![]() ORGANIC OPTOELECTRONIC DEVICE, MATRIX OF SUCH DEVICES AND METHOD OF MANUFACTURING SUCH MATRIXES.
专利摘要:
Optoelectronic device (1) comprising a stack of layers arranged on an electrically insulating substrate (2), of which at least one cathode (3) made of an output working material φ1, an electron collection layer (4), arranged at above said cathode (3), made of an output working material φ2 and a square resistance R, an active layer (5) comprising at least one p-type organic semiconductor material of energy level HO1, characterized in that said output work φ2 of said electron collection layer (3) and said energy level HO1 of said active layer (5) form a potential barrier capable of blocking the injection of holes from said cathode (3) to said layer active (5) and said square resistance R of said electron collection layer (4) is greater than or equal to 108 Ω. 公开号:FR3046300A1 申请号:FR1563286 申请日:2015-12-23 公开日:2017-06-30 发明作者:Mohammed Benwadih;Simon Charlot;Jean-Yves Laurent;Jean-Marie Verilhac;Emeline Berthod;Pierre Rohr 申请人:Commissariat a lEnergie Atomique CEA;Isorg SA;Trixell SAS;Commissariat a lEnergie Atomique et aux Energies Alternatives CEA; IPC主号:
专利说明:
(1) En présence d’un éclairement, les trous photo-générés peuvent se déplacer vers la surface de la couche de collection des électrons 4 et neutraliser les ions négatifs d’oxygène. Cela conduit à une augmentation de la conductivité à la surface de la couche de collection des électrons 4 selon l’équation 2: (2) La résistivité et le travail de sortie du matériau de la couche de collection des électrons 4 sont sensibles à la lumière, comme expliqué précédemment. Afin de stabiliser la couche de collection des électrons 4, on peut déposer au dessus de la couche de collection des électrons 4 une couche de stabilisation 10, qui présente une plus grande stabilité à la lumière. Cette couche de stabilisation 10 peut par exemple être réalisée en oxyde d’étain (SnOx) ou d’oxyde de palladium (PdOx) dont les résistances sont élevées, par exemple strictement supérieures à 108 Ω/π et préférentiellement strictement supérieures à ΙΟ10 Ω/α. Une couche de stabilisation 10 peut être plus généralement réalisée en matériau de type oxyde opaque. L’épaisseur d’une couche de stabilisation 10 est par exemple comprise entre 1 et 500 nm et préférentiellement comprise entre 10 et 50 nm. De manière générale, dans un mode de réalisation de l’invention, un dispositif optoélectronique matriciel 8 comporte une couche de stabilisation 10 agencée entre une couche de collection des électrons 4 commune et au moins un couche active 5, la couche de stabilisation 10 étant apte à réduire la dépendance de la résistivité du matériau de la couche de collection des électrons 4 commune en fonction de la luminosité. Dans la figure 9, chaque carré gris correspond à une couche déposée pour la réalisation d’un dispositif optoélectronique matriciel 8 : une couche de stabilisation 10 est déposée entre la couche de collection des électrons 4 commune et une ou plusieurs couches actives 5. Dans des modes de réalisation de l’invention, la couche de collection des électrons 4, la couche de stabilisation 10, la couche active 5, et/ou la couche de collection des trous 6 peuvent être communes à une partie ou à l’ensemble des dispositifs optoélectroniques 1 du dispositif optoélectronique matriciel 8. Une couche de collection des électrons 4 peut être dopée par des éléments, ou impuretés de type p. Ces éléments sont par exemple du cuivre, du nickel, du cobalt, du palladium, du molybdène, du manganèse et/ou du fer. Une impureté de type p présente dans une couche de collection des électrons 4, par exemple en ZnO, permet de limiter la conductivité électrique associée à des porteurs de charges positifs (trous) qui bloquent le courant électrique et augmentent la résistance du matériau de la couche de collection des électrons 4. De manière générale, une couche de collection des électrons 4 commune peut comporter des éléments de type p, et avantageusement du palladium, du cobalt et/ou du cuivre pour former des oxydes isolants ou semi-conducteurs de type p tels que PdO, CoO ou CuO par exemple. Dans des modes de réalisation de l’invention, on utilise une méthode sol-gel pour la réalisation d’une couche de collection des électrons 4. La méthode de dépôt par voie sol-gel présente l’avantage d’être simple à mettre en œuvre et peu coûteuse. La mise en œuvre d’un procédé sol-gel est décrite ultérieurement. Dans un mode de réalisation de l’invention, un procédé pour la fabrication d’un dispositif optoélectronique 1 et/ou d’un dispositif optoélectronique matriciel 8 comporte au moins une étape consistant à former une dite couche de collection des électrons 4 par un procédé sol-gel, le procédé sol-gel comportant une étape de dépôt d’une solution comportant des polymères précurseurs 15. Les dits polymères précurseurs 15 peuvent être obtenus à partir d’acétates métalliques, de nitrates métalliques et/ou de chlorures métalliques. Un procédé sol-gel ne nécessite pas d’équipement lourd et spécifique, contrairement à une méthode de pulvérisation dans un vide partiel. Ce procédé consiste à étaler avec une tournette ou avec des équipements d’impression (jet d’encre, sérigraphie) sur un substrat une solution comportant un solvant et des polymères précurseurs 15 du matériau de la couche de collection des électrons 4, par exemple de ZnO. Le solvant est ensuite évaporé et un traitement thermique peut permettre ensuite de cristalliser la couche formée. Généralement, une couche déposée est peu dense et très résistive si la température de traitement thermique post-dépôt est inférieure à 400°C. Dans le cas de la formation de ZnO, la couche de collection des électrons 4 comporte du ZnO et des résidus organiques provenant de la synthèse (par exemple des polymères précurseurs 15, additifs et/ou solvant). Ces résidus de synthèse influencent la conductivité électrique d’une couche de collection des électrons 4. La figure 10 illustre dans un diagramme la variation de la concentration normalisée de polymères précurseurs 15 d’une réaction sol-gel, par analyse gravimétrique, après un traitement thermique ultérieur au dépôt. Plus précisément, le rapport illustré correspond à 1 — (mj — m^/mj , mf étant la masse finale en polymères précurseurs 15 pour une espèce donnée et m; la masse initiale en polymères précurseurs 15 pour une espèce donnée. La courbe (a), en petits pointillés, illustre ce rapport en fonction de la température du traitement thermique lors de l’utilisation de polymères précurseurs 15 de type nitrate. La courbe (b), en gros pointillés, illustre ce rapport en fonction de la température du traitement thermique lors de l’utilisation de polymères précurseurs 15 de type acétates. La courbe (c), en trait continu, illustre ce rapport en fonction de la température du traitement thermique lors de l’utilisation de polymères précurseurs 15 de type chlorure. La figure 11 illustre schématiquement l’influence de la taille des polymères précurseurs 15 sur la distance entre des particules de ZnO. La nature chimique des polymères précurseurs 15 utilisés est une variable de la distance entre les différentes particules, ou agrégats 18 de ZnO formés lors du procédé sol-gel. De manière générale, la résistance électrique d’une couche de collection des électrons 4 varie proportionnellement avec la distance d entre les agrégats 18 plus proches voisins de ZnO. Dans des modes de réalisation de l’invention, la température du traitement thermique ultérieur au dépôt et la distance d peuvent être ajustés de manière à ce que la résistance par carré minimal du matériau d’une couche de collection des électrons 4 soit supérieure à ΙΟ8 Ω/α. La figure 12 illustre schématiquement la diminution de la conductivité électrique lors de la présence de résidus organiques 19 dans une couche de collection des électrons 4. Les traits en pointillés illustrent des lignes de courants dans des agrégats 18 de ZnO : les résidus 19 sont concentrés aux joints entre les agrégats 18. Les constrictions formées entre les agrégats 18 et la présence de résidus 19 dans ces constrictions sont aptes à rendre le matériau plus résistif électriquement. Dans un mode de réalisation de l’invention, on peut utiliser un procédé de dépôt sol-gel qualifié de procédé par « voie de polymérisation complexe ». Ce procédé comprend les étapes consistant à : ajouter des acétates métalliques et/ou nitrates métalliques et/ou chlorures métalliques dans un solvant de 2-méthoxyéthanol agité, à 50°C, jusqu’à obtenir la dissolution leur dissolution dans le solvant : former un complexe métallique par un ajout d’acide acétique éthanol amine dans le solvant, à 70°C. Les ions formés sont des ions acétates et métalliques ; attendre pendant une réaction de polymérisation jusqu’à obtention de polymères précurseurs 15, en agitant le solvant, à 70°C ; déposer la solution de polymères précurseurs 15 sur une cathode 3. Ce procédé présente les avantages d’être adapté à la synthèse de matériaux d’oxydes mixtes ou complexes à partir de sels métalliques communs, tels que les chlorures, les acétates et/ou les nitrates. Avantageusement, on choisit d’utiliser des acétates lors de la mise en œuvre du procédé décrit au paragraphe précédent : ils sont insensibles à la présence d’eau en solution et donc plus stables. On évite alors de devoir mettre en œuvre le procédé sous atmosphère inerte en utilisant des acétates. Avantageusement, les acétates forment après décomposition partielle des oxydes électriquement stables. Leur utilisation permet de réaliser des couches de collection des électrons 4 de manière reproductible. L’emploi d’acide acétique permet d’éviter la précipitation des ions métalliques lors de la seconde étape du procédé sol-gel décrite précédemment, et d’augmenter la durée de vie de la solution préparée pour la mise en ouvre du procédé sol-gel. L’éthanolamine est un complexant et permet de stabiliser et favoriser l’étape de polymérisation du procédé. Dans un mode de réalisation, on peut ajouter des éléments dopants de type p (Pd, Cu, Ni, Co) au cours du procédé sol-gel de manière à diminuer la conductivité de la couche de collection des électrons 4 après traitement thermique. Dans un mode de réalisation de l’invention, on forme une couche de collection des électrons 4 en déposant des nanoparticules de ZnO, greffées de PEIE (polyéthylènimine ethoxylée). Par nanoparticule, on entend une particule dont la taille caractéristique, tel que le diamètre pour une sphère, est comprise entre 0,1 nm et 100 nm. Le PEIE étant un polymère isolant, les couches de collection des électrons 4 réalisées avec des nanoparticules de ZnO greffées par du PEIE ont une résistance par carré très élevée, par exemple supérieure à 1010 Ω/α. Le PEIE peut être greffé aux particules de ZnO par des groupements amines ou hydroxyles. De manière plus générale, un dispositif optoélectronique 1 et/ou un dispositif optoélectronique matriciel 8 peut comporter des nanoparticules d’oxyde métallique et des polymères polaires greffés sur les nanoparticules d’oxyde métallique. La figure 13 illustre schématiquement un dispositif optoélectronique matriciel 8 dans lequel la résistance d’une couche de collection des électrons 4 est augmentée par une réalisation de ladite couche en deux étapes de dépôt, formant deux types de sous-couches. Les deux sous-couches sont séparées par des traits en pointillés sur la figure 13. Un premier dépôt peut être réalisé, formant première une sous-couche 21 d’une épaisseur comprise par exemple entre 10 nm et 15 nm. Cette première sous-couche 21 est commune, et déposée entre les dispositifs optoélectronique 1 (c'est-à-dire entre les différents pixels). Un second dépôt peut être réalisé formant une pluralité de secondes sous-couches 22 plus épaisses. Le dépôt des sous-couches 22 est réalisé selon un motif correspondant au motif de l’agencement des dispositifs optoélectroniques 1. Le dépôt des secondes sous-couches 22 peut être réalisé au travers d’un masque métallique gravé aux endroits correspondant aux dispositifs optoélectroniques 1. Dans un procédé de fabrication d’un dispositif optoélectronique matriciel 8, on peut réduire l’épaisseur d’une couche de collection des électrons 4 entre des dispositifs optoélectroniques 1 de manière à augmenter localement la résistance par carré de la couche de collection des électrons 4. Dans un mode de réalisation de l’invention, au moins un élément choisi parmi un substrat 2, une cathode 3, une couche de collection des électrons 4, une couche active 5, une couche de collection des trous 6 et une anode 7 est transparent. La figure 14 illustre un mode de réalisation de l’invention dans lequel un dispositif optoélectronique matriciel 8 comporte une couche de matériau scintillateur 23. Dans des modes de réalisation de l’invention, une couche de matériau scintillateur 23 peut être agencée sur chacune des anodes 7 du dispositif optoélectronique matriciel 8. Par matériau scintillateur, on entend un matériau apte à emmètre de la lumière, par exemple dans le spectre du visible, suite à l’absorption d’un rayonnement ionisant, par exemple suite à l’absorption de rayons X. Avantageusement, une couche de collection des trous 6 et une anode 7 sont transparente dans ce mode de réalisation. Ainsi le dispositif 8 peut être apte à imager les rayons X. Dans des modes de réalisation de l’invention, la détection de rayons X peut être directement réalisée dans la couche active. Dans ce cas, il n’est pas nécessaire que le substrat 2, la cathode 3, la couche de collection des électrons 4, la couche de collection des trous 6 et/ou l’anode 7 soient transparents. The invention relates to an organic optoelectronic device and a matrix of such devices, of the type of photodetector array (pixelated imager) or display matrix. BACKGROUND OF THE INVENTION The invention applies in particular, but not exclusively, to the production of large-area matrix X-ray imagers for medical radiology, non-destructive testing or safety, based on an indirect detection principle and preferably using , organic semiconductors. In the field of X-ray imaging, two detection modes are commonly employed. A first mode, said direct detection mode, consists in using a matrix of photodetectors, each photodetector being able to convert the X-rays which it absorbs into electric charge. A second mode, called indirect, consists of converting X-rays into visible photons first, via a scintillator, and then using a matrix of photodetectors to convert the visible photons produced into electrical charge. The invention relates to a matrix of pixels for the indirect detection of X-rays, each pixel being composed of at least one transistor (TFT type for thin film transistor) coupled to an organic photodetector. In each of the pixels, a transistor is commonly connected to a first electrode of an organic photodetector. A layer adapted for photo-conversion of light is commonly deposited on the first electrode. This layer may for example be organic and comprise a nanostructured mixture of p-type and n-type semiconductors (Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery , K., & Yang, Y., 2005, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature materials, 4 (11), 864-868). An upper electrode is then deposited on the photo-conversion layer. Figure 1 schematically illustrates the structure of an organic photodiode, according to the prior art. The stack comprises for example a transparent substrate (glass, polyethylene naphthalate (PEN) or polyethylene terephthalate (PET)). This substrate is covered with a transparent metal electrode (for example indium tin-doped indium oxide (ITO), then a hole collection layer (HCL, for Hole Collecting Layer ), capable of collecting the holes during illumination, for example made of poly (3,4-ethylenedioxythiophene) and sodium poly (styrene sulfonate) (PEDOT: PSS) .These layers are covered with a layer adapted to the photoconversion, said active layer, carried out as described above Finally, the active layer is covered with an electron collection layer (ECL, for Electron Collecting Layer), for example made of aluminum In the example illustrated by FIG. 1, the illumination of the photodiode is carried out by the transparent substrate: this mode of illumination, as well as the structure of the photodiode, are said to be direct.Transport layers of the charge carriers are electrically connected to the collection layers load carriers (HCL and ECL). In the direct structure illustrated in FIG. 1, the holes are transported by an ITO layer and the electron transport is carried out by an aluminum layer. FIG. 2 diagrammatically illustrates an organic photodiode of the so-called inverse structure according to the prior art. The illustrated photodiode comprises a transparent substrate, covered with a transparent electron transport layer (ETL), itself covered with a layer of transparent electron collections (ECL). These layers are covered with an active layer and a hole collection layer (HCL). The HCL is for example covered with a silver layer, the function of which is both to allow the transport of the holes (HTL) and to reflect the incident light coming from the substrate. The ECL is for example made of zinc oxide (ZnO) or of titanium oxide (TiOx) and the HCl is for example made of PEDOT: PSS or metal oxide such as molybdenum oxide, tungsten oxide or vanadium oxide. A structure of this type is disclosed by Jeong, J. et al., Inverted Organic Photodetectors With ZnO Electron-Collecting Buffer Layers and Polymer Bulk Heterojunction Active Layers, Selected Topics in Quantum Electronics, IEEE Journal of 20 (6), 130- 136. In both photodiode structures, direct or inverse, the light can be absorbed by the different layers, in particular by the upper electrode and / or the lower electrode. The manufacture of an inverse organic photodiode matrix as described above is desirable for medical imaging applications. This type of imaging requires very low detection thresholds. One of the ways to achieve a low detection threshold is to limit or suppress the dark current of a photodiode, that is to say the residual current of the photodiode in the absence of illuminance, when the photodiode is polarized. Too high a work output of the material of the electron collection layer promotes a parasitic injection of holes of this layer to the donor of the active layer. One of the solutions of the prior art is to make a lower electrode (in contact with the substrate) in a metallic material whose work output is lower than commonly used materials (generally ΓΙΤΟ). For example, aluminum and chromium have an output work of less than ΓΙΤΟ. These materials have the disadvantage of being unstable in the presence of air because easily oxidizable. This technical problem can be partially solved, as described by Jeong, J. et al. by using an interstitial electron collection layer between the lower electrode and the active layer, whose role is to reduce the workload of the material in contact with the active layer: zinc oxide (ZnO) can be used to this way. The ZnO employed is semiconductor: its use during a deposition in the open field (without a lithography step delimiting patterns) presents a technical problem, because leakage currents can be generated between the different pixels of a photodiode matrix. . A defective pixel, for example in the case of an output job that is not accidentally adapted to the active layer, can induce leakage currents to all neighboring pixels and make the pixel area around it unsuitable for imaging A lithography step to engrave the layer of electron collections to separate the different pixels electrically could be a technical solution. This step is not desirable in a manufacturing process in which too much succession of lithography steps necessary compromises the realization of the device and / or its production efficiency. The invention aims to overcome the aforementioned drawbacks of the prior art, and more particularly to produce an organic optoelectronic matrix device whose leakage currents are minimized while allowing limitation of the photolithography steps during the manufacture of such a device. . An object of the invention making it possible to achieve this goal, partially or totally, is an optoelectronic device comprising a stack of thin planar layers arranged on an electrically insulating substrate, of which at least: a cathode made of an output working material <J>C; an electron collection layer arranged above said cathode, made of an output working material Φι and resistance by square R; an active layer comprising at least one p-type organic semiconductor material of energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer; a hole collection layer, arranged above said active layer; an anode arranged above said hole collection layer; characterized in that: said output work Φ] of said electron collection layer and said energy level HO1 of said active layer form a potential barrier capable of blocking the injection of holes from said cathode to said active layer; said square resistance R of said electron collection layer is greater than or equal to ΙΟ8 Ω. Advantageously, said output work Φ] of said electron collection layer of the device is strictly less than said output work Φο of said cathode. Advantageously, said material of said electron collection layer of the device is selected from zinc oxide and titanium oxide. Another object of the invention is a matrix optoelectronic device comprising a plurality of optoelectronic devices and an electron collection layer common to at least a portion of said optoelectronic devices and physically continuous between each of said optoelectronic devices. Advantageously, the square resistance R of said common collection layer of the matrix optoelectronic device is able to block the charge carrier currents between said optoelectronic devices of said at least one part in said material of said common collection layer. Advantageously, the resistivity of said material of said common electron collection layer of said matrix optoelectronic device is lower in the direction of the thickness of said electron collection layer than in a direction of the main plane of said electron collection layer. Advantageously, a said common electron collection layer of said matrix optoelectronic device comprises crystallites arranged in columns in the direction of the thickness of said electron collection layer. Advantageously, the matrix optoelectronic device comprises at least one stabilization layer arranged between said common electron collection layer and at least one active layer, in which said stabilization layer is able to reduce the dependence of the resistivity of the material of a said layer of common electron collection according to the brightness. Advantageously, the material of said stabilization layer of said matrix optoelectronic device is an opaque oxide preferably selected from tin oxide, palladium oxide. Advantageously, the material of said common electron collection layer of said matrix optoelectronic device comprises p-type doping elements. Advantageously, said p-type doping elements are chosen from palladium, cobalt, copper and molybdenum. Advantageously, at least one said electron collection layer of said matrix optoelectronic device comprises metal oxide nanoparticles and polar polymers, said polar polymers being grafted onto said metal oxide nanoparticles. Advantageously, at least one element selected from a substrate, a cathode, an electron collection layer, an active layer, a hole collection layer and an anode of said matrix optoelectronic device is transparent. Advantageously, said matrix optoelectronic device comprising a layer of scintillator material, said layer being arranged above each said anode. Another object of the invention is a method of manufacturing an optoelectronic device comprising a stack of thin planar layers arranged on an electrically insulating substrate, of which at least: a cathode made of an output working material <DC; an electron collection layer, arranged above said cathode, made of a working material of exit Φι and resistance by square R; an active layer comprising at least one p-type organic semiconductor material of energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer; a hole collection layer, arranged above said active layer; an anode arranged above said hole collection layer; comprising at least one step of depositing the material of said electron-collecting layer by sputtering at a temperature of between 0 ° C. and 100 ° C. in an atmosphere comprising at least 1% and preferably at least 2% by mass of oxygen. Another object of the invention is a method of manufacturing an optoelectronic device comprising a stack of thin planar layers arranged on an electrically insulating substrate, of which at least: a cathode made of an output working material <DC; an electron collection layer arranged above said cathode, made of an output working material Φι and resistance by square R; an active layer comprising at least one p-type organic semiconductor material of energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer; a hole collection layer, arranged above said active layer; an anode arranged above said hole collection layer; said method comprising at least one step of forming a said electron-collecting layer by a sol-gel process, said sol-gel process comprising a step of depositing a solution comprising precursor polymers, said precursor polymers being chosen from metallic acetates, metallic nitrates and metal chlorides. Advantageously, said solution comprises P-type doping elements. Another object of the invention is a method for manufacturing a matrix optoelectronic device comprising a plurality of optoelectronic devices arranged in a pattern, comprising a stack of thin planar layers arranged on an electrically insulating substrate, of which at least: a cathode made in an output work material <J>C; a common electron collection layer, comprising a first sub-layer and a plurality of second sub-layers, arranged above each said cathode, made of an output working material Φι and R-square resistance; an active layer comprising at least one p-type organic semiconductor material of energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer; a hole collection layer, arranged above said active layer; an anode arranged above said hole collection layer; said method comprising at least two sub-steps of depositing said electron-collecting layer comprising: depositing a first common electron collection sub-layer; depositing a plurality of second sublayers in a pattern corresponding to said pattern of said optoelectronic devices. The invention will be better understood and other advantages, details and characteristics thereof will become apparent in the following explanatory description, given by way of example with reference to the accompanying drawings in which: FIG. 3 schematically illustrates the structure an optoelectronic device in reverse structure, according to one embodiment of the invention; FIG. 4 illustrates a band diagram corresponding to a structure of an optoelectronic device according to the prior art; Fig. 5 illustrates a band diagram corresponding to a structure of an embodiment of the invention; FIG. 6 diagrammatically illustrates a matrix optoelectronic device according to one embodiment of the invention; FIG. 7 diagrammatically illustrates a matrix optoelectronic device, seen from above, according to one embodiment of the invention; FIG. 8 schematically illustrates the section of a portion of an optoelectronic device, comprising an electron collection layer comprising crystallites; FIG. 9 schematically illustrates thin layers arranged on the substrate of a matrix optoelectronic device according to one embodiment of the invention; FIG. 10 illustrates in a diagram the variation of the concentration of precursors of a normalized sol-gel reaction; Figure 11 schematically illustrates the influence of precursor polymer size on the distance between ZnO particles; Figure 12 schematically illustrates the decrease in electrical conductivity in the presence of organic residues in an electron collection layer; FIG. 13 schematically illustrates a matrix optoelectronic device in which the resistance of an electron collection layer is increased by a step of etching said layer; FIG. 14 illustrates an embodiment of the invention in which a matrix optoelectronic device comprises a layer of scintillator material. Figure 1 schematically illustrates the structure of an optoelectronic device of the prior art. The device illustrated is a photodiode of direct structure, as described above. FIG. 2 diagrammatically illustrates an organic photodiode of the so-called inverse structure according to the prior art. FIG. 3 schematically illustrates the structure of an optoelectronic device 1 in reverse structure, according to one embodiment of the invention. The optoelectronic device 1 comprises a transparent substrate 2 below which the optoelectronic device 1 can be illuminated. Transparency is understood to be able to partially or totally transmit electromagnetic waves whose wavelengths are in the range of visible and / or near ultraviolet and / or near infrared. The illumination is represented by the black arrows pointing upwards in FIG. 3. The substrate 2 may be made of glass, PEN or PET. A stack of thin planar layers partially forming the optoelectronic device 1 is arranged on the substrate 2. A cathode 3 is arranged above the substrate 2. The cathode 3 is made of a material whose work output is noted <DC. In embodiments of the invention, a cathode 3 can be made of ITO. Cathode 3 may also be qualified in this electron transport layer structure, or ETL (for Electron Transport Rent). An electron collection layer 4 is arranged above the cathode 3. The output work of the material of the electron collection layer 4 is noted Φ] and the resistance per square (measured in Ω / π and / or in Ω) of the electron collection layer 4 is noted R. In embodiments of the invention, R is strictly greater than ΙΟ8 Ω, preferably strictly greater than ΙΟ10 Ω and preferably strictly greater than 10n Ω. The electron collection layer 4 may be made of titanium oxide (TiOx) or zinc oxide (ZnO). An active layer 5 is arranged above the electron collection layer 4. An active layer 5 comprises at least one p-type organic semi-conductor material of energy level of the highest occupied molecular orbital noted HO1 and a semi material -conductor type n, and is adapted to emit or detect light radiation. The active layer 5 is arranged above said electron collection layer 4. The active layer 5 comprises for example a mixture of polymers and fullerenes. The active layer 5 is for example deposited by coating, in a mesytilene-type solvent, with a dry thickness of 200 nm after thermal annealing. This layer is a nanostructured mixture between a regio-regular electron donor material (poly (3-hexylthiophene), known as P3HT RR) and an electron acceptor material (Di [1,4] methanonaphthaleno [1,2,2] ', 3'; 56,60: 2 ", 3"] [5,6] fullerene-C60-Ih, known as ICBA) with a weight ratio of 1: 2. The active layer 5 can cover the entire matrix. It can also be deposited by spraying ("spray coating") in a chlorobenzene type solvent, with a dry thickness of 800 nm after thermal annealing. This layer may also be a nanostructured mixture between an electron donor material (Poly [(4,8-bis (2-ethylhexyloxy) benzo (1,2-b: 4,5-b ') dithiophene) -2 , 6-diyl-alt- (4- (2-thylhexanoyl) -thieno [3,4-b] thiophene -) - 2-6-diyl)], known as PBDTTT-C) and an electron acceptor material ( [6,6] -Phenyl-C71-butyric acid methyl ester, known as [70JPCBM) with a weight ratio of 1: 2. A hole collection layer 6 (HCL, for Holes Collection Rent) is arranged above the active layer 5. In embodiments of the invention, the hole collection layer 6 is made of a material chosen from the PEDOT: PSS, molybdenum oxide (MoO 3), tungsten oxide (WO 3) and vanadium oxide (V 2 O 5). An anode 7 is arranged above the hole collection layer 6. In one embodiment of the invention, the anode is a metal reflector, for example silver, which has the advantage of increasing the energy efficiency of the device Optoelectronics 1. The anode can also be called a hole transport layer or HTL (for Holes Transport Rent). In embodiments of the invention, the output work Φ 1 of the electron collection layer 4 and the energy level of the highest occupied molecular orbital, denoted HO1, of the p-type material of the active layer 5 form a potential barrier capable of blocking the injection of holes from the cathode 3 to the active layer 5. This barrier is strictly greater than 0.3 eV, preferably strictly greater than 0.4 eV and preferably strictly greater than 0.5 eV . The details of the energy levels of the different layers of the device are described in FIG. In one embodiment of the invention, the optoelectronic device is adapted to be illuminated from above. In this case, the anode 7 can be transparent. This embodiment makes it possible to avoid the scattering of incident light rays through the substrate, and to obtain a better resolution in the case of a matrix arrangement of several optoelectronic devices 1. FIG. 4 illustrates a band diagram corresponding to a structure of an optoelectronic device according to the prior art. The output work of the anode 7 (noted ΦΑ) and the cathode 3 (noted <J> C) are defined as the energy difference between the Fermi level of the material of each of the layers and the energy level of the vacuum E0. The electronic affinity of the active layer 5 is defined by the difference in energy between the lowest vacant molecular orbital (called BV or LUMO) of the active layer 5 and the energy level of the vacuum E0, and can respectively be denoted by χη and χΑ for the donor material 11 of the active layer 5 and the acceptor material 12 of the active layer 5. The ionization energy of the active layer 5 is defined by the difference in energy between the highest molecular orbital occupied (so-called HO or HOMO) of the active layer 5 and the energy level of the vacuum E0, and can be respectively noted EID and EIA for the donor material 11 of the active layer 5 and the acceptor material 12 of the active layer 5. The HO of the donor 11 of the active layer 5 is noted HOl. Fig. 5 illustrates a band diagram corresponding to a structure according to an embodiment of the invention. The cathode 3 is characterized by an output work noted Φ (: when carrying out the cathode 3 in ITO, Φε = 4.7 eV The electron collection layer 4 is characterized by an electronic affinity γ and by an ionization energy EI 4. When carrying out the collection layer of the electrons 4 in ZnO, y ^ - 4.2 eV, Φ] = 4.2 eV and EI4 = 7.5 eV The active layer 5 is characterized by an electronic affinity χβ of the donor 11, by an ionization energy EID of the donor 11, by an electronic affinity Χλ of the acceptor 12 and by an ionization energy EIA of the acceptor. embodiment shown in Figure 3, these energy levels can correspond to χπ = 3.7 eV, EID = 5.15 eV, χΑ = 3.9 eV and EIA = 6.0 eV The collection layer of the holes 6 is characterized by an output work Φ6, which may be between 4.9 eV and 5.5 eV when producing the PEDOT: PSS layer. The contacts of the optoelectronic device 1 must have an output work adapted to optimize the injection and especially, in the context of the application described, the collection of photo-generated charges. Ideally, the output work of the anode 7 is aligned with the HO of the donor 11 HO1 of the active layer 5 and the output work of the cathode 3 is aligned with the LUMO of the acceptor 12 of the active layer 5. In embodiments of the invention, an ITO cathode 3 has an output work (e.g., measured by a Kelvin probe) in the range of 4.6 eV to 5 eV. Moreover, most of the donor materials 11 of the prior art have an ionization potential in the range of 4.6 eV to 5.4 eV. A technical solution, to avoid the parasitic injection of holes from an ITO cathode 3 to the donor material 11 of the active layer 5, is to reduce the work function of the material in contact with the active layer 5, for example by depositing a layer between the cathode 3 and the active layer 5, corresponding to the electron collection layer 4. In this embodiment of the optoelectronic device 1, it avoids the injection of parasitic holes from the cathode 3 to the active layer 5 and therefore the dark current of the optoelectronic device 1 can be minimized or suppressed. embodiment of the invention, the output work Φ] of the electron collection layer 4 is strictly less than the output work <J> C of the cathode 3: the injections of parasitic holes can thus be minimized. In general, in one embodiment of the invention, an electron collection layer 4 allows a reverse photodiode structure to form one or more potential barriers capable of blocking the injection of holes from said cathode 3 to said active layer 5. This potential barrier may be at the interface between the active layer 5 and the electron collection layer 4 and / or at the interface between the electron collection layer 4 and the cathode 3. It is also possible to use ethoxylated polyethylenimine (PEIE for ethoxylated polyethylenimine in English) to produce the electron collection layer 4. In embodiments of the invention, it is possible to use an evaporated silver layer as anode 7 and a material chosen from PEDOTrPSS or metal oxides, such as NixOy, CuxOy or MoxOy to make the collection layer of the holes 6. FIG. 6 diagrammatically illustrates a matrix optoelectronic device 8 according to one embodiment of the invention. An optoelectronic matrix device 8 according to the invention comprises a plurality of optoelectronic devices 1. For example, four optoelectronic devices 1 are shown in FIG. 6. A matrix optoelectronic device 8 comprises, according to one embodiment of the invention, a layer collector of electrons 4 common to at least a portion of the optoelectronic devices 1 and materially continuous between each of the optoelectronic devices 1 of the party. In embodiments of the invention, the common electron collection layer 4 has a square resistance strictly greater than ΙΟ8 Ω, preferably strictly greater than ΙΟ10 Ω and preferably strictly greater than ΙΟ11 Ω, and may be able to block charge carrier currents between said optoelectronic devices 1 of said at least one portion in said material of said common electron collection layer 4. In this way, the leakage currents between different optoelectronic devices 1 of the same matrix can be prevented, while depositing the common electron collection layer 4 without additional lithography step. In preferred embodiments of the invention, the common electron collection layer 4 is ZnO. The thickness of the common electron collection layer 4 may be greater than 1 nm, preferably between 5 and 500 nm and preferably between 10 and 40 nm. The common electron collection layer 4 is, for example, deposited by sputtering. FIG. 7 schematically illustrates a matrix optoelectronic device 8, seen from above, according to one embodiment of the invention. Lines 13 and columns 14, made of electrically conductive material, are connected to a TFT matrix 20, making it possible to multiplex the electrical connections between each of the optoelectronic devices 1 and the outside of the matrix optoelectronic device 8, with a view to polarization and / or recovery of charges generated by illumination. The square gray areas illustrated in FIG. 7 correspond to the limits of the optoelectronic devices 1, arranged in the gray part. Each TFT 20 is electrically connected to a lower electrode of the matrix optoelectronic device 8, for example a cathode 3 whose geometry is also defined by a gray square. The black dashed square corresponds to an example of a deposition zone of the common electron collection layer 4. This illustration is schematic for the understanding of the system: a common electron collection layer 4 can cover several million cathodes 3. FIG. 8 schematically illustrates a section in the direction of the thickness of the layers of a portion of an optoelectronic device 1, comprising an electron collection layer 4 comprising crystallites 16. The crystallites 16 are arranged in columns in the direction of the thickness of the electron collection layer 4. In one embodiment of the invention, the common electron collection layer 4 comprises a plurality of crystallites 16. Advantageously, the material of the electron collection layer 4 is deposited so as to grow in a column from the cathode 3. In this way, the lateral conductivity of the electron collection layer 4 (i.e. in a direction of the main plane of the collection layer of the electrons) 4) is limited by the presence of grain boundary defects 17. In the embodiment illustrated in FIG. 8, the conductivity of the collection layer of 4 is substantially unchanged in the direction of the thickness of the layer with respect to an isotropic organization of the material of the electron collection layer 4. On the other hand, the resistance in a direction of the main plane of the layer is dependent on the density of grain boundaries 17 and / or crystallites 16. The deposition temperature of the material of the electron collection layer 4 is also a variable of this lateral resistance. The deposition temperature influences the size of the crystallites of the electron collection layer 4. Especially, when the size of the crystallites 16 increases (during an increase in the deposition temperature for example), the density of the joints 17 between the crystallites 16 decreases is the lateral resistance decreases. On the other hand, if the size of the crystallites 16 decreases, the diffusion by the joints 17 of crystallites 16 becomes predominant and the lateral resistance increases. More generally, in embodiments of the invention, the resistivity of the material of the common electron collection layer 4 is lower in the thickness direction of said electron collection layer 4 than in one direction. of the main plane of said electron collection layer 4. Even more generally, the resistivity of the material of the electron collection layer 4 is anisotropic in embodiments of the invention. In embodiments of the invention, the output work of the material of the electron collection layer 4, such as that of ZnO, is preferably between 4 eV and 4.7 eV for <DC = 4.7 eV, χο = 3.7 eV, EID = 5.15 eV. An output work of this material less than 4.7 eV makes it possible to guarantee the operation of the optoelectronic device 1 or the matrix optoelectronic device 8, and an output work of greater than 4 eV makes it possible to minimize or eliminate the injection of charge carriers. interference in the optoelectronic device or the matrix optoelectronic device 8. In general, undoped zinc oxide is considered an n-type semiconductor. The method by which the electron collection layer 4 is deposited, in particular when the material is ZnO, makes it possible to change its electrical conduction properties. For an ambient deposition temperature, and an atmosphere comprising more than 1% by mass of oxygen, preferably more than 2% by mass of oxygen, the resistance of an electron collection layer 4 made of ZnO is between 109 and ΙΟ12 Ω. / π. For a deposition temperature of between 100 ° C. and 400 ° C., and in the presence of oxygen, the squared resistance is substantially constant and equal to 1 Ω / π. More generally, an embodiment of the invention is a method for manufacturing an optoelectronic device 1 and / or a matrix optoelectronic device 8 comprising at least one step of depositing the material of a layer electron collection 4 by a physical thin layer deposition method, for example by sputtering, at a temperature between 0 ° C and 100 ° C inclusive, in an atmosphere having at least 1% by weight of oxygen, and preferably 2 % by weight of oxygen. The resistance of the deposition layer is reduced by annealing (heat treatment) after a deposition carried out at a temperature between 0 ° C and 100 ° C. For example, for a collection layer 4 electrons ZnO, a heat treatment at a temperature above 200 ° C causes a resistance per square between 10 Ω / π and ΙΟ9 Ω / π. This reduction in resistance by heat treatment can be attributed to the oxidation of ZnO in the presence of air. The resistance of an electron collection layer 4 can be adjusted according to the deposition and annealing method of said layer. FIG. 9 schematically illustrates the thin layers arranged on a substrate of a matrix optoelectronic device 8 according to one embodiment of the invention. The different layers are spaced apart for the understanding of the diagram although they are in direct contact in one embodiment of the invention. As a function of the technological parameters used in the production of a matrix optoelectronic device 8, the resistivity of the ZnO of an electron collection layer 4 does not follow a simple evolution with the deposition or post-deposition temperature of the deposit. The resistivity of the electron collection layer material 4 may also depend on its environment. For example, in the presence of oxygen, an adsorption and desorption process takes place on the surface of the electron collection layer 4. Oxidizing molecules in the gaseous state, such as oxygen, can be adsorbed at the ZnO surface and be converted to negative ions 02. This process creates a zone depleted in free charge carriers and decreases the conductivity of the surface of the electron collection layer 4 according to equation 1: (1) In the presence of illumination, the photo-generated holes can move towards the surface of the electron collection layer 4 and neutralize the negative ions of oxygen. This leads to an increase in the conductivity at the surface of the electron collection layer 4 according to equation 2: (2) The resistivity and the output work of the material of the electron collection layer 4 are light sensitive, as previously explained. In order to stabilize the electron collection layer 4, a stabilization layer 10, which has a greater stability to light, can be deposited above the electron collection layer 4. This stabilization layer 10 may for example be made of tin oxide (SnOx) or of palladium oxide (PdOx) whose resistances are high, for example strictly greater than 108 Ω / π and preferably strictly greater than ΙΟ10 Ω / α. A stabilizing layer 10 may be more generally made of opaque oxide material. The thickness of a stabilization layer 10 is for example between 1 and 500 nm and preferably between 10 and 50 nm. In a general embodiment, in one embodiment of the invention, a matrix optoelectronic device 8 comprises a stabilization layer 10 arranged between a common electron collection layer 4 and at least one active layer 5, the stabilization layer 10 being suitable. to reduce the dependence of the resistivity of the material of the common electron collection layer 4 as a function of brightness. In FIG. 9, each gray square corresponds to a deposited layer for the production of a matrix optoelectronic device 8: a stabilization layer 10 is deposited between the common electron collection layer 4 and one or more active layers 5. Embodiments of the invention, the electron collection layer 4, the stabilization layer 10, the active layer 5, and / or the collection layer of the holes 6 may be common to some or all of the devices. optoelectronic devices 1 of the optoelectronic matrix device 8. An electron collection layer 4 may be doped with elements, or p-type impurities. These elements are for example copper, nickel, cobalt, palladium, molybdenum, manganese and / or iron. A p-type impurity present in a collection layer of electrons 4, for example ZnO, makes it possible to limit the electrical conductivity associated with positive charge carriers (holes) which block the electric current and increase the resistance of the layer material. In general, a common electron collection layer 4 may comprise p-type elements, and advantageously palladium, cobalt and / or copper to form p-type insulants or semiconductors. such as PdO, CoO or CuO for example. In embodiments of the invention, a sol-gel method is used for producing an electron-collecting layer 4. The sol-gel deposition method has the advantage of being simple to apply. work and inexpensive. The implementation of a sol-gel process is described later. In one embodiment of the invention, a method for manufacturing an optoelectronic device 1 and / or a matrix optoelectronic device 8 comprises at least one step consisting in forming a said electron collection layer 4 by a method sol-gel, the sol-gel process comprising a step of depositing a solution comprising precursor polymers 15. The said precursor polymers can be obtained from metal acetates, metal nitrates and / or metal chlorides. A sol-gel process does not require heavy and specific equipment, unlike a spraying method in a partial vacuum. This method consists in spreading with a spinning machine or with printing equipment (inkjet, screen printing) on a substrate a solution comprising a solvent and precursor polymers 15 of the material of the electron collection layer 4, for example ZnO. The solvent is then evaporated and a heat treatment can then allow crystallization of the formed layer. Generally, a deposited layer is sparse and highly resistive if the post-deposition heat treatment temperature is below 400 ° C. In the case of ZnO formation, the electron collection layer 4 comprises ZnO and organic residues from the synthesis (for example precursor polymers 15, additives and / or solvent). These synthetic residues influence the electrical conductivity of an electron collection layer 4. FIG. 10 illustrates in a diagram the variation of the normalized concentration of precursor polymers of a sol-gel reaction, by gravimetric analysis, after a heat treatment subsequent to the deposition. More specifically, the illustrated ratio corresponds to 1 - (mj - m ^ / mj, mf being the final mass of precursor polymers for a given species and m: the initial mass of precursor polymers for a given species. Curve (a), in small dots, illustrates this ratio as a function of the temperature of the heat treatment during the use of nitrate precursor polymers. Curve (b), in broad dashed lines, illustrates this ratio as a function of the temperature of the heat treatment during the use of acetate-type precursor polymers. The curve (c), in solid line, illustrates this ratio as a function of the temperature of the heat treatment during the use of precursor polymers of the chloride type. Figure 11 schematically illustrates the influence of the size of the precursor polymers on the distance between ZnO particles. The chemical nature of the precursor polymers used is a variable of the distance between the different particles or aggregates of ZnO formed during the sol-gel process. In general, the electrical resistance of an electron collection layer 4 varies proportionally with the distance d between aggregates 18 closest to ZnO. In embodiments of the invention, the post-deposition heat treatment temperature and the distance d may be adjusted so that the minimum square resistance of the electron collection layer material 4 is greater than ΙΟ8. Ω / α. FIG. 12 schematically illustrates the decrease of the electrical conductivity in the presence of organic residues 19 in an electron collection layer 4. The dashed lines illustrate lines of currents in aggregates 18 of ZnO: the residues 19 are concentrated at The constrictions formed between the aggregates 18 and the presence of residues 19 in these constrictions are capable of rendering the material more electrically resistive. In one embodiment of the invention, a sol-gel deposition process characterized by a "complex polymerization method" may be used. This process comprises the steps of: adding metal acetates and / or metal nitrates and / or metal chlorides in a stirred solvent of 2-methoxyethanol at 50 ° C. until dissolution is obtained. metal complex by addition of ethanol acetic acid amine in the solvent at 70 ° C. The ions formed are acetate and metal ions; wait during a polymerization reaction to obtain precursor polymers 15, with stirring the solvent, at 70 ° C; depositing the solution of precursor polymers on a cathode 3. This process has the advantages of being suitable for the synthesis of mixed or complex oxide materials from common metal salts, such as chlorides, acetates and / or nitrates. Advantageously, it is chosen to use acetates during the implementation of the method described in the previous paragraph: they are insensitive to the presence of water in solution and therefore more stable. This avoids having to implement the process in an inert atmosphere using acetates. Advantageously, the acetates form after partial decomposition of the electrically stable oxides. Their use makes it possible to produce electrons collection layers 4 in a reproducible manner. The use of acetic acid makes it possible to avoid the precipitation of the metal ions during the second step of the sol-gel process described above, and to increase the lifetime of the solution prepared for the implementation of the sol-gel process. gel. Ethanolamine is a complexing agent and makes it possible to stabilize and favor the polymerization stage of the process. In one embodiment, it is possible to add p-type doping elements (Pd, Cu, Ni, Co) during the sol-gel process so as to reduce the conductivity of the electron collection layer 4 after heat treatment. In one embodiment of the invention, an electron collection layer 4 is formed by depositing ZnO nanoparticles grafted with PEIE (ethoxylated polyethylenimine). Nanoparticle means a particle whose characteristic size, such as the diameter for a sphere, is between 0.1 nm and 100 nm. Since PEIE is an insulating polymer, the electron collection layers 4 made with PEIE-grafted ZnO nanoparticles have a very high square resistance, for example greater than 1010 Ω / α. The PEIE can be grafted to the ZnO particles by amine or hydroxyl groups. More generally, an optoelectronic device 1 and / or a matrix optoelectronic device 8 may comprise metal oxide nanoparticles and polar polymers grafted onto the metal oxide nanoparticles. FIG. 13 diagrammatically illustrates a matrix optoelectronic device 8 in which the resistance of an electron collection layer 4 is increased by an embodiment of said layer in two deposition steps, forming two types of sub-layers. The two sub-layers are separated by dashed lines in FIG. 13. A first deposit may be made, first forming an underlayer 21 having a thickness of, for example, between 10 nm and 15 nm. This first sublayer 21 is common, and deposited between the optoelectronic devices 1 (that is to say between the different pixels). A second deposit can be made forming a plurality of second sub-layers 22 thicker. The deposition of the sublayers 22 is made in a pattern corresponding to the pattern of the arrangement of the optoelectronic devices 1. The deposition of the second sub-layers 22 can be achieved through a metal mask etched at the locations corresponding to the optoelectronic devices 1 . In a method of manufacturing a matrix optoelectronic device 8, the thickness of an electron collection layer 4 can be reduced between optoelectronic devices 1 so as to locally increase the square resistance of the electron collection layer 4. . In one embodiment of the invention, at least one element selected from a substrate 2, a cathode 3, an electron collection layer 4, an active layer 5, a collection layer of the holes 6 and an anode 7 is transparent . FIG. 14 illustrates an embodiment of the invention in which a matrix optoelectronic device 8 comprises a layer of scintillator material 23. In embodiments of the invention, a layer of scintillator material 23 may be arranged on each of the anodes 7 Scintillator material means a material capable of emitting light, for example in the visible spectrum, following the absorption of ionizing radiation, for example following the absorption of rays. X. Advantageously, a collection layer of the holes 6 and an anode 7 are transparent in this embodiment. Thus the device 8 may be able to image the X-rays. In embodiments of the invention, X-ray detection can be performed directly in the active layer. In this case, it is not necessary that the substrate 2, the cathode 3, the electron collection layer 4, the collection layer of the holes 6 and / or the anode 7 are transparent.
权利要求:
Claims (18) [1" id="c-fr-0001] An optoelectronic device (1) comprising a stack of planar thin layers arranged on an electrically insulating substrate (2), including at least: a cathode (3) made of an output working material <DC; an electron collection layer (4) arranged above said cathode (3), made of an output working material dh and R-square resistance; an active layer (5) comprising at least one p-type organic semiconductor material having the energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer (4); a hole collection layer (6) arranged above said active layer (5); an anode (7) arranged above said hole collection layer (6); characterized in that: said output work dq of said electron collection layer (4) and said energy level HO1 of said active layer (5) form a potential barrier capable of blocking the injection of holes from said cathode (3). ) to said active layer (5); said square resistance R of said electron collection layer (4) is greater than or equal to ΙΟ8 Ω. [2" id="c-fr-0002] 2. Optoelectronic device (1) according to the preceding claim wherein said output work dq of said electron collection layer (4) is strictly less than said output work d> c of said cathode (3). [3" id="c-fr-0003] Optoelectronic device (1) according to one of the preceding claims wherein said material of said electron collection layer (4) is selected from zinc oxide and titanium oxide. [4" id="c-fr-0004] 4. Optoelectronic matrix device (8) comprising a plurality of optoelectronic devices (1) according to one of claims 1 to 3 and an electron collection layer (4) common to at least a portion of said optoelectronic devices (1) and materially continuous between each of said optoelectronic devices (1). [5" id="c-fr-0005] A matrix optoelectronic device (8) according to claim 4, wherein said square resistor R of said common collection layer (4) is able to block the charge carrier currents between said optoelectronic devices (1) of said one or more parts. in said material of said common collection layer (4). [6" id="c-fr-0006] 6. A matrix optoelectronic device (8) according to one of claims 4 to 5 wherein the resistivity of said material of said common electron collection layer (4) is lower in the direction of the thickness of said collection layer of the electrons. electrons (4) only in a direction of the main plane of said electron collection layer (4). [7" id="c-fr-0007] 7. Optoelectronic matrix device (8) according to the preceding claim wherein a said common electron collection layer (4) comprises crystallites (16) arranged in columns in the direction of the thickness of said electron collection layer (4). ). [8" id="c-fr-0008] 8. Optoelectronic matrix device (8) according to one of claims 4 to 7 comprising at least one stabilization layer (10) arranged between said common electron collection layer (4) and at least one active layer (5), in wherein said stabilization layer (10) is adapted to reduce the dependence of the resistivity of the material of a said common electron collection layer (4) as a function of brightness. [9" id="c-fr-0009] An optoelectronic matrix device (8) according to claim 8 wherein the material of said stabilization layer (10) is an opaque oxide preferably selected from tin oxide, palladium oxide. [10" id="c-fr-0010] 10. Optoelectronic matrix device (8) according to one of claims 4 to 9 wherein the material of said common electron collection layer (4) comprises p-type doping elements. [11" id="c-fr-0011] 11. Optoelectronic matrix device (8) according to the preceding claim wherein said p-type doping elements are selected from palladium, cobalt, copper and molybdenum. [12" id="c-fr-0012] 12. Optoelectronic matrix device (8) according to one of the preceding claims wherein at least one said electron collection layer comprises metal oxide nanoparticles and polar polymers, said polar polymers being grafted onto said metal oxide nanoparticles. . [13" id="c-fr-0013] 13. Optoelectronic matrix device (8) according to one of claims 4 to 12 wherein at least one element selected from a substrate (2), a cathode (3), an electron collection layer (4), an active layer (5), a collection layer of the holes (6) and an anode (7) is transparent. [14" id="c-fr-0014] 14. Optoelectronic matrix device (8) according to the preceding claim comprising a layer of scintillator material (23), said layer being arranged above each said anode (7). [15" id="c-fr-0015] 15. A method of manufacturing an optoelectronic device (1,8) according to one of claims 1 to 14 comprising a stack of thin planar layers arranged on an electrically insulating substrate (2), including at least: a cathode (3) made of an output working material <DC; an electron collection layer (4), arranged above said cathode (3), made of an output working material dh and R-square resistance; an active layer (5) comprising at least one p-type organic semiconductor material having the energy level of the highest occupied molecular orbital HO1 and an n-type semiconducting material adapted to emit or detect light radiation, arranged above said electron collection layer (4); a hole collection layer (6) arranged above said active layer (5); an anode (7) arranged above said hole collection layer (6); comprising at least one step of depositing the material of a said electron-collecting layer (4) by sputtering at a temperature between 0 ° C and 100 ° C in an atmosphere having at least 1% by weight of oxygen. [16" id="c-fr-0016] 16. A method of manufacturing an optoelectronic device (1,8) according to one of claims 1 to 14 comprising a stack of thin planar layers arranged on an electrically insulating substrate (2), including at least: a cathode (3) performed in an output working material d> c; an electron collection layer (4) arranged above said cathode (3), made of an output working material dq and R-square resistance; an active layer (5) comprising at least one p-type organic semiconductor material having the energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer (4); a hole collection layer (6) arranged above said active layer (5); an anode (7) arranged above said hole collection layer (6); said method comprising at least one step of forming said electron-collecting layer (4) by a sol-gel process, said sol-gel process comprising a step of depositing a solution comprising precursor polymers (15), said precursor polymers (15) being selected from metal acetates, metal nitrates and metal chlorides. [17" id="c-fr-0017] 17. A method of manufacturing an optoelectronic device (1,8) according to the preceding claim wherein said solution comprises p-type doping elements. [18" id="c-fr-0018] 18. A method of manufacturing an optoelectronic matrix device (8) according to one of claims 4 to 14 comprising a plurality of optoelectronic devices (1) according to one of claims 1 to 3 arranged in a pattern, comprising a stack of planar thin layers arranged on an electrically insulating substrate (2), including at least: a cathode (3) made of an output working material <J> C; a common electron collection layer (4), comprising a first sub-layer 21 and a plurality of second sub-layers 22, arranged above each said cathode (3), made of a working material of output and resistance by square R; an active layer (5) comprising at least one p-type organic semiconductor material having the energy level of the highest occupied molecular orbital HO1 and an n-type semiconductor material adapted to emit or detect light radiation, arranged above said electron collection layer (4); a hole collection layer (6) arranged above said active layer (5); an anode (7) arranged above said hole collection layer (6); said method comprising at least two deposition sub-stages of said electron collection layer (4) comprising: depositing a first common electron collection sub-layer (21); depositing a plurality of second sub-layers (22) in a pattern corresponding to said pattern of said optoelectronic devices (1).
类似技术:
公开号 | 公开日 | 专利标题 EP3394912B1|2021-02-17|Organic optoelectronic device, array of such devices and method for producing such arrays EP1820228B1|2011-09-28|Organic light-emitting diode having doped layers JP2010263175A|2010-11-18|Organic photosensitive photoelectric device FR3073088B1|2019-11-22|ORGANIC OR HYBRID ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME EP3161883B1|2020-08-19|Multi-thread tandem cells Oliveira et al.2019|Recent developments on printed photodetectors for large area and flexible applications Shu et al.2017|ITO-free, fully solution processed transparent organic light-emitting electrochemical cells on thin glass WO2016014345A2|2016-01-28|Two-terminal electronic devices and their methods of fabrication WO2015004393A1|2015-01-15|Method for producing an active layer capable of emitting an electric current under irradiation KR20090097463A|2009-09-16|Organic photoelectric conversion film and photoelectric conversion device having the same Cherian et al.2017|Fabrication of organic photo detectors using inkjet technology and its comparison to conventional deposition processes CN111312902A|2020-06-19|Flat panel detector structure and preparation method thereof EP3582276A1|2019-12-18|Film for photovoltaic cell, method for manufacturing same, associated photovoltaic cell and photovoltaic module EP3552243B1|2021-05-19|Photodetector with charge carrier collection layer comprising functionalized nanowires EP3650576A1|2020-05-13|Method for forming a transparent electrode FR3069708B1|2019-10-18|MULTILAYER STACK USEFUL AS P-LAYER FOR PHOTOVOLTAIC DEVICE WO2015169623A1|2015-11-12|Matrix detection device incorporating a metal mesh in a detection layer, and manufacturing method Bera et al.2016|The Role of Nanocrystal Size in Solution Processable CdSe: P3HT Hybrid Photovoltaic Devices FR3102887A1|2021-05-07|N layer with controlled carbon content in a photovoltaic device of the perovskite type JP2011086835A|2011-04-28|Organic thin film producing method, organic thin film produced using the method, and organic photoelectric conversion element using the thin film Li et al.2021|Interfacial modification for high performance photodetector based on perovskite WO2021013538A1|2021-01-28|Method for depositing an electron injection layer FR3098980A1|2021-01-22|Method of depositing an electron injecting layer
同族专利:
公开号 | 公开日 US10586938B2|2020-03-10| JP6980662B2|2021-12-15| EP3394912B1|2021-02-17| CN108604639A|2018-09-28| JP2019501531A|2019-01-17| FR3046300B1|2018-07-20| EP3394912A1|2018-10-31| KR20180113498A|2018-10-16| WO2017108882A1|2017-06-29| US20180366669A1|2018-12-20|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 WO2011141717A1|2010-05-14|2011-11-17|Imperial Innovations Limited|Device comprising graphene oxide film| US20120060926A1|2010-09-10|2012-03-15|National Chiao Tung University|Polymerizable fullerene derivative and their use in organic photovoltaic cells| EP2490235A1|2011-02-16|2012-08-22|Imec|Electron transporting titanium oxide layer| WO2012135527A2|2011-03-29|2012-10-04|The Regents Of The University Of California|Active materials for electro-optic devices and electro-optic devices| US20130269766A1|2012-04-17|2013-10-17|Samsung Electronics Co., Ltd.|Inverted organic solar cell and method of manufacturing the same| WO2015169623A1|2014-05-07|2015-11-12|Commissariat A L'energie Atomique Et Aux Energies Alternatives|Matrix detection device incorporating a metal mesh in a detection layer, and manufacturing method|WO2021013536A1|2019-07-19|2021-01-28|Isorg|Ink for an electron injection layer|US7074501B2|2001-08-20|2006-07-11|Nova-Plasma Inc.|Coatings with low permeation of gases and vapors| US6706963B2|2002-01-25|2004-03-16|Konarka Technologies, Inc.|Photovoltaic cell interconnection| US7291782B2|2002-06-22|2007-11-06|Nanosolar, Inc.|Optoelectronic device and fabrication method| US20040159793A1|2003-02-19|2004-08-19|Christoph Brabec|Carbon-based photodiode detector for nuclear medicine| US7777128B2|2004-06-01|2010-08-17|Konarka Technologies, Inc.|Photovoltaic module architecture| DE102005037289A1|2005-08-08|2007-02-22|Siemens Ag|Photodetector, X-ray flat panel detector and method of manufacturing the same| JP2007080911A|2005-09-12|2007-03-29|Matsushita Electric Ind Co Ltd|Organic electroluminescent element, exposure device and image forming device| DE102007021843A1|2007-05-07|2008-11-13|Leonhard Kurz Gmbh & Co. Kg|Photovoltaic module| JP5523803B2|2009-11-27|2014-06-18|富士フイルム株式会社|Radiation sensor and radiographic imaging apparatus| JP5560142B2|2010-02-10|2014-07-23|富士フイルム株式会社|Photoelectric conversion device and solid-state imaging device| GB201008697D0|2010-05-25|2010-07-07|Solar Press Uk The Ltd|Photovoltaic modules| JP2012195512A|2011-03-17|2012-10-11|Ricoh Co Ltd|Photoelectric conversion element| CN104603953A|2012-03-23|2015-05-06|阿克伦大学|Broadband polymer photodetectors using zinc oxide nanowire as an electron-transporting layer| WO2013190434A1|2012-06-20|2013-12-27|Koninklijke Philips N.V.|Radiation detector with an organic photodiode| US20150034910A1|2013-07-31|2015-02-05|General Electric Company|Organic x-ray detector| CN103811663A|2014-02-27|2014-05-21|西南大学|Annealed free organic solar cell and production method thereof| CN108369992B|2015-12-08|2021-09-10|出光兴产株式会社|Organic EL light-emitting device and electronic apparatus|FR3073088B1|2017-10-26|2019-11-22|Commissariat A L'energie Atomique Et Aux Energies Alternatives|ORGANIC OR HYBRID ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME| US20210383943A1|2018-10-22|2021-12-09|The University Of Tokyo|Electrically conductive polymer material and method for producing same, polymer film and method for producing same, electrically conductive polymer film, photoelectric conversion element, and field effect transistor|
法律状态:
2016-11-28| PLFP| Fee payment|Year of fee payment: 2 | 2017-06-30| PLSC| Publication of the preliminary search report|Effective date: 20170630 | 2017-11-27| PLFP| Fee payment|Year of fee payment: 3 | 2019-11-28| PLFP| Fee payment|Year of fee payment: 5 | 2020-11-25| PLFP| Fee payment|Year of fee payment: 6 | 2021-11-26| PLFP| Fee payment|Year of fee payment: 7 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 FR1563286|2015-12-23| FR1563286A|FR3046300B1|2015-12-23|2015-12-23|ORGANIC OPTOELECTRONIC DEVICE, MATRIX OF SUCH DEVICES AND METHOD OF MANUFACTURING SUCH MATRIXES.|FR1563286A| FR3046300B1|2015-12-23|2015-12-23|ORGANIC OPTOELECTRONIC DEVICE, MATRIX OF SUCH DEVICES AND METHOD OF MANUFACTURING SUCH MATRIXES.| CN201680075746.6A| CN108604639A|2015-12-23|2016-12-21|The method of organic photoelectric device, the array of this device and this array of manufacture| EP16812967.4A| EP3394912B1|2015-12-23|2016-12-21|Organic optoelectronic device, array of such devices and method for producing such arrays| US16/060,946| US10586938B2|2015-12-23|2016-12-21|Organic optoelectronic device, array of such devices and method for producing such arrays| KR1020187017915A| KR20180113498A|2015-12-23|2016-12-21|Organic optoelectronic devices, arrays of such devices, and methods of making such arrays| PCT/EP2016/082064| WO2017108882A1|2015-12-23|2016-12-21|Organic optoelectronic device, array of such devices and method for producing such arrays| JP2018533121A| JP6980662B2|2015-12-23|2016-12-21|Organic optoelectronic devices, arrays of such devices, and methods for manufacturing such arrays.| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|