![]() IONOGEL FORMING AUTOSUPPORTED FILM OF SOLID ELECTROLYTE, ELECTROCHEMICAL DEVICE INCORPORATING SAME,
专利摘要:
The invention relates to an ionogel which can be used to form a self-supporting film forming a solid electrolyte of an electrochemical device, such a device incorporating this ionogel and a method of manufacturing this ionogel. The invention is generally applicable to all energy storage devices such as supercapacitors or accumulator batteries (e.g. lithium-ion). An ionogel according to the invention comprises: a polymeric confinement matrix which comprises at least one polylactic acid, and at least one ionic liquid confined in this matrix. According to the invention, this matrix further comprises a polycondensate of at least one sol-gel molecular precursor with hydrolysable group (s). 公开号:FR3043404A1 申请号:FR1560622 申请日:2015-11-05 公开日:2017-05-12 发明作者:David Ayme-Perrot;Philippe Sonntag;Philippe Girard;Carole Cerclier;Bideau Jean Le;Thierry Brousse 申请人:Centre National de la Recherche Scientifique CNRS;Hutchinson SA;Universite de Nantes; IPC主号:
专利说明:
-les alkoxysilanes trîfônctionnels, ledit polycondensat pouvant '.:âlom'.former:'üri::''rëseau 'trîdimensiohrtëî:comprenant;des enchaînements de éforrhUle {R représentant uh;groupe alkyle) : - lés alkoxysilanes quadrifonctionnels, ledit polycondensat pouvant alors former un réseautridimensionnel à enchaînements de formule : :'::.ΑίΗ^: différents types de réseaux polycondensés peuvent être obtenus en lohctiofi du type de précurseur utilisé. Selon une autre caractéristique de rinvention, ledit au moins un acide polylactique (de formule (C3H402)ri) peut avantageusement être amorphe et présenter une masse en poids Mw supérieure à 100 kDa, de préférence égale ou supérieure à 120 kDa et, à titre encore plus piêféfëniiëkégalé ou supérieure à 130 kDa. On notera que ledit au moins un acide lactique utilisable dans la matrice selon l’invention peut avoir une teneur variable en stëréoisoméres D et L et que ie degré de cristallinité obtenu dépend du ratio entre les acides D-polylactique et L-polylactîque, étant précisé qu’une férieuf élevée en acide D-polylactique est préférée vu qu’elle favorise l’âmorphisation du copolymère. De préférence, ledit au moins un liquide ionique comprend : - un cation à noyau cyclique comprenant des atomes de carbone et au moins un atome d’azote choisi parmi les noyaux imidazolium, pyridinium, pyrrolidinium et pipéridinium, le noyau pouvant être substitué sur : l’atome d'azote par un ou deux groupes alkyles de 1 à 8 atomes de Carbone: et sur les atomes de carbone par un ou plusieurs groupes: alkyles: :de:1 à 30 atomes de carbone, et - un anîon choisi parmi les hatogénurëSv : lès dérivés perfiuorés, les borates, (es dicvanamides, léS; phOépllOriatès et les bis(trifluorométhanesulfonyl)imides. On notera également que ledit au moins ton liqüidë ionique est de préférence de type hydrophobe (l’acide polylactique s’hydrolysant en".··'·'· . présence d’eau), et qu’un sèl de lithiüiTrvpëütyègate^ au·'.'·':: moins un liquide ionique pour que l’ionogel selon rinvêntion puisse former un électrolyte de batterie lithium-ion. Selon une autre caractéristique ; ; : : i’irtVë'rttiib'ili, un ionogel formant ledit film autosupporté selon l’invention présenté: avantageusement unefépaisseur moyenne égale Ouf supérieure à 10 pm et de préférence comprise entre 30 pm et 70 pm. Avantageusement, les ionogels selon l'invention peuvent: ·...présenter une conductivité ionique a 22° C supérieure.É;:3.10'èf8 préférence supérieure à 103 S.cm'1 et par exemple variant de 3.2 10'6 S.cm'1 ; S.cm'1 en fonction de la composition des ionogels Comme indiqué ci-dessus, on notera pué ta conductivité ionique mesurée pour les ionogels de l’invention est non seulement d’autant plus Haute que la fraction massique de liquide ionique incorporé dans l’ionogel est plus élevée, mais encore qu’elle augmenté avec la présence dans la matrice dudit poiycondensat combiné â i’âcide pôlylactique pour une même fraction massique donnée dé liquide ionique;'"' Un dispositif élëctrochimique selon l’invention, tel qu’un supercondensateur ou une batterie lithium-ion et comprenant un électrolyte solide sous forme d’un film autosupporté (i.e. formant une membrane séparatrice!, est caractérisé en ce que ledit électrolyte solide est constitué d’un ionogel tel que défini ci-dessus en relation avec finvérition. Un procédé de fabrication selon l'invention d’un ionogel tel que défini ci-dessus comprend les étapes suivantes : a) préparation d’ürië solution homogène non gélifiée précurseur déTîdnogel, par unè réaction de polycondensation dudit au moins un précurseur rndléculaire sol-gel à groupe(s) hydrolpàble(s) en présence dudit au moins un acide pôlylactique et dudit au moins un liquide ionique ; et b) mise en oeuvré sous forme de film gélifié de la solution obtenue en â) successivement par énduction de la solution sur un support, gélification dë la solution ënduité, séchage de la solution gélifiée, puis décollage dé la solution gélifiée ét séchée pour obtenir le film autosupporté; dri' notera que la compositionmassique .dëv^J'îdilôgëÎf finalement ·ΪΌ6ί6Η'Μ;.'· dépend des quantités ^de^'flquitie' ionique^; d’acide: polylactiqüèét'dé précurseur utilisées à l’étape:.a). une autre caractéristique:'de l'inventOn, l'on éëüt mettre :én: œuvre l’étape a) par les sous-étapes successivés::süivantes: : : : '. : v; vèii'l:);· ::soïubilisation dudit au moins: :un .'.acide polylactiqué' dans : : : : ürt 'sd.ivaMd'rgânid'Îi'ë» v:::;;:';'é2.);'aiOut dudit au moins un liquidé tonique et dudit précurseur moléculairésol-gel âgroupe(s) hydrolysable(s);;:;o.·',':·.·/···':·. .....:aâ);· ..'homogénéisation du miliëü réactionnel obtenu par agitation, puis :34): ajout d’un acide carboxyiique (e.:g. de l’acide formique de '''.formule HCOOH):"'ën excès, selon un rapport'''molaire [acide carboxyiique / précurseur moléculaire] de préférence égal ou supérieur à 2^ pour déclencher ladite réaction de polycondensation, après quoi la soiütiôn--.ôbtënüë-ëétrmise sous agitation pendant une à deux minutés. Quant à la réaction de polycondensation du réseau polÿcortdêhsé mise en œuvre en a4), elle peut être décrite par le mécanisme réactionnel suivant présenté â titre exemplatif dans le cas particulier d’un précurseur quadrifonctionnel de formule Si-(0-R)4, où R est un groupe alkyle : Carboxylation: HCOOH + Si-(0-R)4<i=>(R-0)3Si QQCH + R-OH (1) HCOOH+SÎ-OH^Si-OOCH^W (2) Estérification : R-OH + HCOOH ^R-OOCH + H20 (3) Hydrolyse: Si-O-R + HiO S sî-OH + R-OH (4) ’ ·· ^ ' Si-OOCH + H# ^ HCOOH+SÏ-OH (2'1) Condensâtionc^^^^^^^^^^^^^ 2SÎ-OH ^ Si-O-SH- H20 (5) Sî-OH + S i-O-R-* GbÔ-Si + R-OH (6) Si-G>H+Si-OOCH^^ (7) + Si-O-R^ Si^SÎ + R-OOGH (8) Sî-O-R + HCOOH -+ Si-OH + R-OOCH (9) Avantageusement, l’étape b) précitée peut être mise en oeuvre directernent après homogénéisation de la solution obtenue en a), par endüction sur ledit support qui est par exemple à base d’un polyester tel qu’un polyéthylène hâphtàlâtë (PEN), â l’aide d’un système d’enduction (e.g. de type lame de racldir ou barrette d’enduction respectivement pour « doctor blade » et «bar coater» en anglais). La gélifiOatïon peut avoir lieu à température ambiante (22-25® Gj, Ot son séchage à l’air et/ou en étuve pour évaporer le solvant utilisé en a), étant précisé que le passage en étuve améliore significratïvëment latrahsp On notera que les ionogels de rinventîon ne sont pas des gels chimiques, vu qu’il n’y a pas de structure tridimensionnelie covalente dés ;chafnes:;;d'acide(S)v;'polyIactique(s) et que le réseau formé par ledit '.'polycoridensat n’est pas toujours continu...:'·'·;' r-:· caractéristiques, avantages et détails de la présenté'·"· ' Invention·:'.'ressortiront· a.; la lecture;:de la descripfibn'.';Sulvâhte.;de plusieurs',·:;;·'·' exemples; dè: réalisation de l'invention, donnés à titre illustratif et non limitatif ·'·; et réalisésenTôlaÎion;:avèc les dessins joints, parm'i'lesqüèis'.: '.·:·;··^';.;'.'·. :; La^fictore 1 est un'graphique montrant l’évolution en fonction·;', de la tem.pê'râtu:re:.;.dë';'da conductivité ionique :âë'::quatre;;';'iO'nogels selon';: l’invention présentant différents ratios massiques acide polylactique/ polycondensat, la fraction massique du liquide ionique':étânt:fÎxie:;i"50 %, Ιά':'.ΙΪ9Ιϋ'Γβ 2 est un graphique montrant l’êvolütiOn en fonction .'du '•nombre.de; cycles .de la capacité en charge (G), :è.n'déchai^ëh(D):ët.'dë l’efficacité coutombiqüe (E) d’un supercondensateur incorporant un électrolyte selon l’invêntion qui présente une fraction massique dé'Oë'1iq.üidè.dbhiqüë'dè 60%, La figure 3 est un graphique montrant l'évolution en fonction du nombre de cycles et du temps de la capacité en charge (GJ, décharge (D) et de l’efficacité coulombiquê (Ë) d’un supercondensateur incorporant un autre electrolyte de l’inventiom avec une:.'fraction massique du }iguidè::1ôniqué:dé:ï'.'.\':: 40%, La figuré: 4 est un graphique montrant l’évolution en fonction du nombre de cycles de la capacité de quatre supercondensateurs incorporant quatre électrolytes donttrois selon l’invention et un non conforme à l’invention, en calage galvanostatique entre 0 et 2,7 V (0,5 AJ g), la fraction massique en liquidé ionique étant fixée à 50 % pour ces quatre électrolytes, .::;;;:/:-::--;:\v-:;---;;-tà:figure 5 est un graphique montrant l'évolution en fonction du hômbmde cyeiës de la résistance interne des quatre supercondensateurs dé la figure 4, en eyciage galvanostatique entre 0 et 2,7 V (0,5 A/g), La figure 6 est un diagmmme ternaire illustrant la tenue mécanique de films en fonction des fractions massiques respectives d’acide poiyiactique, de poiycondensat et de liquide ionique dans les ionogels, La figure 7 est une photographie d'un film constitué d’un ionogel selon l’invention dont la matrice de confinement comprend à la fois un acide poiyiactique et un poiycondensat essetttieilërîieni inorgahique, La figure 8 est une photographie d’un film « témoin » constitué d’un ionogel selon l’art antérieur dont la matrice ëe confinement est exclusivement constituée d'acide poiyiactique, et La figure 9 est un diagramme ternaire montrant l’évolution de la conductivité ionique à 22° C de la plupart des films de la figure 5 montrant l’influence de la frection massique du poiycondensat dans ces ionogels. On a évalué de manière qualitative la tenue mécanique des films obtenus en analysant principalement leur capacité à se décoller aisément de leursupport d’enductïôri sans déformation ni arrachement même partiel des films, et à s’enrouler autour d’un mandrin de 5 mm de diamètre. On a déterminé lesrœndüëtf^tési Ioniques des ionogels testés à 22'o;'V;O0É/.partïr de mesures réalisées'.'par rspectroscopie d'impédance: complexé (à; Îaide d’un potentiostat VMP3 de Biologie Science Instrumenté). yyç^Oyc'O::·/ On a utilisé dans les:'exemples les abréviations suivantes : - PLÂT'acide polylactique ; Si02 : polycondensat silicique. EWlimTFSI : liquidé ionique répondant au nom etnylméthylimidazoïium bis(trif!uoromethariè sulfonyl)imide. - TEOS : précurseur de silice formé de tétraéthoxysilane. [PLA/Si02]/EMimTFSÎ: [ratio massique entre la structuré formée par le PLA et le réseau de Si02 dans la-matrice de confinement] et fraction massique de ce liquide ionique dans l’ionogel. Exemple 1 de fabrication d’un film d’ionoael selon l’invention en comparaison de deux film « témoin » incorporant des •'.PLA non conformes a l’invention : On a mélangé 380 mg de PLA à 2^2 mL de solvant afin d’obtëriif Prié concentration de PLA de l’ordre dé 175 g/L. On a mis la solution sous agitatiori jusqu’à la complète dissolution du polymère soit environ 2 h. On y a ensuite ajouté 340 mg de liquide ionîqué(iMirnTFSI) et 473 pL de précurseur de silice (TEOS) afin de former un ionogel [PLA/Si02]/EMimTFSI de composition massique [75/25]/40. On a laissé la solution s’homogénéiser par agitation magnétique pendant 10 minutes. On a ajouté un excès d’acide formique (643 pL d’AF en abrégé) de sorte que l’on ait un rapport molaire r= (nombre de moles AF) / (nombre de moles TEOS) a 8. On a mis la solution sous agitation pendant 1 à 2 minutes. Puis on a réalisé sort êhdüCtion sur un support en PEN préalablement nettoyé à l’acétone. Ori â fixé la vitèsse d’enduction à 5 cm.s'1, et la hauteur du dépôt était de 300 pm, On a laissé le film gélifier et sécher à raft pendant 24 h, puis on l’a chauffé à 110° C pendant 1 h. On a enfin laissé: : ce:film aurepos pendant au moins4'fr h avant utilisation. : ; v Comme décrit dans le tableau 1 suivant, oma'.yé'rifie::·que<1ë$Ly/y///'.· propriétés: du/PLA utilisé influencent fortement les propriétés ifi'ÉiiâiëiSi':dü filiiri-: ' d’ionogël obtenu. En effet, il en ressort que seul un PLA de masse moléculaire .. suffisammentyélevée (Mw >100 kDa, égale à 130 kDa dans l'exemple selon llnventiOil du Cas 1 ci-dessous) a permis de·mettre en œuvre le film dans de bonnes conditions en lui conférant en outre une tenue mécanique satisfaisante ""mesurée qualitativement comme expliqué ci-dessus. On voit en particulier que les PLA de Mw inférieure ou· égale à 100 kDa des Cas 2 et 3 Lne permettaient pas de conférer à la fois aux films d’ionogels une aptitude à la mise:;;énvœu^re et une tenueymécanique suffisantes. Tableau.: 1 : :: ëxëmples2<< lémoin » de fabrication de deux films :flPiùnogeis présentant respectivement deux fractions massiques de lidyidevforiiqye.riorÎ conformes à l’invention ; Premier exemple << témoin » de fab ri cation d’un iorioqei de compositionTPLMiO' 1/EMlMTFSI - F75/251/90 : /.a mélangé 92 mg de PLA (PLA4060 HMW-N0:;'dë·'·:';::··.'.'.··;.· Natureworks de masse Mw = 130 kDa) à 0,5 mL d’acétonitrile afin d’obtenir une concentration de PLA de i'ordre de 180 g/L. On a mis Sa solution SOUS agitation jusdü’à la complète dissolution du polymère, pendant envirort'^b;';On;;i:;·.·:·;· a ensuitelajôüté 937 mg de EMimTFSI et 110 pL de TEOS. On a; laissé/la^.'· ::1/:: solution·'S'Homogénéiser par agitation magnétique pendant 10 minutes^ puis:: ^ on a: ajouté 150 pL d’acide formique de sorte que l’on ait un rapport molaire r= (ÂF)/(TEOS) s 8. On a mis ia solution sous agitation pendant 1 à 2 minutes. :'/:··///::Ρϋί$ν:^ son endüction sur un support en PEN préalablement nettoyé à l’acétone. On a fixé la vitesse d’enduction à 5 cm.s'1, et la hauteur du dépôt était de 300 pm. On a laissé le film gélifier et sécher à l’air pendant 24 h, puis on l’a chauffé à 110° C pendant 1 h. On a enfin laissé ce film au repos pendant au moins 48 h avant Utilisation. L’ionogel obtenu non conforme à l'invention présentait une traction massique en liquide ionique nettement Supérieure à 75 %, qui faisait que cét îonogel présentait ia texture':·:/··'····.':.· d’une pâte dont la mise en œuvre sous fbmie defilm n’était pas réalisable. exemple « témoin » de fabrication d’un ionoqei de composition ÎPLA/SiO j/EMIMTFSI =Î75/251/3Q ; On a mélangé 387 mg dé PLAjfmême PLA4060 HMw-HD âe Natureworks de masse Mw = 130 kDa) à 0,5 mL d’acétonitrile afin d’obtenir Une concentration dé PLA de l’ordre de 180 g/L. On a mis la solution sous/:/'·'·/ agïtatiOrt:.jüsqü*à1â.complètedissolution du polymère, pendânienviron 2 h. On:/:·: a ensuite ajouté 227 mg de EIVIÏmTFSI et 476 pL de TEOS. On â laissé la solution s’homogénéiser par agitation magnétique pendant 10 minutes, puis on a ajouté 648 pL d’acide formique de sorte que l’on ait un rapport molaire r= (ÀÉj / (TEOS) > 8, On â mis la solution sous agitation pendant 1 â 2 minutes. Puis on a réalisé son enduction sur un support en PEN préalablement nettoyé â l’acétone. On a fixé la vitesse d'enduction à 5 cm.s'1, et là hauteur du dépôt était de 300 pm. On a laissé le film gélifier et sécher à l’air pendant 24 h, puis on l’a Chauffe à 110° C pendant 1 h. On a enfin laissé ce film au repos pendant au moins 48 h avant utilisation. L’ionogél obtenu présentait une fraction massique en liquide ionique de seulement 30tfe qui faisait que ce film adhérait trèsfortement au support: il se déformait et/ou S’arrachait lorsque l’on cherchait à le retirer de ce support. 3 de fabrication de quatre films d’ionoqels selon IMnvention présentant diitrefs ratios massiques fPLA/SiO ! pour une même fraction massique de liquide ionique de 50 %i Ôh a Comparé entre eux quatre ibnogéls contenant 50 % en massé dé EMIMTFSI, mais avec quatre ratios différents [PLA/Si02], en comparaison d’un ionogel 1 « témoin » de composite caractérisé par fabsenoe dé polÿcondensat silicique (voir figures 4-5). On a utilisé le P LA 4060^ HWw-HCï de Natüreworks pour^ préparer chaque ionogel qui était caractérisé par la composition massique [PLA/Si02]/EMimTFSI, et préparé selon lé protocole Suivant : 2 175/251/50 : on a mélangé environ 380 mg de PLA (Mw = 130 kDa) à 2,2 mL d’acétonitrile. On a mis la solution sous agitation pendant environ 2 h. Ort ÿ a éhsüîtè ajouté 507 mg de EMimTFSi et 462 pL de TEOS; On a laissé la solution s’homogénéiser par agitation magnétique pendant10 minutes*puis ona ajouté 648 uL d’acide formique. Ionogel 3 f60/401/50 : on a mélangé environ 215 mg de ';FLÂv:(:Mw =130 kDa) à-1,2 mL d’acétonitrile. On a mis': la solution sous agitation pendant énvîrott 2 h. Oh y a ensuite ajouté 364 mg de EMimTFSI et 530 pL de TEOS. On a laissé la solution s’homogénéiser par agitation magnétique pendàrtt^iü;'rt^iiήutesi:puis on a ajouté 720 ut d'acidé formique./ - lonodel 4 f5D/50i/5Q : on a mélangé envird:hf217 mg'.'dë··· 'oFLÀ'::(Mw -.i3Ô7kDâ)/i:.1,2 :'miL;:d'acétonitdle7::Ôn a mis/léf SQlutlon/soUsf/ ;''agÎtation:;'pëOdâdte:nviro:ri':2 h.'Qrty a ensuite ajouté 431 mg;de EMimTFSifet//· ;::800yi:MLodë;''TËdS,7On a laissé;/.la solution'/s’homogénéiser par agitation ; : 'rhajg:rïéti^u'ër'.0^ m i nutêis;ô':pùis on a ajouté 1090 pL d’acide formique./ ;/ 7 .v:' :·':. :g·;-·"' lonoaef 5 Γ45/551/50 :'.Qii:a:..:iiiélaHaê^envirOii 295 mg/de i·/·/ PLA (fVS'vr- 130 kDa) à 1,6'.'ffi'L.d’acéton® solution sous;.'·:·'·, agitation pendant environ 2 h, ÔO ÿ:a ensuite'ajoutê;;655;mg de EMimTFSI et 1,33 mL de TEOS. On a la'iSSë';."la solution s’homogénéiser pendant 10 minutes, puis on a ajouté 1,81 mÉ^d’acideferniique;;'·- On a mis chaque solution sous agitation magnétique pendant 1 é 2 miflütés directement avant enduction sur un support en préalablement nettoyé à l’acétone. On a fixé la vitesse d’enduction à 5 cm.s'1, et la hauteur du dépôt étaît de 300 pm. On a laissé chaque film gélifier et sécher à l’air pendant 24 h, puis on l-a chauffé à 110° C pendant 1 h. On a enfin laissé chaque film au repos pendant au moins 48 h avant utilisation. On a procédé à des mesures de conductivité ionique en faisant varier la température pour üne série d’échantillons dont la teneur en liquide ionique était fixée à 50 % en masse. Comme illustré à la figure 1 pour Tensenibië dès quatre films 2, 3, 4, 5 selon l’invention, la conductivité ionique était dè rofdrë dé 0,1 rnS.cnrï1 à une température de l’ordre de 20 à 22° C et '.atteignait 1 mS;C'm·1 à plus haute température. . ' Exemple 4 d’essais dans deS'Sypercontosateur&dl&'·'·'· y deux électrolytes de l’invention avec un même, ratio massique IPLA/SiO ! et deux fractions massiques différentes dé liquide ionique (figures 2-3¾. '"etd’essais des;:irois.filmS';^/3Î..4vforrnant des électrolytes de Tinvention comparés au film d’électrolvte 1 « témoin » avec une même fraction massique de liquide ionique de 50 % pources· électrolytes fFiqures:4*Sy i. -y;;···.· On a réalisé des dispositifs sUpêrCondensateurs à partir dë; : ' montages de type « Swageiok ». On a imbibé ;dë: liquide ionique EMimTFSIy:: une premièreélectrode,: qui était à base^dëèafbônë poreux et préalablement·:··:····;.;·· déposée sur un collecteur en aluminium. On a déposéysür1a:.:pre'mÎêrê;:ëieëtrode, lors de deux premiers y essais distincts, deux iono.gelS;.:Sélon": l’invention préparés selon le protocole du Cas 1 de l'exemple 1 et dont les compositions massiques respectives [PLA/Sid2j/EMimTFSi étaient [75/25]/6Q (voir figure; 2) et [75/25]/40 (voir figuré 3). On a imbibé du même liquide Ionique une deuxième électrode et l’on â mis l’ensemble en contact, de sorte que chacun des deux ionogels obtenus Sous forme dé film mince formait un électrolyte solide âutosupporté entre les y:deuxyéiechëdèS;-'v'-;:;7-^;.-'y;'y·;:. On a réalisé tes caractérisations électrochimiques à température ambiante à l’aide d’un potentiostat (VMP3, BioLogic Science Instruments). On a notamment déterminé les capacités par cyclage galvânostatique. On a fixé un courant I = 2 mA (soit une densité de courant de 0,5 jAjpàr gramme de carbone d’une électrode) pour lequel on a fait varier le potentiel entre 0 et 2^7 V puis entre 2,7 V et 0 V, de manière à alterner lés charges et décharges du système. ;-yy;.;y-;;;;/'Comm'ëyvîëible aux figures 2-3 (qui illustrent les courbes de charge C, décharge D et d’efficacité <mülombique E obtenues) et aux figures 4-5 (qui illustrent les performances dès films d'électrolytes 1, 2, 3, 4), les valeurs de capacité obtenues pour les électrolytes solides 2, 3, 4 selon '/Γ'invention étaient de l’ordre de 20 F à 50 F par gramme de carbone d’une électrode. Ces dispositifs étaient capables de fonctionner en cyclage pendant au moins 10 000 cycles. On peut noter que les systèmes 'étaient plus stables avec 40 % en masse de liquidé ionique {comme illustrêfi la figure 3) et en:··.·;;:··..... outre que les performances électrôchimiques étaient améliorées en présence : : du polycondensat silicique combinerai!'PLA dans la matrice de confinementC " En conclusion. ieS résultats des figures 2-5 démontrent que ces dispositifs électrochimiques ont fonctionné efficacement chaque film d’ionogel ayant bien rempli son rôle de membrane séparatrice au sein du dispositif correspondant. Éxemplé 5 dé mesure de la tenue mécanique de selon rinvenMOrt et « témoin » (figure 6), fabriqués selon le procédé de l'exemple 1 (Cas It ou de l’exemple 3 pour les films de l’invention, et selon ces procédés mais avec des compositions ÎPLA/SiOVl/EMimTFSI non conformes à rinvéntîôn Pour les films «témoin » : On a évalué la ténue mécanique des films d’ionogels obtenus, principalement aü Vu de leur capacité â se décoller aisément de leur support Conduction en PËN et en outre à s’enrouler autour du mandrin de 5 mm de diamètre, via une évaluation qualitative par ühe note comprise entre 0 et 5. ta note 0 signifie que l’on n’a pas obtenu un film autosupporté par ce décollement et la note 5 que l’on a non seûiëmén! obtenu un film autosupporté mais que ce film a été aisément enroulé autour dudit mandrin en : ;. ayant été facile à manipuler par un opérateur sans·, t'altérer en aucune :: ;f manière. Quant aux notes 1-2 et 3-4, elles signifient respectivement ςυβ·1Ρη'.;;;'.;.'.'·2'· n’a pas véritablement obtenu un film autosupporté suite au décollement (notes 1-2) et que le film autosupporté obtenu n’a pas été aisément enroule autour du; mandrin et/ou: n’a pas été faciië'àvmânipütersàhë l’altérer (notes 3-4)., La··figure 6 .'présente flëèf perforé obtenues enffoflction désirais fractions massiquesTëS'déC^ S1O2 et de ËMimTFSI des films d’ionogels testés selon l’invention et « témoin » incorporant le liquide ionique EMimTFSl pur. / Les notes 5 et 4 obtenues pour les films visibles à la figure 6 démontrent l’effet de synergie des structures rëspibtivëment organique (PLÂ) ët: ëssëntiëllëment inorganique (Si02) pour l'obtention d’une tenue mécanique /irès. nettement améliorée pour les films de rinvëntion, qui contenaient/y/;/.//·· - entre 35 et 75 % en masse de liquide ionique et entré 65 et 25 % de matrice dé^ œnfinernentp ëllé-même caractérisée par un ratio massique [PLA/SîO^ œmpds emm ^Wl] et f45/55], et /-une fraction massique de PLÂ^ composé entré 20 et 70 % et de polycondensat SiiïCiqüê comprise entre 1 et 30 %. Ën prtïcüliën lâ figure 6 montre que parmi les films testés selon l’invention ayant présenté les meilleures tenues «mécaniques (note 5), se trouvaient des films incorporant le polycondensat silidique selon une fraction massique variant avantageusement dé 10 à 23 %, voir les six carrés dé noté 5 caractérisés par tes trois fractions massiques suivantes PLA/Si02/EMimTFSi .:;:(fraCtio:ris:'ëxpriméësé'ri ^γ^·/::;·::··;./:: /^///u:::;/;--^··^ 30/20/50» 37/23/40.;·-·'·:·:': //•:;';::'::;;':::::.p;::.::;Lë:.;.côté inférieur du triangle de/là/ figure 6 (ï.e./avéC/une".·.·. fraction·:massique:'dépoIycondensaÏsilicique dans': les ionogels compriëë.'ëntre ::/ 0'•et:::.1::%)/ montre: ;· que sans: te/réseau silicique, les tenues mécaniques obtenues pour tes films sont moins bonnes. Là/figure 7:montre l’aspect satisfaisant d’un fiimrautosuppQrté::/ selbri;:hnvention tël que testé: à/la figure 6, qui était caractérisé par les trois:·:·: fractions massiques (en %):PLA/Si02/EMimTFSI de 38/12/50, fâ pfésêhce du: polycondensat silicique rendant ce film autosupporté aisément màriipülabfe èt repositionnable en vue de./son: uiiüsation /comme électrolyte solide d’un supercondensateur ou d’une batterie lithïum-iOrij notamment. On voit par contraste que le film « témoin » de la figure 8 dont la matrice de confirtëmënt est exclusivement constituée d’acide poiylactique, i.e. avec les fractions massiques (en %) PLA/Si02/EMimTFSI de 60/0/40 présente une texture ne le rendant pas à la fois autosupporté et apte à s’enrouler et à être manipulé et repositionné de manière satisfaisante» La figure 0 montre que la conductivité ionique des films d’ionogels selon l’invention est d’autant plus Haute que la fraction massique de liquide ionique est plus élevée dans oes films. Cependant et indépendamment de cette fraction massique, le diagramme de la figure 9 démontre également que la présence d’un polycondensat sefon l'invention, de typeëilicique...dansCét;:.v:exemple·/de l’invention, permet d’obtenir des conductivités ioniques supérieure pour une fraction massique donnée de liquide ionique confiné. En particulier, cette figure 9 montre que pour une fraction de liquide ionique dans un ionogel selon l’invention égale à 60 % ou à 70 %, c’est la plage de fractions massiques dudit polycondensat allant de 8 â 18 % (incluant les trois films de fractions massiques PLA/Si02/EMimTFSI de 22/8/70, 18/12/70 et 22/18/60) qui procure les conductivités ioniques les plus élevées, qui étaient supérieures à 5.10 ' S.cm1 (i.e. 5.0E-03 en abrégé à la figure 9) pour cele plage de fraction massique 8-18 % de polycondensat. 10NOGEL FORMING AN ELECTRICAL FAULT: ////. SOLDER »ELECTROCHMIC DEVICE / INCORPORATING SAME AND METHODS OF MAKING LIONOGEL. / ;. The present invention utilizes a self-supporting film forming a solid electrolyte from an electrochemical device, such a device incorporating this ionogel, and a method of manufacturing a ionogel. The invention applies generally to all energy storage devices such as supercapacitors or accumulator batteries (eg lithium-ion), for example and not at all. It has long been known to manufacture gels by a method of hydrolysis and condensation which, starting from a molecular precursor (called a "true" solution), leads to the formation of a colloidal solution called <<sol") and then, by connecting the colloidal particles, to the formation of a continuous solid skeleton called gel. On the other hand, the ionic liquids are formed by a mixture of cations and denions and are in the liquid state at room temperature, and have satisfactory properties, such as zero volatility. As a result, the conductivity is as high as catalytic properties. It is notoriously known to confine an ionic liquid in a confinement matrix forming a continuous solid skeleton, in order to obtain an ionogel, the gel confining an ionic liquid which preserves its conductivity / topology: the ionic liquid thus confined remains by definition contained in the container without running or evaporating. Such ionogels are in particular presented in patent document WO-A1-2005 / 007746, which teaches the formation of a molecular ionogel with a rigid confinement matrix of mineral or organomineral (ie essentially inorganic) type by polycondensation. a sol-gel molecular precursor: embedded image Such an alkoxysilane, which is premixed with the ionic liquid and which forms: This material gives rise to a high degree of polycondensation. Patent: WO-A1-2010 / 092258 teaches the manufacture of a composite electrode for a battery. lithium, by casting an ionogel on a porous composite electrode, simultaneously forming the electrolyte impregnated composite electrode and the also mineral or organomineral rigid matrix separating electrolyte, which ionogel is obtained by mixing an ionic liquid, a lithium salt and the same precursor sot-gel, such as an alkoxysilane. More recently, ionogels forming solid electrolytes of high thermal conductivity for storage batteries have been searched for by confining an ionic liquid in a purely organic confinement matrix, replacing the prior art mineral or organomineral matrices. CN-B-10 3254461 discloses such an ionogel with an organic confinement matrix in the form of a mixture of the stereoisomers D and L of a polemic acid ("PLA" abbreviated to "polylactic acid"). . Poliacetic acid is a mechanically fragile biosourced polymer. Its mechanical resistance also decreased beyond 45 ° C. By plasticizing it with an ionic liquid, we know that its mechanical properties and ionic conductivity · ^^^^ However, one disadvantage of these known ionogels with confinement matrix constraint of polioacetic acid lies in the mechanical strength of the films obtained, which may be insufficient or totally unsuitable for their use as solid electrolytes self-supported, because of an impossibility for the gel before being filmed correctly, or because the films possibly obtained can not be detached from their coating medium without deformation or tearing, or else the fenity of an inability of these films to be rolled up. around a mandrel. In addition, some ionic liquids usable in the latter document, kings as those based on cations irnidazolium associated with certain assnions, can degrade the polylactic acids which confine them. It is an object of the present invention to provide an ionogel for It is also possible to use at least one ionic liquid which, in particular, remedies the object, and this object is achieved in that the Applicant has surprisingly discovered that if one uses As the ionic containment matrix the combination of a polylactic acid and a hydrolyzable (s) self-gel molecular precursor (s), then an ionogel can be obtained. significantly improved mechanical strength and ionic conductivity in comparison with those of the two aforementioned matrix ionogels resulting solely from the polycondensation of such a precursor and solely formed of polylactic acid, which makes cosmonogels with a mixed matrix perfectly adapted to constitute them only a self-supporting film forming a solid electrolyte. An ionogel according to the invention is thus usable for constituting an aosubstituted film forming a solid electrolyte of an electrochemical device, the ionogel comprising a polymeric confinement matrix which comprises at least one polylactic acid and at least one ionic liquid which is confined in said confinement matrix. , and this ionogel is such that said matrix further comprises a poly (S) -substituted molecular precursor / hydrolysable group (s): ## EQU1 ## The expression "designated" here refers to the reagent C; aoritenhb: ## EQU1 ## which are based on the matrix of the ionogel and are: ## EQU1 ## Binders of ligands, and the term "hydrolysable group" means a chemical moiety linked to a moiety / molecule which is capable of being separated from it by means of a hydrolysable moiety. note that this novel combination to this day: '/ for:' / '': to obtain the said matrix, of two very macromolecular structures Different materials, which are essentially essentially inorganic and organic, make it possible: to obtain, by synergistic effect, unsupported metal films (ie, which can be detached from their support for deformation without deformation or even partial wrenching of the films with a view to their reeling on a mandrel of reduced diameter) which have remarkable mechanical strength allowing them to be easily manipulable and repositionable in good conditions * with respect to the mechanical strength of the ionogels of the prior art. As will be explained hereinafter, it will also be appreciated that the presence of a polycondensed, three-dimensional network of essentially inorganic structure in the containment matrix further enhances the tonic conductivity of the inventive desionogels compared to the known conjugate in a fraction. identical mass of confined ionic liquids but whose matrix is exclusively composed of one or more polylactic acids. However, the polycondensate forming this essentially inorganic polycondensed network, which is preferably of the silicic type, can advantageously be used in the present invention. interpenetrating with the organic structure comprising said at least one polylactic acid, to form said confinement matrix. Advantageously, an ionogel according to the invention can: be Garactërisë by a mass ratio [(polylactic acid (s)) / polycondensate] of between 99/1 and 45/55, and even more advantageously between: 80 / 20 and 55/45 (in other words, the mass fraction of said polycondensate: said matrix f (acid (S): polylactic (s)) polyalkylene oxide) according to the invention is preferably from 1% to -5i5 ' Preferably, an ionogel according to the invention comprises said at least one polyalkyl acid in a mass fraction which is between about 0% and about 70%, and said polycondensate in a mass fraction which is: between 1%: and: 8% :( ······················································································································································································································································ between 22% and 50%, and said polycondensate in a mass fraction which is between 8% and 25%. Preferably, an ionogel according to IInventtori comprises said ionic liquid in a mass fraction which is between: 35 and 75, and said polymeric confinement matrix is selected from: complementary mass fraction which is between 65% and 25: It should be noted that these ranges of ratios and of mass fractions contribute in particular to conferring on the ionogels according to the invention a satisfactory performance and improvement with respect to the known ionogels. According to another feature of the invention, said at least one sol-gel molecular precursor with hydrolysed group (s) can meet the general formula R'x (RO) 4-x Si, wherein Is an integer ranging from 0 to 4, R 1 is an alkyl group of 1 to 4 carbon atoms, and is an alkyl group of 1 to 4; At least 4 carbon atoms, an aryl group of from 6 to 30 carbon atoms, or a halogen atom may be preferably substituted for said precursor. In addition, the alkoxysilanes and arylalkoxysilanes are indicated, it being understood that other precursors derived from silicon having this general formula are usable. Even more preferably, the precursor is chosen from: the bifunctional alkoxysilanes, said polycondensate possibly comprising in this case linear chains or cleavages; cycles comprising sequences of formula (R representing An alkyl group): the trifunctional alkoxysilanes, said polycondensate being capable of forming a tridimensional network comprising: chains of (R 1 representing alkyl); the quadrifunctional alkoxysilanes, said polycondensate then being able to form a three-dimensional network with chains of formula: Different types of polycondensed networks can be obtained depending on the type of precursor used. According to another characteristic of the invention, said at least one polylactic acid (of formula (C3H402) r1) may advantageously be amorphous and have a mass by weight Mw greater than 100 kDa, preferably equal to or greater than 120 kDa and, again more than 130 kDa. It should be noted that said at least one lactic acid that can be used in the matrix according to the invention can have a variable content of D and L stereoisomers and that the degree of crystallinity obtained depends on the ratio between the D-polylactic and L-polylactic acids, it being specified that a high dose of D-polylactic acid is preferred since it promotes the amorphization of the copolymer. Preferably, said at least one ionic liquid comprises: a cyclic ring cation comprising carbon atoms and at least one nitrogen atom chosen from imidazolium, pyridinium, pyrrolidinium and piperidinium nuclei, the ring being able to be substituted on: nitrogen atom with one or two alkyl groups of 1 to 8 carbon atoms; and on the carbon atoms with one or more groups: alkyl of 1 to 30 carbon atoms, and an anion selected from the group consisting of hatogenideSV: perfluorinated derivatives, borates, dicvanamides, lysophloelates and bis (trifluoromethanesulfonyl) imides. It should also be noted that said at least one ionic liquor is preferably of the hydrophobic type (polylactic acid hydrolyzes in the presence of water), and that a lithium salt is used. '.' · ':: minus an ionic liquid so that the ionogel according to rinsing can form a lithium-ion battery electrolyte. According to another characteristic; ; The invention relates to an ionogel forming said autosupported film according to the invention, which is advantageously of average thickness equal to greater than 10 μm and preferably of between 30 μm and 70 μm. Advantageously, the ionogels according to the invention can: have an ionic conductivity at 22 ° C. greater than 3.10, preferably greater than 103 S.cm-1 and for example a variation of 3.2 × 10 -6 S. cm'1;S.cm'1 according to the composition of the ionogels As indicated above, it will be noted that the ionic conductivity measured for the ionogels of the invention is not only higher because the mass fraction of ionic liquid incorporated in the ionogel is higher, but also that it increases. with the presence in the matrix of said polycondensate combined with the polylylactic acid for the same given mass fraction of ionic liquid; An electrochemical device according to the invention, such as a supercapacitor or a lithium-ion battery and comprising a solid electrolyte in the form of a self-supporting film (ie forming a separating membrane, is characterized in that said solid electrolyte consists of an ionogel as defined above in connection with the finish. A manufacturing method according to the invention of an ionogel as defined above comprises the following steps: a) preparation of a homogeneous ungelled solution precursor deTinogel, by a polycondensation reaction of said at least one sol-gel molecular precursor group (s) hydrolpable (s) in the presence of said at least one polyelactic acid and said at least one ionic liquid; and b) working in gelled film form of the solution obtained in a) successively by elution of the solution on a support, gelation of the solution, drying of the gelled solution, then take-off of the gelled solution and dried to obtain the self-supporting film; It will be noted that the basic composition of the earth is ultimately dependent on the quantities of ionic ironity; acid: precursor polylactic acid used in step: .a). Another feature of the invention is that step (a) is implemented by the following successive steps: ## EQU1 ## : v; This solubilization of said at least one polylactic acid in: ## STR1 ## is in the range of at least one of at least one of the following groups: at least one of said at least one liquid solution and said molecular precursor isol-gel group (s) hydrolysable (s); (a) homogenization of the reaction mixture obtained by stirring, followed by addition of a carboxylic acid (e.g., formic acid) of the formula HCOOH; "excess, in a molar ratio [carboxylic acid / molecular precursor] preferably equal to or greater than 2 ^ to trigger said polycondensation reaction, after which the stirring takes place under agitation for a period of one hour. at two minutes. As for the polycondensation reaction of the polyderegative lattice implemented at a4), it can be described by the following reaction mechanism presented by way of example in the particular case of a quadrifunctional precursor of formula Si- (O-R) 4, where R is an alkyl group: Carboxylation: HCOOH + Si- (O-R) 4 ## STR2 ## Esterification: R-OH + HCOOH → R-OOCH + H 2 O (3) Hydrolysis: Si-OR + HiO + S-OH + R-OH (4) '·· ^' Si-OOCH + H # ^ HCOOH + Si-OH (2'1) Condensation of Si-O-SH-H 2 O (5) Si-OH + SiO- * Gb-Si + R-OH (6) Si-G 3 H + Si-OOCH 3 (7) + Si-OR 4 Si + R-OOGH (8) Si-OR + HCOOH + Si-OH + R-OOCH (9) Advantageously, the above-mentioned step b) can be carried out directly after homogenization of the solution obtained in a), by coating on said support which is for example based on a polyester such as a polyethylene glycolate (PEN), using a coating system (eg of the type of scraper blade or strip of coating respectively for "doctor blade" and "bar coater" in English). Gelification can be carried out at room temperature (22-25 ° G), air-drying it and / or in an oven to evaporate the solvent used in a), it being specified that the passage in an oven significantly improves latrahsp. It should be noted that the ionogels for rinsing are not chemical gels, since there is no three-dimensional covalent structure of (S) polyimetic acid (s) and that the formed by said 'polycidensate' is not always continuous ...: '·'·;' The characteristics, advantages and details of the invention will be apparent in the reading of the description of several examples of the present invention. Embodiments of the invention, given for illustrative and non-limiting purposes, and made in connection with the accompanying drawings, by way of example: ## EQU1 ## Fig. 1 is a graph showing the evolution in function of the ionic conductivity of ion conductivity. According to the invention having different mass ratios of polylactic acid / polycondensate, the mass fraction of the ionic liquid is as follows: ## EQU1 ## '9Ιϋ'Γβ 2 is a graph showing the evolution as a function of the number; cycles of the load capacity (G): (d): the cost efficiency (E) of a supercapacitor incorporating an electrolyte according to the invention having a mass fraction more than 60%, FIG. 3 is a graph showing the evolution as a function of the number of cycles and the time of the load capacity (GJ, discharge (D) and the coulombic efficiency (Ë) of a supercapacitor incorporating another electrolyte of the 'inventiom with a: mass fraction of the iguidene :: 1on: 40%, The figure: 4 is a graph showing the evolution as a function of the number of cycles of the capacity of four supercapacitors incorporating four electrolytes, three of which according to the invention and a non-compliant with the invention, in galvanostatic setting between 0 and 2.7 V (0.5 AJ g), the mass fraction in ionic liquids being fixed at 50% for these four electrolytes, :: ::; :: - :: -;: \ v -: ---; FIG. 5 is a graph showing the evolution of the internal resistance of the four supercapacitors of FIG. 4 as a function of the internal temperature, in galvanostatic eyelets between 0 and 2.7 V (0.5 A / g), FIG. 6 is a ternary diagram illustrating the mechanical strength of films as a function of the respective mass fractions of poly (icic acid, polyalkensate and ionic liquid in the ionogels, FIG. 7 is a photograph of a film consisting of an ionogel according to the invention, the confinement matrix of which comprises both a polyoxyacetic acid and an inorganic polyalkylene glycol, FIG. 8 is a photograph of a "control" film consisting of an ionogel according to the prior art, the containment matrix of which consists exclusively of polyacetic acid, and Fig. 9 is a ternary diagram showing the evolution of the ionic conductivity at 22 ° C of most of the films of Fig. 5 showing the influence of mass fric- tion of the polycondensate in these ionogels. The mechanical strength of the films obtained was evaluated qualitatively by analyzing mainly their ability to easily peel off their enductometric support without deformation or even partial tearing of the films, and to wind around a mandrel 5 mm in diameter. . The ionotests of the ionogels tested at 22 ° C were determined from measurements made by complexed impedance spectroscopy (using an instrumented Biology Science VMP3 potentiostat). The following abbreviations have been used in the following examples: polylactic acid; SiO 2: silicic polycondensate. EWlimTFSI: ionic liquid corresponding to the name etnylmethylimidazoïium bis (trifluorometriene sulfonyl) imide. TEOS: precursor of silica formed of tetraethoxysilane. [PLA / Si02] / EMimTFSi: [mass ratio between the structure formed by the PLA and the SiO 2 lattice in the confinement matrix] and mass fraction of this ionic liquid in the ionogel. EXAMPLE 1 of fabrication of an ionoael film according to the invention in comparison with two "control" films incorporating PLAS not in accordance with the invention: 380 mg of PLA was mixed with 2 ^ 2 ml of solvent in order to obtain a PLA concentration of the order of 175 g / l. The solution was stirred under agitation until the polymer was completely dissolved for about 2 hours. 340 mg of ionic liquid (IMirnTFSI) and 473 μL of silica precursor (TEOS) were then added to form a [PLA / SiO2] / EMimTFSI ionogel of [75/25] / 40 mass composition. The solution was allowed to homogenize by magnetic stirring for 10 minutes. An excess of formic acid (643 μL of abbreviated AF) was added so that a molar ratio r = (number of moles AF) / (number of moles TEOS) was 8. solution with stirring for 1 to 2 minutes. Thereafter, drying was performed on a PEN support previously cleaned with acetone. Ori fixed the coating viscosity at 5 cm -1, and the height of the deposit was 300 μm. The film was allowed to gel and dry raft for 24 h, then heated to 110 ° C. for 1 hour. Finally, this film was left for at least 4 hours before use. : v As described in the following table 1, oma'.yrifies :: · that The properties of the PLA used strongly influence the properties of the resulting ionogel. Indeed, it emerges that only a sufficiently high molecular weight PLA (Mw> 100 kDa, equal to 130 kDa in the example according to the invention of Case 1 below) has made it possible to implement the film in good conditions by conferring in addition a satisfactory mechanical behavior "" measured qualitatively as explained above. In particular, it can be seen that the PLA of Mw less than or equal to 100 kDa of Cas 2 and 3 Lne did not allow the ionogel films to have sufficient aptitude for energetic performance and mechanical resistance. Table .: 1: :: ëxëmples2 <"Lemon" for manufacturing two films: flPiùnogeis respectively having two mass fractions of lidyidevforiiqye.riorÎ according to the invention; First example <"Control" for the manufacture of an iorioqi of compositionTMTMTFSI-F75 / 251/90: /.a mixed 92 mg of PLA (PLA4060 HMW-N0:; · Natureworks of mass Mw = 130 kDa) to 0.5 mL of acetonitrile to obtain a PLA concentration of the order of 180 g / L. The solution was stirred until the polymer had completely dissolved, and then 937 mg of EMimTFSI and 110 μl of TEOS were added. We have; The mixture was allowed to homogenize by magnetic stirring for 10 minutes and then 150 μl of formic acid was added so that a molar ratio was obtained. The solution was stirred for 1 to 2 minutes. : '/: ·· /// :: Ρϋί $ ν: ^ its endüction on a support in PEN previously cleaned with acetone. The coating speed was set at 5 cm -1, and the height of the coating was 300 μm. The film was allowed to gel and air-dry for 24 h and then heated at 110 ° C for 1 h. This film was finally allowed to rest for at least 48 hours before use. The ionogel obtained in accordance with the invention had a mass pull in ionic liquid of substantially greater than 75%, which made the conjugate exhibit the texture of: a dough the implementation of which was not feasible. example "control" for the manufacture of a composition IOMA / SiO 2 / EMIMTFSI = 75/251/30; 387 mg PLA (PLA4060 HMw-HD Natureworks of mass Mw = 130 kDa) were mixed with 0.5 mL of acetonitrile to obtain a PLA concentration of the order of 180 g / L. The solution was stirred at the end of the polymer solution for about 2 hours. Then: 227 mg of EIVIMTFSI and 476 μL of TEOS were added. The solution was allowed to homogenize by magnetic stirring for 10 minutes, then 648 μl of formic acid was added so that a molar ratio r = (ΔE / (TEOS)> 8 was used. stirred solution for 1 to 2 minutes. Then its coating was carried out on a PEN support previously cleaned with acetone. The coating speed was set at 5 cm -1 and the height of the deposit was 300 μm. The film was allowed to gel and air-dried for 24 h, then heated at 110 ° C for 1 h. This film was finally allowed to rest for at least 48 hours before use. The ionogel obtained had a mass fraction of ionic liquid of only 30%, which caused this film to adhere very strongly to the support: it deformed and / or ruptured when it was sought to remove it from this support. 3 manufacturing of four ionographic films according to the invention having diitrefs mass ratios fPLA / SiO ! for the same mass fraction of 50% ionic liquid Compared with each other four ibnogels containing 50% by mass of EMIMTFSI, but with four different ratios [PLA / SiO2], in comparison with an ionogel 1 "control" of composite characterized by silicic polÿcondensate fabsenoe (see Figures 4-5). Nat'reworks P LA 4060 ™ HWw-HCI was used to prepare each ionogel which was characterized by [PLA / SiO2] / EMimTFSI mass composition, and prepared according to the following protocol: 175/251/50: mixed about 380 mg of PLA (Mw = 130 kDa) to 2.2 mL of acetonitrile. The solution was stirred for about 2 hours. Ort é added 507 mg of EMimTFSi and 462 μl of TEOS; The solution was allowed to homogenize by magnetic stirring for 10 minutes and then 648 μl of formic acid was added. Ionogel 360/401/50: About 215 mg of FLV :(: Mw = 130 kDa) was mixed with 1.2 ml of acetonitrile. The solution was stirred for 2 hours. Then, 364 mg of EMimTFSI and 530 μl of TEOS were added. The solution was allowed to homogenize by magnetic stirring and then 720 μl of formic acid was added. The mixture was then mixed with Hf217 mg. ## EQU1 ## ## EQU1 ##: ## EQU3 ## ## STR2 ## Then, 431 mg of EMimTFSifet was added to the solution and homogenized by stirring; In addition, 1090 μl of formic acid were added. 5,445 / 551/50: Ql: a: Helae ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The solution was stirred for about 2 hours, then 655 mg of EMimTFSI and 1.33 ml of TEOS were added. The solution was allowed to homogenize for 10 minutes and then 1.81 meq of hydrogen acid was added; Each solution was stirred magnetically for 1 minute 2 minutes directly before coating on a support previously cleaned with acetone. The coating speed was set at 5 cm -1, and the height of the coating was 300 μm. Each film was allowed to gel and air-dried for 24 hours, then heated at 110 ° C for 1 hour. Finally, each film was left at rest for at least 48 hours before use. Ion conductivity measurements were made by varying the temperature for a series of samples whose ionic liquid content was set at 50% by mass. As illustrated in FIG. 1, for the film of at least four films 2, 3, 4, and 5 according to the invention, the ionic conductivity was determined at a temperature of the order of 20 to 22.degree. reached 1 mS; C'm · 1 at higher temperature. . EXAMPLE 4 Tests in the Hypercontainer and Two Electrolytes of the Invention with the Same Weight Ratio IPLA / SiO 2 and two different mass fractions of ionic liquid (FIGS. 2-3) and testing of the electrolytes of the invention compared to the electrolysis film "control" with the same effect. mass fraction of ionic liquid of 50% for these electrolytes: 4 * Sy-y ;; ···. · Supercondensing devices were made from "Swageiok" type assemblies and impregnated; The first electrode, which was based on a porous membrane and previously deposited on an aluminum collector, was emulsified. The first two distinct tests were carried out with two ionospheres prepared according to the procedure of Case 1 of Example 1, the compositions of which respective [PLA / Sid2j / EMimTFSi were [75/25] / 6Q (see Figure; 2) and [75/25] / 40 (see Figure 3), a second electrode was impregnated with the same liquid and The alloys were contacted in such a manner that each of the two ionogels obtained in the form of a thin film formed a solid electrolyte which was supported between the two ionogels obtained in the form of a thin film. 'y ·;. Electrochemical characterizations were carried out at room temperature using a potentiostat (VMP3, BioLogic Science Instruments). In particular, the capacities were determined by galvangostatic cycling. A current I = 2 mA (ie a current density of 0.5 μg per gram of carbon of an electrode) was set, for which the potential was varied between 0 and 2 ^ 7 V then between 2.7 V and 0 V, so as to alternate the loads and discharges of the system. ## EQU1 ## which is illustrated in FIGS. 2-3 (which illustrate the curves of charge C, discharge D and efficiency (Melomic E obtained) and Figures 4-5 (which illustrate the performance of electrolyte films 1, 2, 3, 4), the capacitance values obtained for solid electrolytes 2, 3, 4 according to '/ Γ' invention were in the range of 20 F to 50 F per gram of carbon of an electrode. These devices were able to operate in cycling for at least 10,000 cycles. It may be noted that the systems were more stable with 40% by weight of ionic liquids (as illustrated in FIG. 3) and in addition to electrochemical performance being improved by presence: silicic polycondensate will combine PLA in the containment matrix C In conclusion. The results of FIGS. 2-5 demonstrate that these electrochemical devices have effectively operated each ionogel film having effectively fulfilled its role as a separating membrane within the corresponding device. EXAMPLE 5 measurement of the mechanical strength of rinvenMOrt and "control" (FIG. 6), manufactured according to the method of example 1 (Cas It or of example 3 for the films of the invention, and according to these methods but with compositions IPLA / SiOl / EMimTFSI not in conformity with rinvention For the "control" films: The mechanical thinness of the obtained ionogel films was evaluated primarily because of their ability to readily peel off their PnN conduction support and further to wrap around the 5 mm diameter mandrel via qualitative evaluation. ühe rating between 0 and 5. your score 0 means that we did not obtain a self-supporting film by this detachment and the note 5 that we did not know! obtained a self-supporting film but that this film was easily wrapped around said mandrel in:. having been easy to handle by an operator without, altering in any way. As for notes 1-2 and 3-4, they mean respectively ςυβ · 1Ρη '. ;;.'. '·' 2 '· did not really obtain a self-supporting film following the detachment (notes 1-2 ) and that the self-supporting film obtained was not easily wrapped around; chuck and / or: has not been tampered with (see notes 3-4)., Figure 6 shows the perforated fl ow obtained in It was desired to obtain mass fractions of the ionogel films tested according to the invention and "control" incorporating the pure EMimTFS1 ionic liquid. The notes 5 and 4 obtained for the films visible in FIG. 6 demonstrate the synergistic effect of the specifically organic (PLA) and the inorganic (SiO 2) structures in order to obtain a mechanical strength. significantly improved for rinsing films, which contained 35% to 75% by weight of ionic liquid and 65% and 25% of the matrix, which was itself characterized by a mass ratio. [PLA / SiO 2, mp / W] and f45 / 55], and / / a mass fraction of PL compound between 20 and 70% and polycondensate SiCl 2 between 1 and 30%. FIG. 6 shows that among the films tested according to the invention having exhibited the best mechanical properties (note 5), there were films incorporating the silidic polycondensate in a mass fraction advantageously varying from 10 to 23%, see the six dotted squares denoted by the following three mass fractions PLA / SiO 2 / EMiTiFi:; :( fraCtio: ris: 'ëxprimé ^ ^ ^ ^ ^ ^γγγγγγ / / / / / / / / / / / / / / / / / / / / /. // u :::; /; - ^ ·· ^ 30/20/50 "37/23/40.; - - ': ·:': // •:; ';::'::;;':::::.p;::.;;Lë:.;. lower side of the triangle of / there / figure 6 (ï.e. / avéC / a ". ·. ·. fraction: mass: deoxycondensailicylic in: ionogels comprië.'enertre :: / 0 '• and :::. 1 ::%) / shows: that without: the / silicic network, the mechanical holdings obtained for your films are 7 / shows the satisfactory appearance of a fiimrautosuppriment :: / selbri:: hnventionel that tested: to / figure 6, which was characterized by the three: ·: ·: Mass fractions (in%): PLA / SiO 2 / EMimTFSI of 38/12/50, due to the silicic polycondensate making this self-supporting film easily removable and repositionable for the purpose of the solid electrolyte or electrolyte of a supercapacitor or a Lithium-iOrij battery in particular. By contrast, it can be seen that the "control" film of FIG. 8, the confirmation matrix of which consists exclusively of polyolactic acid, ie with the mass fractions (in%) PLA / SiO 2 / EMimTFSI of 60/0/40 has a texture not making it both self-supporting and capable of wrapping up and being handled and repositioned satisfactorily " FIG. 0 shows that the ionic conductivity of the ionogel films according to the invention is all the greater as the mass fraction of ionic liquid is higher in these films. However, and independently of this mass fraction, the diagram of FIG. 9 also demonstrates that the presence of a polycondensate according to the invention, of the type in which it is possible, in the case of the invention, makes it possible to obtain higher ionic conductivities for a given mass fraction of confined ionic liquid. In particular, this FIG. 9 shows that for a fraction of ionic liquid in an ionogel according to the invention equal to 60% or 70%, it is the range of mass fractions of said polycondensate ranging from 8 to 18% (including the three mass fraction films PLA / Si02 / EMimTFSI 22/8/70, 18/12/70 and 22/18/60) which provides the highest ionic conductivities, which were greater than 5.10 'S.cm1 (ie 5.0E -03 abbreviated to Figure 9) for this 8-18% polycondensate mass fraction range.
权利要求:
Claims (3) [1] 1. A lonogel usable to form a self-supporting film forming a solid electrolyte of an élèctroCHirnique device, rionogel comprising; a polymeric confinement matrix which comprises at least one polylactic acid, and at least one tonic liquid confined in said matrix of phenol: characterized in that said confinement matrix further comprises a polycondensate of at least one sol-gel molecular precursor The lonogel according to claim 1, characterized in that said polycondensate form an essentially inorganic polycondensed network which optionally interpenetrates with an organic structure comprising said at least one polylactic acid to form said matrix. The lonogel according to claim 2, characterized in that said essentially inorganic polycondensed network is silicic, 4. a lonogel according to one of the preceding claims, characterized by a mass ratio [(said at least one polylactic acid) / said polycondensate] between 99/1 and 45/55 5. The lonogel according to claim 4, characterized in that the said mass ratio [(said at least one polylactic acid) / said polycondensate] / is comprised of 80/20 and 55/45;, /,6.:/ lonogel according to one of the preceding claims, characterized in that the ionogel comprises said at least one polylactic acid and said polycondensate according to mass fractions respectively between 20% and 70% and between 1% and 30%, I. lonogei according to claim 6, characterized in that lloh�l includes said at least a polylactic acid and said polycondensate according to Densities of between 22% and 50% respectively and between 8% and 25%, according to one of the preceding claims, characterized in that the ionogel comprises said ionic liquid and said polymeric confinement matrix according to mass fractions respectively between 38% and 75% and between 65% and 25%. 9, lônôgël sëlon one of the preceding claims, characterized in that said at least one molecular solubil gel precursor (S) hydrolyzate> lë (s) corresponds to the general formula R'xfRd ^ xSi, in which X is an integer from 0 to 4, R is an alkyl group of 1 to 4 carbon atoms, and R 1 is an alkyl group of 1 to 4 carbon atoms, an aryl group of 6 to 30 carbon atoms. carbon, or a halogen atom. 10. lonogel according to claim 9, characterized in that said precursor is selected from alfcoxysilânes and arylalkoxÿsilanes. II. The lonogel according to claim 10, characterized in that said precursor is selected from: - the bifunctional alkoxysilanes, said polycondensate, which in this case comprises linear chains. : '., chains of formula (R representing - the trifon ~ hihëlels, said pojÿcondënsat forming in this case a network tndimëttsionnei colmpfërtafttt of éhchâtements of formula (R representing A group: forming in this case a three-dimensional network comprising: sequences of formula: 12. The conjugate according to one of the preceding claims, characterized in that said at least one polylactic acid and amphoteric acid has a weight average molecular weight Mw greater than 100 kDa. 13, the lonogel according to uOeedes preceding claims, characterized in that said at least one ionic liquid comprises: A cyclic cation which comprises at least one nitrogen atom and which is selected from imidazolium, pyridinium, pyrrolidinium and piperidinium cations, and an anionichoiside of the perfluorinated clays, borates, dicyclohexylamides, and the like. 14. The lipogel according to one of the preceding claims, characterized in that it has a mean thickness of 10 μm or more, preferably 30 μm. and 70 pm. 15. The ionogel according to one of the preceding claims, characterized in that the ionic conductivity at 22 ° C is greater than 3.10 -6 S.cm-1, preferably greater than [16] 16. Electro-chemical device such as a supercapacitor or a lithium-ion battery and comprising a solid electrolyte in the form of a separating film, characterized in that said solid electrolyte consists of an ionogel according to one of the preceding claims. [17] 17. Process for manufacturing an ionogel according to one of claims 1 to 15, characterized in that it comprises the following steps: a) preparation of a homogeneous ungelled solution precursor of the ionogel, by a polycondensation reaction of said at least one self-gel molecular precursor with hydrolysable group (s) in the presence of said at least one polylactic acid and said at least one ionic liquid; and b) using the solution obtained in step a) in the form of a geMM film, successively by: - eridifying the solution on a support, - gelling the coated solution, - drying the gelled solution, then - take off of the solution; coated, gelled and dried to obtain said self-supporting film. 18) Process for the manufacture of a monoglyphide: resprecement 17, characterized in that Tonmet performs step a) by the following successive sub-stages: a1) solubilization of said at least one polylactic acid in an organic solvent of said at least one ionic liquid and said molecular precursor sol-gel with hydrolysable group (s), 77: ## EQU3 ## homogenization of the reaction medium obtained by stirring and then adding an excess carboxylic acid in a [carboxylic acid / molecular precursor] molar ratio of preferably 2 or more to initiate said polycondensation reaction. ^^^^^^^^
类似技术:
公开号 | 公开日 | 专利标题 FR3043404A1|2017-05-12|IONOGEL FORMING AUTOSUPPORTED FILM OF SOLID ELECTROLYTE, ELECTROCHEMICAL DEVICE INCORPORATING SAME, AND METHOD FOR MANUFACTURING IONOGEL. CA2513700C|2015-03-24|Organic-inorganic hybrid material comprising a mineral mesoporous phase and an organic phase, a membrane and fuel cell EP1520318B1|2016-08-10|Reinforced ionic conducting material, use thereof in electrodes and electrolytes EP1301958B1|2006-12-06|Hybrid material, use of said hybrid material and method for making same EP1587876B1|2010-07-21|Conductive organic-inorganic hybrid material comprising a mesoporous phase, membrane, electrode and fuel cell FR2923823A1|2009-05-22|Preparing individual carbon nanotube aerogel, useful e.g. to prepare composite materials, comprises reducing carbon nanotubes, exposing polyelectrolyte salt to polar solvent, freezing solution of nanotubes and sublimation of solvent EP2591151B1|2014-04-09|Process of manufacturing a composite material, material obtained by said process and uses EP2351121A1|2011-08-03|Composite electrode material, battery electrode consisting of said material, and lithium battery including such an electrode EP3028331B1|2017-07-19|Ionic monolithic gel based on a biopolymeric matrix and its method of production EP2909138A1|2015-08-26|Composition for an organic gel and the pyrolysate thereof, production method thereof, electrode formed by the pyrolysate and supercapacitor containing same CA2953054A1|2016-01-21|Lithium-sulphur battery EP3314683A1|2018-05-02|Method for preparing a composite electrode CN1137192C|2004-02-04|Organic compound material containing inorganic nano material, its preparation method and use EP2582451B1|2017-02-15|Method for preparing a composite material comprising a polymer matrix and a filler consisting of inorganic ion-exchange particles US10074839B2|2018-09-11|Lithium-air battery separators and related compositions EP0916141A1|1999-05-19|Composition for producing a conductive composite material containing a polyaniline, and resulting composite material CA2944706A1|2015-10-15|Gelled, crosslinked and non-dried aqueous polymeric composition, aerogel and porous carbon for supercapacitor electrode and processes for preparing same EP2989149B1|2017-01-25|Process for preparing an ion-exchange composite material comprising a specific polymer matrix and a filler consisting of ion-exchange particles Terbish et al.2020|An investigation into polymer blending, plasticization and cross-linking effect on the performance of chitosan-based composite proton exchange membranes for microbial fuel cell applications EP3855546A1|2021-07-28|Hybrid proton exchange membrane EP2805372A1|2014-11-26|Method for the production of a proton exchange membrane for a fuel cell by means of solvent-casting
同族专利:
公开号 | 公开日 US20170133714A1|2017-05-11| JP2017105987A|2017-06-15| FR3043404B1|2017-11-24| CN106935776A|2017-07-07| CA2947696A1|2017-05-05| KR20170053139A|2017-05-15| EP3165559A1|2017-05-10|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 FR2857004A1|2003-07-04|2005-01-07|Centre Nat Rech Scient|Solid ionic conductive gels, useful as conductive materials, membranes and in chromatographic analysis, prepared by mixing an ionic liquid with a molecular precursor having hydrolyzable group| CN103254461A|2013-06-07|2013-08-21|东华理工大学|Preparation method of high-molecular-weight polylactic acid stereoscopic compound| FR2942235B1|2009-02-13|2011-07-22|Centre Nat Rech Scient|IONIC CONDUCTIVE GELS, PROCESS FOR THEIR PREPARATION AND THEIR USE AS ELECTROLYTE| CN102199846A|2011-04-29|2011-09-28|华南师范大学|Porous polymer electrolyte supporting membrane material, preparation method thereof and application thereof| KR102118212B1|2012-04-10|2020-06-02|캘리포니아 인스티튜트 오브 테크놀로지|Novel separators for electrochemical systems| DE102012203755A1|2012-03-09|2013-09-12|Evonik Litarion Gmbh|Perforated polymer films with improved tolerance to tensile stress|FR2996849B1|2012-10-17|2015-10-16|Hutchinson|COMPOSITION FOR ORGANIC GEL OR ITS PYROLYSAT, PROCESS FOR PREPARING THE SAME, PYROLYSAT ELECTRODE COMPRISING THE COMPRESSOR AND INCORPORATING THE SAME.| EP3436465A4|2016-04-01|2020-03-25|Nohms Tehcnologies, Inc.|Modified ionic liquids containing phosphorus| EP3656010A4|2017-07-17|2021-08-11|Nohms Technologies, Inc.|Phosphorus containing electrolytes| JPWO2019088197A1|2017-11-02|2020-09-24|アイメック・ヴェーゼットウェーImec Vzw|Method for manufacturing solid electrolyte, electrode, power storage element and solid electrolyte| US20200362140A1|2017-11-21|2020-11-19|Nitto Denko Corporation|Method for producing ionic liquid-containing structure, and ionic liquid-containing structure| WO2020045599A1|2018-08-29|2020-03-05|日東電工株式会社|Method for producing ionic liquid-containing structure and ionic liquid-containing structure| CN111600067B|2020-04-10|2022-01-11|北京理工大学|High-temperature solid electrolyte and preparation method and application thereof| CN112156221A|2020-10-30|2021-01-01|北京福爱乐科技发展有限公司|Pyrogen-free biocompatible medical adhesive material and preparation method thereof|
法律状态:
2016-11-25| PLFP| Fee payment|Year of fee payment: 2 | 2017-05-12| PLSC| Publication of the preliminary search report|Effective date: 20170512 | 2017-10-24| PLFP| Fee payment|Year of fee payment: 3 | 2018-10-16| PLFP| Fee payment|Year of fee payment: 4 | 2020-10-16| ST| Notification of lapse|Effective date: 20200906 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 FR1560622A|FR3043404B1|2015-11-05|2015-11-05|IONOGEL FORMING A SELF-SUPPORTED SOLOH ELECTROLYTE FILM, ELECTROCHEMICAL DEVICE INCORPORATING SAME, AND IONOGEL MANUFACTURING METHOD.|FR1560622A| FR3043404B1|2015-11-05|2015-11-05|IONOGEL FORMING A SELF-SUPPORTED SOLOH ELECTROLYTE FILM, ELECTROCHEMICAL DEVICE INCORPORATING SAME, AND IONOGEL MANUFACTURING METHOD.| EP16197153.6A| EP3165559A1|2015-11-05|2016-11-03|Ionogel forming a self-supported film of solid electrolyte, electrochemical device including same and method for manufacturing the ionogel| JP2016216616A| JP2017105987A|2015-11-05|2016-11-04|Ionogel forming a self-supported film of solid electrolyte, electrochemical device including same and method for manufacturing the ionogel| US15/343,526| US20170133714A1|2015-11-05|2016-11-04|Ionogel Forming a Self-Supporting Film of Solid Electrolyte, Electrochemical Device Incorporating it and Process for Manufacturing the Ionogel| KR1020160146957A| KR20170053139A|2015-11-05|2016-11-04|Ionogel forming a self-supporting film of solid electrolyte, electrochemical device incorporating it and process for manufacturing the ionogel| CA2947696A| CA2947696A1|2015-11-05|2016-11-04|Ionogel forming an autosupported electrolyte film, electrochemical device incorporating same and fabrication process for ionogel| CN201610977382.2A| CN106935776A|2015-11-05|2016-11-07|The ionic gel for forming the self-supported membrane of solid electrolyte, the electrochemical appliance for mixing it and the method for producing ionic gel| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|