desirable that the minimum particle diameter of the diffusers be equal to 2 μm or less, and that the average particle diameter of the diffusers be equal to 0.1 μm. or more and at 5 pm or less. <Binder> [0040] The binder is used to fix fluorescent bodies and diffusers. The binder can be selected from organic binders and inorganic binders. Each of the organic and inorganic binders is used as a binder material to treat the fluorescent body as a mass. The binder is used, when the substrate is used, as a material for attaching fluorescent bodies and diffusers to the substrate. When the substrate is not used, the binder is a binder material for solidifying the fluorescent body layer. As an organic binder, from the point of view of heat resistance, a silicone resin and an epoxy resin are often used. Inorganic binders include heat-resistant ceramic adhesive materials such as low-melting glass frit and ARON® CERAMIC produced by Toagosei, Co., Ltd. The low-melting glass frit, which is resistant to air bubbles and volume shrinkage, is often used. This embodiment also makes it possible to use these binders. It is desirable that the binder has, at the wavelength of the fluorescent light, a refractive index of 1.4 or more and 1.6 or less. In addition, it is desirable that the diffuser has a refractive index between those of the fluorescent body and the binder. It is desirable that the refractive indices of the fluorescent body and the diffuser have a difference of 0.3 or less. It is desirable that the refractive indices of the binder and the diffuser have a difference of 0.1 or more. On the other hand, it is desirable that a total thickness of the binder (i.e., the fluorescent body layer) comprising the fluorescent bodies and the diffusers be 50 μm or more and 200 μm or less. <Substrate> [0043] This embodiment may use the substrate for fixedly supporting the fluorescent body layer. Figs. 3A and 3B each illustrate a relationship between a fluorescent body layer 10 and a substrate 8. Figs. 3A and 3B each further illustrate an excitation light 12 and a fluorescent light 14. Fig. 3A illustrates a transmissive type in FIG. wherein the excitation light 12 enters the optically transmissive substrate 8 from its (lower) rear face and is emitted therethrough to be projected towards the fluorescent body layer 10 disposed on a front (upper) face of the 8 and thus to extract the fluorescent light 14. In this transmissive type, from the point of view of the radiation of the heat produced in the fluorescent body, it is desirable to use, as the substrate 8, a material consisting of a material having optical transmissivity and high thermal conductivity, such as diamond and sapphire. FIG. 3B illustrates a reflective type in which the excitation light 12 is projected towards the fluorescent body layer 10 from a side opposite the substrate 8 and in which the fluorescent light 14 is directly emitted towards the opposite side of the substrate 8 and the fluorescent light 14 reflected by the substrate 8 and emitted towards the opposite side of the substrate 8 are extracted. In this reflective type, it is desirable to use, as the substrate 8, a material consisting of a metal, or other material, reflecting visible light without transmitting it, and in particular, it is desirable to use a material having a high thermal conductivity, such as Al, Cu and graphite. <Concentration and Particle Diameter of the Diffusers> [0045] In order to improve the fluorescent light emission (extraction) efficiency described above, it is necessary to arrange the diffusers near the fluorescent body so that the distances between them become a specific distance. In the following description, in a cube, a remaining space other than a space in which the fluorescent body is disposed is filled with the binder and the diffusers, the minimum particle diameter of the diffusers is represented by D, and the distances between the diffusers are represented by d. The distance between the fluorescent body and the diffuser may be considered to be equal to the distance d between the diffusers. Therefore, the distance d between the fluorescent body and the diffuser can be expressed as follows. A volume (unit volume) V of the remaining space described above can be expressed by: V = (D + d) 3. In addition, a volume of all the diffusers can be expressed by: Therefore, a ratio of the volume of all the diffusers to a total volume of all the diffusers and the binder, that is to say a concentration X of the diffusers, can be expressed by: As a result, the distance d can be expressed as indicated below using the X concentration and the minimum particle diameter D of the diffusers. (1) The distance d at which the fluorescence extraction efficiency is improved is closely related to the concentration of the diffusers. When the excitation light is a blue light and when the fluorescent light is a yellow light, a distance d of 600 nm or less improves the fluorescent light extraction efficiency. For example, when using diffusers A and C, which will be described later in embodiments 1 and 2, a concentration (expressed in percentages) X of 25% or more leads to a distance d of 600 nm or less. A distance d of 500 nm or less further enhances the fluorescent light extraction efficiency, and a distance d of 300 nm or less further enhances the fluorescent light extraction efficiency. [0052] The following is a description of specific embodiments (experimental examples). In the description presented below, the concentration X is expressed in percentages. [Embodiment 1] [0053] FIG. 4 illustrates a relationship between the concentrations (%) of the diffusers and the fluorescent light emission yields (extraction) in a first embodiment (Embodiment 1). This embodiment consisted in using a YAG fluorescent body. The fluorescent body had an average particle diameter of 10 μm and a minimum diameter of 5 μm. The substrate was Al and had a thickness of 1 mm. The diffusers consisted of barium sulphate. The diffusers had two types of diffusers, namely diffusers A with average and minimum particle diameters of 2 μm and 1 μm respectively, and diffusers B with average and minimum particle diameters of 6 μm and 3 μm, respectively. ym. Concentrations of the diffusers were set at 20%, 30%, 40%, and 60%. The binder consisted of an epoxy resin produced by Shin-Etsu Chemical Co., Ltd. This embodiment consisted in mixing, the diffusers and the binder whose total volume was equal to 1, the fluorescent bodies whose volume ratio was equal to 0.5 in order to produce a paste, to carry out agitation and deforming the paste, printing the stirred paste on the Al substrate and then hardening the printed paste by means of an oven at 200 ° C. This embodiment consisted in evaluating a sample of the fluorescent body layer thus produced, using a blue laser whose wavelength was 455 nm as excitation light. This embodiment consisted in using, as a laser light source, a blue LD produced by Nichia Co., Ltd. Projection of the blue laser onto the fluorescent body layer with an exposure intensity of 30 W / mm 2 resulted in a yellow fluorescent light emission efficiency shown in Figure 4. The diffusers A whose concentrations were 30% and 40% produced an effect of improving the fluorescent light emission efficiency, and moreover, the diffusers A whose concentrations were 20% and 60%. did not produce this effect. In addition, when the concentration was 60%, a high level of solids in the dough made it difficult to place a single layer of dough on the substrate and made it impossible to planarize an uneven surface of the dough by leveling. , or other, during a production process. This increased the surface reflection thus reducing the fluorescent light emission efficiency. The minimum particle diameter of 1 μm of the diffusers A was equal to 1/4 or more and 4 times or less the wavelength of the fluorescent yellow wire. Furthermore, the use of the diffusers B whose minimum particle diameter of 3 μm is greater than 4 times the wavelength of the fluorescent yellow light, did not improve the fluorescent light emission efficiency independently of their concentration. Therefore, the effect of improving the fluorescent light emission efficiency is obtained when the minimum particle diameter of the diffusers is equal to 1/4 or more and 4 times or less the wavelength of the fluorescent light and the ratio (concentration) of the volume of all the diffusers to the total volume of all the diffusers and the binder is 25% or more and 50% or less. The condition described above according to which the minimum particle diameter of the diffusers is equal to 1/4 or more and 4 times or less the wavelength of the fluorescent light and the volume ratio of all the diffusers. the total volume of all diffusers and binder is 25% or more and 50% or less can be applied to cases other than the one where the excitation light is blue light and where the fluorescent light is the yellow light . When the minimum and average particle diameters of the diffusers A are 1 μm and 2 μm, respectively, and when their concentration is 30%, the preceding expression (1) provides, as distance d (= d 0) , 407 nm. In this embodiment, an optical transmittance T of the fluorescent body layer is modified by a typical optical tunnel effect, as illustrated in FIG. 5. As illustrated in FIG. 5, the optical tunnel effect appears significant when d / λ is equal to 0.5. The wavelength (or dominant wavelength) of the fluorescent light is about 550 nm, so that the distance d is about 275 nm when d / λ is 0.5. When an SEM (Scanning Electron Microscopy) image is observed in effective cross-sectional view of the fluorescent body layer sample, all mutually adjacent scattering particles are not located at equal intervals, but are located at various locations. intervals ranging from dO / 2 to 2d0. It follows from this fact that dO / 2 can be considered to be practically equal to d, and therefore d0 / 2 "d is equal to 204 nm, so that it will be understood that the distance d calculated by the expression ( 1) produces the effect of improving the fluorescent light emission efficiency. [Embodiment 2] [0063] FIG. 6 illustrates, in its left-hand part, a relationship between the concentrations (%) of the diffusers and the fluorescent light emission efficiencies in a second embodiment (Embodiment 2). . This embodiment consisted in using, in addition to the diffusers A and B described in the embodiment 1, diffusers C whose minimum and average particle diameters were respectively 0.5 μm and 1 μm. The bold characters shown in Figure 6 indicate a range for which fluorescent light emission efficiencies were improved by 1% or more. This range is a range for which, as illustrated in a right-hand part of FIG. 6, the distance d calculated by the expression (1) is 300 nm or less. [Embodiment 3] [0064] A third embodiment (Embodiment 3) consisted in modifying a ratio of the volume of all the fluorescent bodies to a total volume of all the fluorescent bodies and diffusers in a range of 0 , 5 to 1.5, and more specifically 0.5, 0.75, 1, 1.25, and 1.5. The modification of the ratio made it possible to adjust a ratio of the amount of light between the unconverted light and the fluorescent light emitted by the fluorescent body layer. This adjustment has produced a white light with good chromaticity. [Embodiment 4] [0065] A fourth embodiment (Embodiment 4) was to use a binder consisting of a low melting point glass. In this case, the binder did not go into a state of low viscosity, i.e. different from a silicone resin and an epoxy resin, so that it was easy to disperse uniformly the fluorescent bodies and the diffusers in the binder and that it has thus been possible to produce a fluorescent body layer with a high fluorescent light emission efficiency. [Embodiment 5] [0066] A fifth embodiment (Embodiment 5) was to use diffusers whose average particle diameter was 0.1 μm or more and 5 μm or less. The diffusers of this embodiment provided a satisfactory diffusivity of light and a satisfactory effect of improving the fluorescent light emission efficiency. [Embodiment 6] [0067] A sixth embodiment (Embodiment 6) was to use, as the material of the fluorescent bodies, a YAG-Ce whose refractive index is 1.82, and consisted of using, as a material of the binder, a silicone resin whose refractive index is 1.43. In addition, this embodiment has consisted in using, as a material of the diffusers, a barium sulfate whose refractive index is 1.64. The selection of these materials has made it possible to produce a fluorescent body layer capable of emitting light whose absolute luminance value is 20% greater than that observed in embodiment 1. [Embodiment 7] [0068] A seventh embodiment (Embodiment 7) consisted of producing a wheel-shaped (or annular or disk-shaped) fluorescent body layer in which the fluorescent bodies, the diffusers and the binder are mutually mixed in equal volume ratios. This embodiment consisted of rotating this circumferentially fluorescent body layer and projecting the excitation light over a circumferential portion of the rotating fluorescent body layer. This has made it possible to generate light from the fluorescent body layer while reducing the variations in its luminance and color due to the heat produced in the fluorescent body layer. Specifically, the use of the wheel-shaped fluorescent body layer with a thickness of 100 μm and a diameter of 10 cm reduced the luminance variation to about 3%. Moreover, a case consisting in using a fluorescent body layer that does not include diffusers and a case consisting in using a fluorescent body layer comprising two layers, one layer of which is formed by mixing the diffusers with the binder and the other layer of which is formed by mixing the fluorescent bodies with the binder, caused a luminance variation of about 12%. [Embodiment 8] [0069] An eighth embodiment (Embodiment 8) consisted in producing the fluorescent body layer by mixing the fluorescent bodies and the diffusers with the binder and placing (printing) the mixture on the substrate . This production process requires only one printing process and thus reduces the production cost of the fluorescent body layer, compared to a case of separately placing a mixture of the fluorescent bodies and the binder and a mixture of the diffusers. and binder. [Embodiment 9] [0070] A ninth embodiment (Embodiment 9) consisted in producing, on a polycrystalline fluorescent body (fluorescent body in the form of a plate), the fluorescent body layer (mixture of the diffusers and the silicone resin binder) whose concentration of the diffusers is one of those described in Embodiments 1 and 2. This embodiment has improved the fluorescent light emission efficiency by 4%, as compared to one case. comprising placing a silicone resin binder having no diffusers on the polycrystalline fluorescent body. A similar result was obtained in a case of using a monocrystalline fluorescent body instead of the polycrystalline fluorescent body. As described above, each of the embodiments 1 to 9 has made it possible to produce a wavelength conversion element whose structure is simple and whose fluorescent light emission efficiency is high. Therefore, the use of this wavelength converting element makes it possible to produce a light source apparatus whose luminance is greater than that of the conventional elements and to provide a projector capable of projecting images brighter than the conventional elements. . Although the present invention has been described with reference to embodiments, it should be noted that the invention is not limited to the embodiments described.
权利要求:
Claims (16) [1" id="c-fr-0001] A wavelength conversion element configured to generate a fluorescent light by converting a wavelength of a portion of an excitation light and thereby to generate a combined light in which the fluorescent light is combined with a unconverted light whose wavelength is identical to that of the excitation light, the wavelength conversion element comprising: a fluorescent body; a binder in contact with the fluorescent body; and multiple scattering particles contained in the binder, characterized in that: a minimum particle diameter of the multiple scattering particles meets the conditions that it is greater than or equal to 1/4 of a wavelength of the fluorescent light and it is less than or equal to 4 times the wavelength of the fluorescent light; and a ratio of a volume of the multiple scattering particles to a total volume of the binder and the multiple scattering particles respects the conditions according to which it is greater than or equal to 25% and it is less than or equal to 50%. [2" id="c-fr-0002] A wavelength conversion element configured to generate a yellow light as a fluorescent light by converting a wavelength of a portion of a blue light as excitation light and thereby to generate a light combined in which the yellow light is combined with the blue light, the wavelength conversion element comprising: a fluorescent body; a binder in contact with the fluorescent body; and multiple scattering particles contained in the binder. wherein, when D represents a minimum particle diameter of the multiple scattering particles, X represents a ratio of a volume of the multiple scattering particles to a total volume of the binder and the multiple scattering particles, and d is defined by: d is 600 nm or less. [3" id="c-fr-0003] The wavelength conversion element according to claim 2, wherein d is equal to 300 nm or less. [4" id="c-fr-0004] The wavelength conversion element according to any one of claims 1 to 3, wherein, when the volume of the multiple scattering particles is 1, a volume of the fluorescent body meets the conditions that it is greater than or equal to 1, equal to 0.5 and less than or equal to 1.5. [5" id="c-fr-0005] A wavelength conversion element according to any one of claims 1 to 4, wherein: the fluorescent body is contained as multiple fluorescent body particles in the binder; and when an average value of a maximum particle diameter and a minimum particle diameter of the particles is referred to as the average particle diameter, the plurality of fluorescent body particles have an average particle diameter greater than that of the particles. multiple scattering particles. [6" id="c-fr-0006] The wavelength conversion element according to any one of claims 1 to 5, wherein the minimum particle diameter of the multiple scattering particles is less than or equal to 2 μm. [7" id="c-fr-0007] The wavelength conversion element according to any one of claims 1 to 6, wherein when an average value of a maximum particle diameter and a minimum particle diameter of the particles is designated as the As the average particle diameter name, the multiple scattering particles have an average particle diameter that is greater than or equal to 0.1 μm and less than or equal to 5 μm. [8" id="c-fr-0008] 8. A wavelength conversion element according to any one of claims 1 to 7, wherein the scattering particle has a refractive index between those of the fluorescent body and the binder. [9" id="c-fr-0009] The wavelength conversion element according to claim 8, wherein the scattering particle has, for a wavelength of the fluorescent light, a refractive index which is greater than or equal to 1.7 and less than or equal to at 2.0. [10" id="c-fr-0010] The wavelength conversion element according to claim 8 or 9, wherein the binder has, for a wavelength of the fluorescent light, a refractive index which is greater than or equal to 1.4 and lower or equal to 1.6. [11" id="c-fr-0011] The wavelength conversion element according to any one of claims 8 to 10, wherein the fluorescent body and the scattering particle exhibit, for a wavelength of the fluorescent light, a difference in refractive index. which is less than or equal to 0.3. [12" id="c-fr-0012] A wavelength conversion element according to any one of claims 8 to 11, wherein the binder and the scattering particle have, for a wavelength of fluorescent light, a difference in refractive index which is greater than or equal to 0.1. [13" id="c-fr-0013] 13. A wavelength conversion element according to any one of claims 1 to 12, wherein a total thickness of the binder comprising the fluorescent body and the multiple scattering particles is greater than or equal to 50 μm and less than or equal to 200 μm. pm. [14" id="c-fr-0014] The wavelength conversion element according to any one of claims 1 to 13, wherein the binder comprising the fluorescent body and the multiple scattering particles is annularly or disc-shaped. [15" id="c-fr-0015] A light source apparatus comprising: a light source configured to emit excitation light; and a wavelength conversion element according to any one of claims 1 to 14. [16" id="c-fr-0016] An image projection apparatus comprising: a light source apparatus according to claim 15; and an optical system configured to project an image using a light modulation element configured to modulate the combined light from the light source apparatus.
类似技术:
公开号 | 公开日 | 专利标题 FR3051925A1|2017-12-01| US10423054B2|2019-09-24|Wavelength conversion structure and projection device US9581879B2|2017-02-28|Light wavelength conversion module, illumination system, and projection apparatus TWI479676B|2015-04-01|Side emitting device with hybrid top reflector CN105423238A|2016-03-23|Wavelength conversion member, light emitting device, projector, and method of manufacturing wavelength conversion member WO2012017838A1|2012-02-09|Light source device US8727563B2|2014-05-20|Luminescent device for the conversion of pump light EP2584617A1|2013-04-24|Light-emitting diode component CA2716595C|2014-05-13|Submicronic barium and magnesium aluminate, method for making same and use thereof as a phosphor US20200011507A1|2020-01-09|Wavelength conversion member, light source and lighting device Yuce et al.2019|Phosphor-based white LED by various glassy particles: control over luminous efficiency CN102946787B|2015-08-26|Luminaire US10599026B2|2020-03-24|Wavelength conversion module, forming method of wavelength conversion module, and projection device US11114590B2|2021-09-07|Wavelength conversion module, method of forming the same and projection apparatus JP6723939B2|2020-07-15|Wavelength conversion element, light source device, and image projection device CN102721005A|2012-10-10|Wavelength conversion device and light-emitting device US20190032866A1|2019-01-31|Light emitting device and illuminating apparatus US20200233291A1|2020-07-23|Wavelength conversion device and projection device US10602103B2|2020-03-24|Wavelength conversion wheel and projection apparatus FR3088103A1|2020-05-08|Lighting device, preferably having an adjustable or adjusted chromaticity point, and its use, as well as a method for adjusting the chromaticity point of a lighting device FR3063396A1|2018-08-31|SIGNALING DEVICE FOR A MOTOR VEHICLE, AND SIGNALING LIGHT EQUIPPED WITH SUCH A DEVICE FR3011615A1|2015-04-10| US10854791B2|2020-12-01|Wavelength conversion module, method for forming wavelength conversion module, and projection device US11099378B2|2021-08-24|Wavelength conversion module and projection device FR3000783A1|2014-07-11|PHOTO-ACTIVE STRUCTURE, METHOD OF MANUFACTURING SUCH STRUCTURE AND LIGHTING SYSTEM
同族专利:
公开号 | 公开日 US20170343890A1|2017-11-30| US10775686B2|2020-09-15| GB2553614B|2020-02-19| DE102017111712A1|2017-11-30| GB2553614A|2018-03-14| GB201708667D0|2017-07-12| CN107450261A|2017-12-08| CN107450261B|2021-02-05|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JP2006319238A|2005-05-16|2006-11-24|Koito Mfg Co Ltd|Light emitting device and vehicle-mounted lighting fixture| JP2007053170A|2005-08-16|2007-03-01|Toshiba Corp|Light emitting device| JP5330072B2|2009-04-22|2013-10-30|帝人デュポンフィルム株式会社|Reflective film for liquid crystal display| JP2011071404A|2009-09-28|2011-04-07|Kyocera Corp|Light-emitting device and illumination apparatus| JP2011155125A|2010-01-27|2011-08-11|Kyocera Corp|Light-emitting device, and illumination apparatus| JP2011180353A|2010-03-01|2011-09-15|Minebea Co Ltd|Projector| JP2012108435A|2010-11-19|2012-06-07|Minebea Co Ltd|Color wheel and manufacturing method of the same| JP2012243624A|2011-05-20|2012-12-10|Stanley Electric Co Ltd|Light source device and lighting device| US9512976B2|2012-04-13|2016-12-06|Sharp Kabushiki Kaisha|Light-emitting device, display device and illumination device| JPWO2014006987A1|2012-07-04|2016-06-02|シャープ株式会社|Fluorescent material, fluorescent paint, phosphor substrate, electronic device and LED package| WO2014104295A1|2012-12-28|2014-07-03|コニカミノルタ株式会社|Light emitting device| US20160102819A1|2013-04-24|2016-04-14|Hitachi Maxell, Ltd.|Light source device and vehicle lamp| JP2014229503A|2013-05-23|2014-12-08|パナソニック株式会社|Light-emitting device, method for manufacturing the same, and projector| JP2015089898A|2013-11-05|2015-05-11|信越化学工業株式会社|Inorganic phosphor powder, curable resin composition using inorganic phosphor powder, wavelength conversion member and optical semiconductor device| JP6364257B2|2013-11-20|2018-07-25|日本碍子株式会社|Optical components| TWI533479B|2013-12-30|2016-05-11|國立交通大學|Package structure and method for manufacturing the same| US20160102818A1|2014-10-13|2016-04-14|Vastview Technology Inc.|Led-based lighting module using slow decay phosphor to reduce flicker| WO2016121855A1|2015-01-30|2016-08-04|コニカミノルタ株式会社|Color wheel for projection-type display device, method for manufacturing same, and projection-type display device including same| JP6115611B2|2015-10-22|2017-04-19|住友大阪セメント株式会社|Optical semiconductor light emitting device, lighting fixture, and display device|JP2019105826A|2017-12-12|2019-06-27|日本電気硝子株式会社|Wavelength conversion member, manufacturing method therefor, and light-emitting device| CN110058479A|2018-01-19|2019-07-26|中强光电股份有限公司|Lighting system and projection arrangement| CN110058478B|2018-01-19|2022-01-18|中强光电股份有限公司|Illumination system and projection device| CN108983543B|2018-08-15|2021-05-28|青岛海信激光显示股份有限公司|Reflective projection screen, transmissive projection screen and projection system| US20210341823A1|2018-08-27|2021-11-04|Sony Corporation|Wavelength conversion element and light source module and projection display device| CN109958925B|2019-02-16|2021-06-29|上海祥羚光电科技发展有限公司|Area light source|
法律状态:
2018-04-20| PLFP| Fee payment|Year of fee payment: 2 | 2019-05-17| PLFP| Fee payment|Year of fee payment: 3 | 2019-10-04| PLSC| Search report ready|Effective date: 20191004 | 2020-05-15| PLFP| Fee payment|Year of fee payment: 4 | 2021-07-29| PLFP| Fee payment|Year of fee payment: 5 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP2016108050|2016-05-31| JP2017020127A|JP6723939B2|2016-05-31|2017-02-07|Wavelength conversion element, light source device, and image projection device| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|