专利摘要:
The subject of the invention is a glazing unit comprising at least one substrate provided with a stack of thin layers reflecting infrared radiation, in which said stack is covered with a protective polymer film made of styrene-butadiene copolymer, the thickness of the polymer film. being less than 10 micrometers.
公开号:FR3045034A1
申请号:FR1562371
申请日:2015-12-15
公开日:2017-06-16
发明作者:Lucie Devys;Nisita Wanakule
申请人:Saint Gobain Glass France SAS;
IPC主号:
专利说明:

dans laquelle : 100 < x < 1000 1000 < y < 5000 100 < z < 1000, avec de préférence x = z.
Le poids moléculaire du copolymère est supérieur à 100 000 g/mol et de préférence est compris entre 100 000 et 200 000.
Le substrat çoinprend - du verre et de préférence encore est une feuille de verre. L’empilement de couches minces réfléchissant le rayonnement infrarouge comprend au moins une couche métallique choisie parmi l’argent, le cuivre, l’or et leurs alliages, de préférence encore l’argent ou un alliage à base d’argent (c'est-à-dire comprenant plus de 80% atomique d’argent}. L’empilement de couches minces réfléchissant le rayonnement infrarouge comprend comme couche supérieure une couche diélectrique d’oxyde,_ de nitrure ou d’oxynitrure, de préférence d’oxyde, sur laquelle est déposé directement le film protecteur externe.
Ladite couche supérieure est un oxyde choisi parmi les oxydes de zinc, de silicium, d’étain, de titane, de zinc et d’étain.
Ladite couche supérieure est un nitrure de silicium et/ou d’aluminium. L’épaisseur du film polymère en copolymère styrène-butadiène est inférieure à 7 micromètres. L’épaisseur du film polymère en copolymère styrène-butadiène est supérieure ou égale à environ 1 micromètre et de préférence est supérieure ou égale à 2 micromètres.
Ledit vitrage est un vitrage simple comprenant un unique substrat verrier, sur lequel ledit empilement de couches minces réfléchissant le rayonnement infrarouge, recouvert d’un film polymère prdtecteur en copolymère styrène-butadiène, est disposé sur une face externe du vitrage.
Ledit vitrage est un vitrage multiple, comprenant au moins deux substrats verriers, l’empilement de couches minces réfléchissant le rayonnement infrarouge, recouvert d’un film polymère protecteur en copolymère styrène-butadiène, est disposé sur une face externe du vitrage.
Le vitrage multiple comprend sur une face externe un premier empilement de couches minces réfléchissant le rayonnement infrarouge, recouvert d’un film polymère protecteur en copolymère styrène-butadiène et sur une face interne un deuxième empilement de couches minces réfléchissant le rayonnement infrarouge. L’invention se rapporte aussi à une utilisation d’un vitrage tel que décrit précédemment en tant que vitrage à fonction anticondensation, dans lequel ledit empilement de couches minces réfléchissant le rayonnement infrarouge recouvert d’un film polymère protecteur en copolymère styrène-butadiène étant disposé sur une face externe du vitrage.
Le vitrage décrit précédemment peut également être utilisé en tant que vitrage à fonction antisolaire ou de contrôle thermique, ledit empilement de couches minces réfléchissant le rayonnement infrarouge recouvert d’un film polymère protecteur en copolymère styrène-butadiène étant disposé sur la face intérieure du vitrage (c'est-à-dire la face-externe du vitrage orientée vers l’intérieur de l’habitation ou de l’habitacle).
On donne les définitions suivantes :
Par rayonnement infrarouge, on entend le rayonnement IR proche ou solaire de longueur d’onde comprise entre 0,78 et 3 micromètres et le rayonnement IR thermique (ou moyen) de longueur d’onde comprise entre 3 et 50 micromètres.
Un vitrage antisolaire (ou de contrôle solaire) a pour fonction de réfléchir une majeure partie du proche IR issu du rayonnement solaire pour éviter le réchauffement de l’habitation ou de l’habitacle.
Un vitrage de contrôle thermique a pour fonction de réfléchir une majeure partie de HR thermique pour éviter la déperdition de chaleur de l’habitation/ de l’habitacle vers l’extérieur.
Par polymère en copolymère styrène-butadiène, on entend tout composé obtenu par copolymérisation du butadiène et du styrène selon les techniques classiques, du type notamment décrit dans la publication de référence « Techniques de l’ingénieur, Caoutchouc styrène-butadiène (SBR) : élaboration et propriétés, Ref 0992, 20 Juin 2014 ».
Selon une première configuration d’un vitrage selon l’invention, le vitrage est simple, c'est-à-dire qu’il comprend un unique substrat verrier sur lequel est disposé un empilement agissant sur le rayonnement infrarouge incorporant une succession de couches minces dont une couche d’argent, d’épaisseur par exemple de l’ordre de 5 à 20 nanomètres, réfléchissant les infrarouge^.' La couche d’argent comprend au-dessus et en dessous dans l’empilement des couches de matériau diélectrique d’oxydes ou de nitrure de silicium. Sur l’empilement, on dépose un film polymère en copolymère styrène-butadiène, au sens décrit précédemment. Le film polymère en copolymère styrène-butadiène permet d’exposer l’empilement sur une face externe (intérieur ou extérieur) du vitrage et d’en garantir sa durabilité, comme il sera démontré par la suite. Dans un tel vitrage utilisé par exemple comme fenêtre pour le bâtiment, la face sur laquelle sont déposés l’empilement et le film protecteur est tourné vers l’intérieur du bâtiment. Cette configuration permet l’utilisation du vitrage simple comme vitrage antisolaire ou encore comme vitrage Low-e.
Selon une seconde configuration d’un vitrage selon l’invention, le vitrage est double ou triple, c'est-à-dire qu’il comprend deux ou trois substrats verriers séparés par une lame de gaz ou encore un feuillet thermoplastique du type PVB. Sur une face externe du vitrage multiple est disposé l’empilement 2 agissant sur le rayonnement infrarouge. Sur l’empilement, on dépose un film polymère en copolymère styrène-butadiène, au sens décrit précédemment. Le' film polymère en copolymère styrène-butadiène permet d’exposer l’empilement sur une face externe (vers intérieur ou vers l’extérieur) du vitrage et d’en garantir sa durabilité, comme il sera démontré par la suite.
Selon une première réalisation d’un tel vitrage, par exemple comme fenêtre pour le bâtiment, l’empilement est présent sur la face 1 du vitrage multiple, le film protecteur étant tourné vers l’extérieur du bâtiment (conventionnellement, on numérote les faces des substrats verriers d’un vitrage simple ou multiple depuis l'extérieur vers l'intérieur de l'habitacle/du local qu'il équipe). Cette configuration permet de limiter la condensation sur ladite face extérieure d’un vitrage multiple, en particulier les triples vitrages très isolants.
Selon une deuxième réalisation d’un tel vitrage commè fenêtre pour le bâtiment, celui est disposé sur la face 4 du double vitrage ou la face 6 d’un triple vitrage, de telle façon que la face sur laquelle sont déposés l’empilement et le film protecteur est celle tournée vers l’intérieur du bâtiment. Cette configuration permet l’utilisation du vitrage multiple comme vitrage anti-solaire ou d’isolation thermique (Low-e). Une configuration particulièrement intéressante d’un double vitrage selon ce mode consiste en une combinaison de ce premier empilement déposé en Îacè~4 avec un autre empilement réfléchissant les infrarouges, positionné cette fois sur la face 2 ou la face 3 du double vitrage.
Bien entendu, il serait également possible de disposer l’empilement et le film sur les deux faces extérieures d’un vitrage multiple pour obtenir un vitrage cumulant les fonctions Low-e/ antisolaire/anticondensation.
Si l'application plus particulièrement décrite précédemment est le vitrage pour le bâtiment, il est clair que d'autres applications sont envisageables, notamment dans les vitrages de véhicules, comme les verres latéraux, le toit-auto, la lunette arrière ou encore les vitrines ou les portes vitrées de congélateurs.
Les avantages de la présente invention sont illustrés à l'aide des exemples non limitatifs qui suivent, selon l’invention et comparatifs. REFERENCE : On utilise un substrat en verre clair de 4 mm d'épaisseur de type Planilux commercialisé par la société Saint-Gobain Glass France.
Sur le substrat un empilement de couches est déposé par les techniques bien connues de pulvérisation cathodique assistée par champ magnétique. L’empilement déposé est conforme à l’exemple 4 de la demande W02007/101964 Al et comprend une couche d’argent de 10 nm d’épaisseur. Additionnellement, on dépose sur cet empilement une surcouche d’épaisseur inférieure à nanomètres de Τϊθ2.
Le vitrage ainsi obtenu constitue la référence pour tous les exemples qui suivent : sur ce vitrage de référence, pour comparaison, on dépose différents polymères selon les protocoles expérimentaux suivants : EXEMPLE 1 : Dépôt d’un film de Polysilazane inorganique de deux ou cinq micromètres :
Dans cet exemple, on réalise à la surface du vitrage de référence, le dépôt d’un film de perhydropolysilazane à partir d’une résine NN-12Q commercialisée par la société Clariant, par les techniques d’enduction centrifuge (ou spin-coating selon le terme anglo-saxon) en utilisant comme solvant de l’éther dibutylique. On ajuste dans le dispositif de centrifugation (spinner) la vitesse angulaire et la concentration du polymère pour l’obtention d’une couche d’épaisseur de l’ordre de 2 ou 5 micromètres. EXEMPLE 2 : Dépôt d’un film de Polysilazane organique de un ou cinq micromètres :
Dans cet exemple, on réalise à la surface du substrat le dépôt d’un film de polydiméthylsilazane à partir d’une résine GAG-37 commercialisée par la société Clariaïit, par les techniques d’enduction centrifuge (ou spin-coating selon le terme anglo-saxon) en utilisant comme solvant un mélange d’acétate de n-butyle et de toluène selon un rapport volumique 98 : 2. On ajuste dans le dispositif de centrifugation (spinner) la vitesse angulaire et la concentration du polymère pour l’obtention d’une couche d’épaisseur de l’ordre de 1 ou 5 micromètres. EXEMPLE 3 : Dépôt d’un film de copolymère de styrène-butadiène (PSB) de trois micromètres :
Dans cet exemple, on réalise le dépôt d’un film de PSB à la surface du substrat par les techniques d’enduction centrifuge (ou spin-coating selon le terme anglo-saxon) en utilisant une résine de polystyrène-block-polybutadiène-block-polystyrène commercialisée par la société Sigma-Aldrich sous la référence 182877 et comprenant 30 pourcents poids de styrène. La résine est préalablement dissous dans le xylène (solvant) et filtrée à 0.2 gm. On ajuste dans le dispositif de centrifugation (spinner) la vitesse angulaire et la concentration de la résine dans le solvant pour l’obtention d’une couche d’épaisseur de l’ordre de 3 micromètres. EXEMPLE 4 : Dépôt d’un film de copolymère de styrène-butadiène de dix micromètres :
On procède comme pour l’exemple 3 mais la vitesse angulaire et la concentration de la résine sont ajustées selon les techniques de l’art pour l’obtention d’une couche d’épaisseur de l’ordre de 10 micromètres. EXEMPLE 5 : Dépôt d’un film de pôlyacrylonitrile (PAN) de cinq micromètres :
Dans cet exemple, on réalise à la surface du substrat le dépôt d’un film de pôlyacrylonitrile (PAN) à partir d’une résine PAN commercialisée par la société Sigma-Aldrich, par les techniques d’enduction centrifuge (ou spin-coating selon le terme anglo-saxon) en utilisant comme solvant du DMSO. On ajuste dans le dispositif de centrifugation (spinner) la vitesse angulaire et la concentration du polymère pour l’obtention d’une couche d’épaisseur de l’ordre de 5 micromètres. EXEMPLE 6 : Dépôt d’un film de polyéthylène (PE)
Les essais de dépôt par spin-coating effectués par la société déposante n’ont pas permis d’obtenir un film uniforme de polyéthylène directement à la surface du substrat verrier, au-dessus de l’empilement de couches minces en matériau inorganique.
Les échantillons selon les exemples 1 à 6 sont ensuite soumis aux tests suivants pour mesurer leurs performances optiques, énergétiques ainsi que leur durabilité.
Les propriétés optiques, énergétiques et la durabilité des différents vitrages sont mesurées selon les critères suivants : - Transmission Tl : transmission lumineuse en % selon l'illuminant Dôs, coté couche, selon les critères définis dans la norme internationale ISO 9050 : 2003. - Emissivité normale : elle est calculée selon les critères définis dans la norme internationale NF EN 12898 : 2001. - Flou : Par flou, mesuré en pourcentage, il est entendu au sens de la présente invention la perte par diffusion de la lumière, c'est-à-dire de façon classique le rapport entre la partie diffusée de la lumière (fraction diffuse ou Td) sur la lumière directement transmise au travers du vitrage (Tl), généralement exprimée en pourcentages. La transmission diffuse mesure ainsi la fraction lumière diffusée par les couches déposées à la surface du substrat de verre. Le flou peut classiquement être mesuré par des techniques de spectroscopie, l’intégration sur tout le domaine du visible (380-780 nm) permettant la détermination de la transmission normale Tl et de la transmission diffuse Td. Une telle mesure peut également être obtenue par l’utilisation d’un Hazemeter. On considère qu’un vitrage reste transparent si son flou reste inférieur à 10 % et de préférence est inférieur à 5% ou même inférieur à 1% lors d’une mesure avec un Hazemeter. L’appareil utilisé est un dispositif « Haze-Gard ®» commercialisé par la société BYK-Gardner. - Test SO2 : il s’agit d’un premier test de durabilité de l’empilement protégé par le film aux agressions acides (vapeur de SO2). Le test pratiqué est conforme à celui décrit dans la norme EN 1096-2 :2001, annexe C. On vérifie d’abord la conformité du vitrage avéc la norme, notamment sur un plan visuel. On mesure également la variation d’émissivité (Δε) et de la transmission lumineuse (ATL) après le test. - Test BSN : il s’agit d’un deuxième test de durabilité de l’empilement protégé par le film aux agressions salines. Le test pratiqué est conforme à celui décrit dans la norme EN 1096-2 :2001, annexe D. On mesure ensuite la conformité du vitrage avec la norme (points 4 et 7 de la norme). On mesure également selon l’invention la variation d’émissivité (Δε), la variation de la transmission lumineuse (ATl) et de la couleur (ΔΕ*) et on vérifie l’aspect visuel selon les conditions de la norme après 4, 11 et 15 et jusqu’à 50 jours de tests si nécessaire. - Test HH : Ce test est un test de résistance à la chaleur humide selon la norme EN1096-2 :2001, annexe B. Le test est réalisé, dans le cadre de la présente invention, sur une durée de 50 jours. Il permet de déterminer si l’échantillon est apte à supporter les effets de la pénétration de l’humidité à long terme. Les conditions de sévérité suivantes sont appliquées : -température de l’essai : 50°C ± 1,5°C ; - humidité relative : 90% ± 5%- ; -durée de l’essai : 50 jours.
Aucune apparition de défauts visuels majeurs ne doit être détectée après le test (aspect visuel). L’échantillon est alors déclaré conforme (OK). - On définit ΔΕ* de la façon suivante : ΔΕ* = (AL*2 + Aa*2 + Ab*2)1/2, avec AL*, Aa* et Ab* la différence dans les mesures de L*, a* et b* (dans le système international Lab) avant et après le test SO2 ou BSN. - Test de résistance à l’arrachement : ce test mesure la force d’adhésion entre le film de polymère protecteur et l’empilement de couches. Le test pratiqué est conforme à celui décrit dans la norme NF EN ISO 2409 d’Aout 2007. La classification reportée dans le tableau qui suit est conforme à celle décrit dans le tableau 1 de la norme. Une classification 0 indique une forte adhésion du film, un indice 5 (max) indique une très faible résistance du film à l’arrachement.
Dans le tableau 1 ci-après on a reporté l’ensemble des résultats obtenus :
(*) non mesuré
Tableau 1
Les résultats reportés dans le tableau 1 précédant montrent que les performances optiques, colorimétriques et énergétiques des échantillons selon les exemples 1 à 6 diffèrent sensiblement.
En particulier, on remarque que les revêtements en polysilazane inorganique (exemple 1) ne permettent pas une durabilité suffisante du vitrage, notamment aux tests BSN ou SO2.
En outre, l’application de revêtements en polysilazane organique (exemple 2) sur l’empilement initial entraîne une émissivité globale du vitrage élevée, même pour des épaisseurs de film très faible.
La mise en œuvre d’un revêtement en polyacrylonitrile (PAN) ne garantit pas non plus la durabilité du vitrage en raison des risques très importants d’arrachement du film. Le vitrage selon l’exemple 5 présente en outre un aspect diffus à la lumière (flou mesuré à 15%).
Comme indiqué précédemment, le film en polyéthylène s’avère très difficile, voire impossible, à appliquer directement sur le substrat par les techniques classiques de dépôt.
Au final, seules les configurations selon les exemples selon l’invention, utilisant un film protecteur de copolymère. de styrène-butadiène, conduisent à une protection durable de l’empilement réfléchissant les infrarouges quel que soit le test pratiqué (HH, SO2 ou BSN), tout en préservant l’essentiel des performances optiques, colorimétriques et énergétiques initiales du vitrage.
The invention relates to glazings comprising a stack of thin layers acting on infrared radiation IR, solar type (near IR) or thermal (far IR).
Glazing according to the invention is more particularly adapted to equip buildings, even if it is not limited to it and that it can also be used in the automotive field, particularly as a side window, sunroof or bezel back. It is also suitable for use as a showcase or refrigerator door with anti-fog function (anti-condensation), in particular to equip the displays of frozen products in the supermarket.
In known manner, by selecting the chemical nature, the thicknesses and the succession of the thin layers constituting the stack, one can act significantly on the amount of solar radiation energy entering or leaving a room or a passenger compartment. . In particular, such glazing avoids excessive internal heating in summer and thus helps to limit the energy consumption necessary for their air conditioning. According to another aspect of the invention, it also relates to thermal insulation glazing, often called low-e glazing or low emissivity in the field, more particularly for the thermal insulation of buildings or vehicles. The low-e function can also advantageously be used in the glass parts refrigerated devices of the showcase type or refrigerator door anti-fog function. These layered vitrified materials are subject to a certain number of constraints: as far as glazing is concerned, the layers used must, in the first place, be sufficiently filtering with respect to the solar radiation, that is to say that they must allow the thermal insulation while allowing however to pass at least a portion of the light, as measured by the light transmission Tl. In addition, these thermal performances must preserve the optical appearance, the aesthetics of the glazing: it is and desirable to be able to modulate the light transmission level of the substrate, while maintaining a color deemed aesthetic and preferably substantially neutral, all particularly in external reflection and / or interior.
According to another essential aspect, these layers must also be sufficiently durable, and all the more so if, in the glazing once mounted, they are positioned on one of the outer faces (inner or outer) of the glazing (as opposed to internal faces, facing the gas layer between a double glazed for example or to the thermoplastic sheet of a laminated glazing).
There are now many so-called "thermal control" stacks, that is to say, to regulate the flow of heat entering or leaving the glazed surfaces equipping the building or the passenger compartment.
They are grouped under the name of thermal insulation glazing. They are marketed and used essentially according to two categories: - either to ensure essentially a protection of the house of the solar radiation and to avoid overheating, such panes being qualified in the trade of sunscreen glazing, - either to ensure essentially thermal insulation of the dwelling and to prevent heat losses, these windows being then qualified.
For the purposes of the present invention, the meaning of the present invention is the antisolar faculty of the glazing faculty to limit the energy flow, in particular the infrared solar radiation (IRS) passing through it from the outside towards the interior of the dwelling or the passenger compartment. .
By thermal insulation, is thus meant a glazing unit provided with at least one functional layer conferring a decreased energy loss, said layer having reflective properties of thermal IR radiation (also called medium infrared) of between 3 and 50 microns. In some countries, standards imply that glazing has both sunscreen and thermal insulation properties.
In a well-known manner, for example described in the reference publication "Engineering techniques, glazing with reinforced thermal insulation, C3635 (2004)", such a reflection property is directly a function of the emissivity of the face of the glazing. provided with the stack comprising the functional layer or layers. In general, all the luminous and thermal characteristics presented in the present description are obtained according to the principles and methods described in the international standards ISO 9050 (2003) and ISO 10292 (1994) or else NF EN 12898: 2001, pertaining to the determination of the luminous and energetic characteristics of glazing used in glass for construction.
Associated with the glass substrate, these coatings must also preferably be aesthetically pleasing, that is to say that the glazing provided with its stack must have a colorimetric transmission or reflection sufficiently neutral so as not to inconvenience users, or alternatively a slightly blue or green hue, especially in the building sector. For the purposes of the present invention, neutral color means, in the CIE LAB colorimetry system (L *, a *, b *), an absolute value a * and b * less than or equal to 10.
The most efficient stacks currently marketed to solve the above problems incorporate a functional layer (that is to say, responsible for the reflectivity properties of IR radiation) metal precious metal type gold or silver or copper (or an alloy between these metals), especially silver, operating essentially in the mode of reflection of a major part of the incident IR (infrared) radiation. These stacks can advantageously be used as glazings of the low emissive type (or low-e in English) for the thermal insulation of buildings but can also, in a more limited way, be used as solar control glazing.
These layers, however, are very sensitive to moisture and are therefore exclusively used in double glazing, on the face 2 or 3 of it, to be protected from moisture. It is accepted today that it is not possible to deposit such layers on single glazing (also called monolithic) or on the outermost face of a multiple glazing (called face 1 by convention) or on the inside of a multiple glazing (called face 4 by convention for a double glazing) because they degrade very quickly and is oxidized under the action of external moisture or even present indoors. Such layers are therefore not durable in the outer face and must necessarily be deposited on the internal face of a multiple glazing unit. Even if it is not limited to such layers, one of the main objects of the present invention is to provide glazing provided with stackings of layers acting on the amount of heat passing through the glazing and of which at least one is made of copper or precious metal Ag or Au), more particularly silver.
In order to allow the deposition of a stack comprising at least one silver layer on an outer face (internal or external) it has already been proposed in the literature to protect it with a polymer plastic film, which covers said stack after his deposit. For example, the following requests can be cited:
The application WO 2013089185 describes a configuration according to which a polymer of the polyacrylonitrile (PAN) or polymethacrylonitrile (PMAN) type, deposited on an IR reflecting stack, itself being placed on a substrate, is used. It is stated that the polymer makes it possible to protect the stack by increasing its resistance to abrasion and its mechanical strength, in particular when it is subjected to stresses resulting from external thermal variations.
The patent application EP2685294 alternately discloses the use of a protective plastic film polycycloême for the purpose of making an outer stack reflective mechanically resistant IR.
The French patent application FR2414114 describes the use as a protective layer of a polyethylene (PE), polypropylene (PP) or polyacrylonitrile (PAN) polymer.
The choice of the protective polymer material, according to these documents of the art, is guided by the quality of the mechanical protection and the chemical resistance, especially to corrosion, that it confers on the stack.
According to the present invention, other criteria also appear necessary for the proper implementation of the protective film.
First and foremost, the protective film must not substantially disturb the initial optical and energetic properties of the glazing unit in which it is incorporated, and in particular those conferred by the stack of thin layers acting on the amount of heat passing through the glazing (e.g. that is, low-e or sunscreen).
Another essential parameter lies in the ease with which the protective film can be deposited on the stack and its chemical compatibility with it and in particular with the outermost layer of dielectric material of said stack, most often a layer of oxide such as an oxide of silicon, titanium, tin, zinc, or a mixture of zinc and tin. Insufficient compatibility between the polymer and the outer layer of the stack is reflected in particular by a probable tearing of said polymer in the short or long term and the loss of properties, including thermal control, of the glazing.
The object of the present invention is thus to propose a glazing that can be used for thermal control, in particular an anti-solar glazing unit or a so-called low emissivity glazing unit, or a glazing unit for a showcase or refrigerator door, in particular incorporating a metal layer as previously mentioned in FIG. a low-e stack or solar protection, which can be disposed on one of the outer faces of said glazing while being durable in time.
The present invention thus relates to thermal control glazing as a whole, that is to say, both sunscreen glazing and thermal insulation glazing.
More specifically, the present invention relates in its most general form to a glazing unit comprising at least one substrate provided with a stack of thin layers reflecting infrared radiation, for example IR and / or thermal radiation, in which said stack is coated with a protective polymer film styrene-butadiene copolymer (PSB), the thickness of the polymer film being less than 10 micrometers.
According to preferred but nonlimiting embodiments of the present invention:
Said styrene-butadiene copolymer is a copolymer consisting of successive blocks of polystyrene and polybutadiene.
The polybutadiene blocks represent between 60 and 80% of the weight of the polymer.
Said copolymer is a block polymer and more preferably is of the type poly (styrene-b-butadiene-b-styrene) (often called SBS) and has the following structural formula:
wherein: 100 <x <1000 1000 <y <5000 100 <z <1000, preferably with x = z.
The molecular weight of the copolymer is greater than 100,000 g / mol and is preferably between 100,000 and 200,000.
The substrate is glass and more preferably is a glass sheet. The stack of thin layers reflecting the infrared radiation comprises at least one metal layer selected from silver, copper, gold and their alloys, more preferably silver or a silver-based alloy (this is that is, more than 80 atomic% of silver.) The stack of thin layers reflecting the infrared radiation comprises as top layer a dielectric layer of oxide, nitride or oxynitride, preferably oxide, on which is deposited directly the outer protective film.
Said upper layer is an oxide selected from oxides of zinc, silicon, tin, titanium, zinc and tin.
Said upper layer is a nitride of silicon and / or aluminum. The thickness of the styrene-butadiene copolymer polymer film is less than 7 micrometers. The thickness of the styrene-butadiene copolymer polymer film is greater than or equal to about 1 micrometer and preferably is greater than or equal to 2 microns.
Said glazing is a single glazing unit comprising a single glass substrate, on which said stack of thin layers reflecting the infrared radiation, covered with a styrene-butadiene copolymer screening polymer film, is disposed on an outer face of the glazing unit.
Said glazing is a multiple glazing comprising at least two glass substrates, the stack of thin layers reflecting the infrared radiation, covered with a protective polymer film styrene-butadiene copolymer, is disposed on an outer face of the glazing.
The multiple glazing comprises on an outer face a first stack of thin layers reflecting the infrared radiation, covered with a protective polymer film styrene-butadiene copolymer and on an inner face a second stack of thin layers reflecting the infrared radiation. The invention also relates to a use of a glazing unit as previously described as glazing with an anti-condensation function, in which said stack of thin layers reflecting the infrared radiation covered with a styrene-butadiene copolymer protective film being disposed on an outer face of the glazing.
The glazing previously described may also be used as glazing with an antisolar function or thermal control, said stack of thin layers reflecting the infrared radiation covered with a protective polymer film styrene-butadiene copolymer being disposed on the inner face of the glazing ( that is to say the outer face of the glazing oriented towards the interior of the dwelling or the cabin).
The following definitions are given:
Infrared radiation is understood to mean near or solar IR radiation with a wavelength of between 0.78 and 3 micrometers and thermal IR radiation (or medium) with a wavelength of between 3 and 50 microns.
An antisolar glazing (or solar control) has the function of reflecting a major part of the near IR from solar radiation to prevent heating of the house or the cabin.
A thermal control glazing has the function of reflecting a major part of thermal RH to prevent the loss of heat from the house / cabin to the outside.
By styrene-butadiene copolymer polymer is meant any compound obtained by copolymerization of butadiene and styrene according to conventional techniques, of the type described in particular in the reference publication "Engineering techniques, styrene-butadiene rubber (SBR): elaboration and properties, Ref 0992, June 20, 2014 ».
According to a first configuration of a glazing unit according to the invention, the glazing is simple, that is to say that it comprises a single glass substrate on which is disposed a stack acting on the infrared radiation incorporating a succession of thin layers. including a silver layer, of thickness for example of the order of 5 to 20 nanometers, reflecting the infrared. The silver layer comprises above and below in the stack layers of dielectric material of oxides or silicon nitride. On the stack, a styrene-butadiene copolymer polymer film is deposited in the sense previously described. The styrene-butadiene copolymer polymer film makes it possible to expose the stack on an external face (inside or outside) of the glazing and to guarantee its durability, as will be demonstrated later. In such a glazing used for example as a window for the building, the face on which are deposited the stack and the protective film is turned towards the interior of the building. This configuration allows the use of single glazing as sunscreen glazing or as Low-e glazing.
According to a second configuration of a glazing unit according to the invention, the glazing is double or triple, that is to say it comprises two or three glass substrates separated by a gas blade or a thermoplastic sheet of PVB type . On an outer face of the multiple glazing is disposed the stack 2 acting on the infrared radiation. On the stack, a styrene-butadiene copolymer polymer film is deposited in the sense previously described. The styrene-butadiene copolymer polymer film makes it possible to expose the stack on an outer face (towards or outside) of the glazing and to guarantee its durability, as will be demonstrated later.
According to a first embodiment of such a glazing unit, for example as a window for the building, the stack is present on the face 1 of the multiple glazing unit, the protective film being turned towards the outside of the building (conventionally, the faces of the windows are numbered glass substrates of a single or multiple glazing from the outside to the inside of the cabin / room it equips). This configuration makes it possible to limit the condensation on said outer face of a multiple glazing unit, in particular the very insulating triple glazings.
According to a second embodiment of such a window as a window for the building, that is disposed on the face 4 of the double glazing or the face 6 of a triple glazing, so that the face on which are deposited the stack and the protective film is that turned towards the interior of the building. This configuration allows the use of multiple glazing as anti-solar glazing or thermal insulation (Low-e). A particularly interesting configuration of a double glazing according to this mode consists of a combination of this first stack deposited in the acea ~ 4 with another infrared reflecting stack, positioned this time on the face 2 or the face 3 of the double glazing.
Of course, it would also be possible to arrange the stack and the film on the two outer faces of a multiple glazing to obtain a glazing cumulating functions Low-e / antisolar / anti-condensation.
If the application more particularly described above is the glazing for the building, it is clear that other applications are possible, especially in the windows of vehicles, such as side glasses, car roof, rear window or windows or the glass doors of freezers.
The advantages of the present invention are illustrated with the aid of the following nonlimiting examples, according to the invention and comparative. REFERENCE: A 4 mm thick clear glass substrate of the Planilux type marketed by Saint-Gobain Glass France is used.
On the substrate a stack of layers is deposited by well-known magnetic field assisted sputtering techniques. The deposited stack is in accordance with Example 4 of the application W02007 / 101964 A1 and comprises a silver layer 10 nm thick. Additionally, this stack is deposited on an overlay of thickness less than nanometers Τϊθ2.
The glazing thus obtained constitutes the reference for all the examples which follow: on this reference glazing, for comparison, various polymers are deposited according to the following experimental protocols: EXAMPLE 1: Deposition of an inorganic Polysilazane film of two or five micrometers:
In this example, the deposition of a perhydropolysilazane film from an NN-12Q resin sold by the company Clariant is carried out on the surface of the reference glazing by centrifugal coating techniques (or spin-coating according to the term Anglo-Saxon) using as solvent dibutyl ether. The angular velocity and the concentration of the polymer are adjusted in the centrifuge device (spinner) to obtain a layer of thickness of the order of 2 or 5 micrometers. EXAMPLE 2 Deposition of an Organic Polysilazane Film of One or Five Micrometers:
In this example, the surface of the substrate is deposited by depositing a polydimethylsilazane film from a GAG-37 resin marketed by the company Clariaite, by centrifugal coating techniques (or spin-coating according to the French term -saxon) using as solvent a mixture of n-butyl acetate and toluene in a volume ratio of 98: 2. The spinning speed and the concentration of the polymer are adjusted in the centrifuge device (spinner) to obtain a layer of thickness of the order of 1 or 5 micrometers. EXAMPLE 3: Deposition of a Styrene-Butadiene Copolymer Film (PSB) of Three Micrometers:
In this example, the deposition of a PSB film on the surface of the substrate is carried out by centrifugal coating techniques (or spin-coating according to the Anglo-Saxon term) using a polystyrene-block-polybutadiene-block resin. polystyrene marketed by Sigma-Aldrich under the reference 182877 and comprising 30 weight percent styrene. The resin is previously dissolved in xylene (solvent) and filtered at 0.2 gm. The angular velocity and the concentration of the resin in the solvent are adjusted in the centrifuge (spinner) to obtain a layer of thickness of the order of 3 microns. EXAMPLE 4: Deposition of a styrene-butadiene copolymer film of ten micrometers:
The procedure is as for Example 3, but the angular velocity and the concentration of the resin are adjusted according to the techniques of the art to obtain a thickness layer of the order of 10 microns. EXAMPLE 5 Deposition of a polyacrylonitrile film (PAN) of five micrometers:
In this example, the deposition of a polyacrylonitrile film (PAN) from a PAN resin marketed by Sigma-Aldrich is carried out on the surface of the substrate by centrifugal coating techniques (or spin-coating according to the term Anglo-Saxon) using as solvent DMSO. The angular velocity and the concentration of the polymer are adjusted in the centrifuge device (spinner) to obtain a layer of thickness of the order of 5 microns. EXAMPLE 6 Deposition of a Polyethylene (PE) Film
The spin-coating deposition tests carried out by the applicant company did not make it possible to obtain a uniform film of polyethylene directly on the surface of the glass substrate, above the stack of thin layers of inorganic material.
The samples according to Examples 1 to 6 are then subjected to the following tests to measure their optical performance, energy and durability.
The optical and energetic properties and the durability of the various glazings are measured according to the following criteria: - Transmission Tl: light transmission in% according to the illuminant Dôs, layer side, according to the criteria defined in the international standard ISO 9050: 2003. - Emissivity normal: it is calculated according to the criteria defined in the international standard NF EN 12898: 2001. - Blur: By blur, measured in percentage, it is understood within the meaning of the present invention the loss by diffusion of light, that is, that is to say in a conventional way the ratio between the diffused part of the light (diffuse fraction or Td) on the light directly transmitted through the glazing (Tl), generally expressed in percentages. The diffuse transmission thus measures the light fraction diffused by the layers deposited on the surface of the glass substrate. The blur can conventionally be measured by spectroscopy techniques, the integration over the entire visible range (380-780 nm) allowing the determination of the normal transmission T1 and the diffuse transmission Td. Such a measure can also be obtained by using a Hazemeter. It is considered that a glazing remains transparent if its blur remains less than 10% and is preferably less than 5% or even less than 1% when measured with a Hazemeter. The apparatus used is a "Haze-Gard ®" device marketed by BYK-Gardner. - SO2 test: it is a first test of durability of the stack protected by the film with acid attacks (vapor of SO2). The test performed is in accordance with that described in EN 1096-2: 2001, Appendix C. Firstly, the conformity of the glazing with the standard is verified, in particular on a visual level. The emissivity variation (Δε) and the light transmission (ATL) are also measured after the test. - BSN test: this is a second test of durability of the stack protected by the film with salt attacks. The test performed is in accordance with that described in EN 1096-2: 2001, Annex D. The conformity of the glazing with the standard is then measured (points 4 and 7 of the standard). The emissivity variation (Δε), the variation of the light transmission (ATl) and the color (ΔΕ *) are also measured according to the invention, and the visual appearance is checked according to the conditions of the standard after 4, 11 and 15 and up to 50 days of testing if necessary. - HH test: This test is a wet heat resistance test according to EN1096-2: 2001, Appendix B. The test is carried out, within the context of the present invention, over a period of 50 days. It determines whether the sample is able to withstand the effects of long-term moisture penetration. The following severity conditions are applied: -temperature of the test: 50 ° C ± 1,5 ° C; relative humidity: 90% ± 5%; - Duration of the test: 50 days.
No major visual defects should be detected after the test (visual appearance). The sample is declared compliant (OK). - One defines ΔΕ * in the following way: ΔΕ * = (AL * 2 + Aa * 2 + Ab * 2) 1/2, with AL *, Aa * and Ab * the difference in the measurements of L *, a * and b * (in the international Lab system) before and after the SO2 or BSN test. - Tear resistance test: this test measures the adhesive force between the protective polymer film and the stack of layers. The test performed is consistent with that described in standard NF EN ISO 2409 of August 2007. The classification given in the following table is consistent with that described in Table 1 of the standard. A classification 0 indicates a strong adhesion of the film, an index 5 (max) indicates a very low resistance of the film to tearing.
In Table 1 below, all the results obtained are reported:
(*) not measured
Table 1
The results reported in Table 1 above show that the optical, colorimetric and energy performance of the samples according to Examples 1 to 6 differ substantially.
In particular, it is noted that the inorganic polysilazane coatings (Example 1) do not allow sufficient durability of the glazing, including BSN or SO2 tests.
In addition, the application of organic polysilazane coatings (Example 2) on the initial stack results in an overall emissivity of the high glazing, even for very low film thicknesses.
The implementation of a polyacrylonitrile coating (PAN) also does not guarantee the durability of the glazing because of the very significant risks of tearing of the film. The glazing according to Example 5 also has a diffuse appearance in light (blur measured at 15%).
As indicated above, the polyethylene film proves very difficult, if not impossible, to be applied directly to the substrate by conventional deposition techniques.
In the end, only the configurations according to the examples according to the invention, using a copolymer protective film. styrene-butadiene, lead to a durable protection of the infrared reflective stack regardless of the test performed (HH, SO2 or BSN), while preserving most of the initial optical, colorimetric and energy performance of the glazing.
权利要求:
Claims (17)
[1" id="c-fr-0001]
A pane comprising at least one substrate, in particular a glass substrate, provided with a stack of thin films reflecting the infrared radiation, in which said stack is covered with a protective polymer film made of a styrene-butadiene copolymer, thickness of the polymer film being less than 10 micrometers.
[2" id="c-fr-0002]
2. Glazing according to claim 1 wherein said styrene-butadiene copolymer is a copolymer consisting of successive blocks of polystyrene and polybutadiene.
[3" id="c-fr-0003]
3. Glazing according to the preceding claim wherein the polybutadiene blocks represent between 60 and 80% of the weight of the polymer.
[4" id="c-fr-0004]
4. Glazing according to one of claims 1 to 3 wherein said copolymer is a block polymer of the type poly (styrene-b-butadiene-b-styrene) (SBS) and has the following structural formula:

wherein: 100 <x <1000 1000 <y <5000 100 <z <1000, preferably with x = z.
[5" id="c-fr-0005]
5. Glazing according to one of the preceding claims wherein the molecular weight of the copolymer is greater than 100,000 g / mol and preferably is between 100,000 and 200,000 g / mol.
[6" id="c-fr-0006]
6. Glazing according to one of the preceding claims wherein the substrate is glass.
[7" id="c-fr-0007]
7. Glazing according to one of the preceding claims, wherein the stack of thin layers reflecting the infrared radiation comprises at least one metal layer selected from silver, copper, gold and their alloys.
[8" id="c-fr-0008]
8. Glazing according to one of the preceding claims, wherein the stack of thin layers reflecting the infrared radiation comprises as top layer a dielectric layer of oxide, nitride or oxynitride, preferably oxide, on which is directly deposited the outer protective film.
[9" id="c-fr-0009]
9. Glazing according to one preceding claim, wherein said upper layer is an oxide selected from oxides of zinc, silicon, tin, titanium, zinc and tin.
[10" id="c-fr-0010]
10. Glazing according to claim 8, wherein said upper layer is a silicon nitride and / or aluminum.
[11" id="c-fr-0011]
11. Glazing according to one of the preceding claims, wherein the thickness of the styrene-butadiene eopolymer film is less than 7 micrometers.
[12" id="c-fr-0012]
12. Glazing according to one of the preceding claims, wherein the thickness of the styrene-butadiene polymer film is greater than or equal to 1 micrometer and preferably is greater than or equal to 2 microns.
[13" id="c-fr-0013]
13. Simple glazing according to one of the preceding claims, comprising a single glass substrate, wherein said stack of thin layers reflecting infrared radiation, covered with a protective polymer film styrene-butadiene polymer is disposed on an outer face of glazing.
[14" id="c-fr-0014]
14. Multiple glazing according to one of claims 1 to 11, comprising at least two glass substrates, wherein the stack of thin layers reflecting infrared radiation, covered with a styrene-butadiene copolymer film, is disposed on one side external glazing.
[15" id="c-fr-0015]
15. Multiple glazing according to claim 13, comprising on an outer face a first stack of thin layers reflecting infrared radiation, covered with a protective polymer film styrene-butadiene copolymer and on an inner face a second stack of thin layers reflecting the infrared radiation.
[16" id="c-fr-0016]
16. Use of a glazing according to one of the preceding claims as glazing with anticondensation function, wherein said stack of thin layers reflecting infrared radiation covered with a protective polymer film styrene-butadiene copolymer is disposed on the face. outside of the glazing.
[17" id="c-fr-0017]
17. Use of a glazing according to one of the preceding claims as glazing with sunscreen function or thermal control, wherein said stack of thin layers reflecting infrared radiation covered with a styrene-butadiene copolymer protective polymer film is disposed on the inner face of the glazing.
类似技术:
公开号 | 公开日 | 专利标题
FR3045034B1|2019-06-07|THERMAL CONTROL GLAZING WITH PROTECTIVE POLYMER FILM
EP3013763B1|2020-02-26|Solar protection glazing
BE1020182A3|2013-06-04|GLAZING SUBSTRATE WITH INTERFERENTIAL COLORING FOR A PANEL.
FR2949774A1|2011-03-11|MATERIAL COMPRISING A GLASS SUBSTRATE COATED WITH A THIN FILM STACK
EP3233747B1|2019-02-20|Heat control glass provided with a protective polymer film
EP2986577B1|2020-01-22|Solar control glazing comprising two metal layers made from nickel
WO2015185849A1|2015-12-10|Glazing for solar protection provided with thin-film coatings
CA2995476A1|2017-03-16|Glazing comprising a functional coating
FR3074091B1|2019-11-15|FUNCTIONAL GLAZING WITH PERMANENT PROTECTIVE FILM
EP3898544A1|2021-10-27|Solar-control glazing comprising two layers based on titanium nitride
FR3098215A1|2021-01-08|DOUBLE-LAYER TIN GLASS FOR SOLAR CONTROL
FR3111631A1|2021-12-24|SOLAR CONTROL GLASS CONSISTING OF A TITANIUM NITRIDE BASED LAYER AND AN ITO BASED LAYER
FR3091701A1|2020-07-17|SUBSTRATE HAVING A STACK OF THERMAL PROPERTIES AND AN ABSORBENT LAYER
WO2021069616A1|2021-04-15|Insulating glazing comprising layers of ito and niobium nitride
WO2021063921A1|2021-04-08|Glazing comprising a solar-protection stack and a protective coating comprising yttrium
FR3092107A1|2020-07-31|SUBSTRATE EQUIPPED WITH A STACKING WITH THERMAL PROPERTIES AND ABSORBENT LAYER
FR3068032A1|2018-12-28|GLAZING WITH ANTISOLAR PROPERTIES COMPRISING A TITANIUM NITRIDE LAYER
WO2017042463A1|2017-03-16|Glazing including a stack of thin layers
EP3016916A2|2016-05-11|Glass substrate coated with a stack having scattering reflection and specular transmission
同族专利:
公开号 | 公开日
EP3390318B1|2021-08-18|
KR20180093924A|2018-08-22|
BR112018010455A8|2019-02-26|
MX2018007186A|2018-08-01|
RU2734354C2|2020-10-15|
ES2894331T3|2022-02-14|
RU2018125653A|2020-01-16|
JP6920299B2|2021-08-18|
PL3390318T3|2022-01-03|
CA3005765A1|2017-06-22|
RU2018125653A3|2020-03-24|
DK3390318T3|2021-11-08|
BR112018010455A2|2018-11-21|
WO2017103465A1|2017-06-22|
FR3045034B1|2019-06-07|
EP3390318A1|2018-10-24|
US20180355659A1|2018-12-13|
CO2018005703A2|2018-06-12|
US11098521B2|2021-08-24|
CN108367974A|2018-08-03|
JP2019500308A|2019-01-10|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US2595800A|1950-05-25|1952-05-06|Ohio Plate Glass Company|Composite backing for mirrors|
WO2013089185A1|2011-12-16|2013-06-20|日東電工株式会社|Infrared-reflecting film|
NL136313C|1962-01-29|
JPS5466536A|1977-11-07|1979-05-29|Teijin Ltd|Window|
DE3169624D1|1980-12-26|1985-05-02|Teijin Ltd|Selective light-transmitting laminate|
FR2757151B1|1996-12-12|1999-01-08|Saint Gobain Vitrage|GLAZING COMPRISING A SUBSTRATE PROVIDED WITH A STACK OF THIN FILMS FOR SUN PROTECTION AND / OR THERMAL INSULATION|
US7311961B2|2000-10-24|2007-12-25|Ppg Industries Ohio, Inc.|Method of making coated articles and coated articles made thereby|
FR2818272B1|2000-12-15|2003-08-29|Saint Gobain|GLAZING PROVIDED WITH A STACK OF THIN FILMS FOR SUN PROTECTION AND / OR THERMAL INSULATION|
TW592960B|2001-01-22|2004-06-21|Atofina|Thermoforming multilayer film for protecting substrates, and objects obtained|
JP4495590B2|2002-09-16|2010-07-07|ダウグローバルテクノロジーズインコーポレイティド|High transparency and high rigidity film|
US20070281170A1|2006-06-06|2007-12-06|3M Innovative Properties Company|Infrared radiation reflecting insulated glazing unit|
RU2517491C2|2009-06-12|2014-05-27|Ппг Индастриз Огайо, Инк.|Aircraft glazing with anti-sun properties|
US8834976B2|2010-02-26|2014-09-16|Guardian Industries Corp.|Articles including anticondensation and/or low-E coatings and/or methods of making the same|
BE1020331A4|2011-11-29|2013-08-06|Agc Glass Europe|GLAZING OF SOLAR CONTROL.|
CN104081230A|2012-01-30|2014-10-01|日东电工株式会社|Infrared reflective film|
US20140127500A1|2012-11-06|2014-05-08|Schott Corporation|Delamination-and abrasion-resistant glass window|
TWI441729B|2012-12-17|2014-06-21|Protective film|
JP2015171815A|2014-02-19|2015-10-01|東レ株式会社|Multilayer laminate|
CN104993000B|2015-06-05|2017-03-01|苏州佳亿达电器有限公司|A kind of cell piece for solar opto-electronic board|FR3074091B1|2017-11-30|2019-11-15|Saint-Gobain Glass France|FUNCTIONAL GLAZING WITH PERMANENT PROTECTIVE FILM|
FR3084074B1|2018-07-18|2020-07-17|Saint-Gobain Glass France|SOLAR OR LOW EMISSIBLE CONTROL GLAZING INCLUDING AN ORGANIC PROTECTIVE LAYER|
FR3084075B1|2018-07-18|2021-10-29|Saint Gobain|SOLAR OR LOW EMISSIONS CONTROLLED GLAZING INCLUDING AN ORGANIC PROTECTIVE LAYER|
FR3085372B1|2018-08-31|2020-08-28|Saint Gobain|TEXTURED GLASS AND GREENHOUSE INSULATION|
CN113924280A|2019-05-20|2022-01-11|旭硝子欧洲玻璃公司|Coated substrate|
法律状态:
2016-12-16| PLFP| Fee payment|Year of fee payment: 2 |
2017-06-16| PLSC| Publication of the preliminary search report|Effective date: 20170616 |
2017-12-21| PLFP| Fee payment|Year of fee payment: 3 |
2019-12-13| PLFP| Fee payment|Year of fee payment: 5 |
2020-12-16| PLFP| Fee payment|Year of fee payment: 6 |
2021-12-17| PLFP| Fee payment|Year of fee payment: 7 |
优先权:
申请号 | 申请日 | 专利标题
FR1562371|2015-12-15|
FR1562371A|FR3045034B1|2015-12-15|2015-12-15|THERMAL CONTROL GLAZING WITH PROTECTIVE POLYMER FILM|FR1562371A| FR3045034B1|2015-12-15|2015-12-15|THERMAL CONTROL GLAZING WITH PROTECTIVE POLYMER FILM|
MX2018007186A| MX2018007186A|2015-12-15|2016-12-14|Thermal control glazing with a protective polymer film.|
KR1020187016472A| KR20180093924A|2015-12-15|2016-12-14|Thermal Control Glazing with Protective Polymer Film|
RU2018125653A| RU2734354C2|2015-12-15|2016-12-14|Thermoregulating glazing provided with protective polymer film|
PL16825507T| PL3390318T3|2015-12-15|2016-12-14|Thermal control glazing with a protective polymer film|
DK16825507.3T| DK3390318T3|2015-12-15|2016-12-14|HEAT CONTROL GLASS WINDOW WITH A PROTECTIVE POLYMER FILM|
EP16825507.3A| EP3390318B1|2015-12-15|2016-12-14|Thermal control glazing with a protective polymer film|
PCT/FR2016/053410| WO2017103465A1|2015-12-15|2016-12-14|Thermal control glazing with a protective polymer film|
CN201680073983.9A| CN108367974A|2015-12-15|2016-12-14|It is provided with the thermal control glass pane of protectiveness polymer film|
ES16825507T| ES2894331T3|2015-12-15|2016-12-14|Thermal control glazing with a protective polymeric film|
BR112018010455A| BR112018010455A8|2015-12-15|2016-12-14|thermal control glass with a protective polymer film|
CA3005765A| CA3005765A1|2015-12-15|2016-12-14|Thermal control glazing with a protective polymer film|
US16/060,966| US11098521B2|2015-12-15|2016-12-14|Thermal control glazing with a protective polymer film|
JP2018531125A| JP6920299B2|2015-12-15|2016-12-14|Thermally controlled glazing with protective polymer film|
CONC2018/0005703A| CO2018005703A2|2015-12-15|2018-05-30|Thermal control glazing provided with a protective polymer film|
[返回顶部]