专利摘要:
Disclosed embodiments include a method, apparatus, and computer program product for generating multiple correlated meshes around complex and discrete fractures for the purpose of reservoir simulation. In an initial two-phase process, a 2.5-mesh size algorithm can be used in conjunction with an extended anisotropic adaptive geometry refinement algorithm to produce, from a structured grid earth model, a refined tank model. Fractures can be modeled as a volumetric mesh independent of the refined reservoir model. Then, the two independent overlapping meshes are combined by forming matrix-matrix, fracture-fracture and matrix-fracture connections, to form a single model to allow a fast simulation of an extremely complex fracture network with sufficiently accurate results.
公开号:FR3041803A1
申请号:FR1658057
申请日:2016-08-30
公开日:2017-03-31
发明作者:Steven B Ward;Michael L Brewer;Dominic Camilleri;Gerrick O Bivins
申请人:Halliburton Energy Services Inc;
IPC主号:
专利说明:

(Éq. 1) oùp est la pression, Q2 est le débit de la cellule 1 à la cellule 2, T2 est la partie géométrique de la transmissibilité, et λ représente la mobilité du fluide en utilisant les informations en amont. Dans le cas d'un flux multiphase, différents débits, pressions et mobilités s'appliquent pour chaque phase. L'élément de mobilité de la transmissibilité, qui est différent pour chaque phase, peut être calculé de la façon habituelle.
Le composant géométrique de la transmissibilité, T]2, qui est le même pour chaque phase, peut être exprimé sous la forme :
(Éq. 2) où, Aj est la zone de l'interface entre deux volumes de contrôle (en utilisant les informations de CVj, où CVj désigne le volume de contrôle /th), kj étant la perméabilité de CV„ D, est la distance entre le centroïde de l'interface et le centroïde de CV„ «, est le vecteur d'unité normal à l'interface à l'intérieur de CVh et f est le vecteur d'unité le long de la direction de la ligne joignant le centroïde du volume de contrôle avec le centroïde de l'interface. L'ensemble des informations géométriques nécessaires pour calculer T2 est défini dans le domaine de la grille. Le calcul de la transmissibilité ci-dessus peut être utilisé directement soit pour des problèmes en 2D soit pour des problèmes en 3D. Dans une configuration en 2D, l’interface est un segment, alors que dans une configuration en 3D, l'interface est un polygone.
La connexion numérique entre deux fractures peut être accomplie par l'utilisation d'un volume de contrôle intermédiaire (CVo). L'objet de ce volume de contrôle intermédiaire est de permettre une redirection du flux et une variation de l'épaisseur entre deux fractures. Cependant, dans un ou plusieurs modes de réalisation, il peut être avantageux de ne pas introduire CVo, ni ses inconnues associées, dans le modèle numérique, car un volume de contrôle intermédiaire peut introduire des problèmes numériques en raison de la petite taille de CVo par rapport aux volumes de contrôle des deux cellules, CVj et CF . La transmissibilité entre CVi et CF peut être exprimée, tout en tenant compte implicitement du volume de contrôle intermédiaire CVo, comme suit :
(Éq. 3) où Γιο est la transmissibilité entre CVI et CV0 et Γ02 est la transmissibilité entre CVo et CV2. En conséquence, Tn est simplement une moyenne harmonique de Γ10 et Γ02, qui est appropriée pour des cellules en série.
La définition de Γ12 impose de connaître Γ10 et Γ02, ce qui rend nécessaire une définition géométrique du volume de contrôle intermédiaire. Afin d'éviter l'introduction de cette définition géométrique, qui peut être complexe dans certaines configurations, il est possible de faire la simplification suivante. La taille du volume de contrôle intermédiaire étant généralement faible en comparaison des volumes de contrôles adjacents, et le volume de contrôle intermédiaire étant généralement caractérisé par une perméabilité semblable à celle des volumes de contrôle de fracture environnants, on peut supposer que :
(Éq. 4)
De même, on peut supposer que Γ02 ~ 0.2. Par conséquent, T2 peut être évalué par approximation par :
(Éq. 5) où A, est l'ouverture de fracture et les autres variables sont telles que définies ci-dessus. Dans cette configuration, rit· f= 1.
La technique 1D ci-dessus peut être étendue pour permettre l'établissement de connexions fracture-fracture entre deux objets en 2D coplanaires croisant l'espace 3D. Un volume de contrôle intermédiaire peut être introduit pour connecter les objets en 2D pour autoriser l'expression de la transmissibilité entre deux volumes de contrôle avec différentes épaisseurs et orientations. De plus, en raison du fait que le volume de contrôle intermédiaire a une taille relativement faible et presque la même perméabilité que les volumes de contrôle environnants, les simplifications introduites s'appliquent également. En conséquence, la définition de la transmissibilité de l'équation 2 ci-dessus peut être utilisée, en notant que «,·,/, et CF, sont coplanaires. La variable A, est la zone de l'interface entre CF, et CFo, qui est /xe„ où / est la longueur de l'interface calculée dans le domaine de la grille, et la variable e, est l'épaisseur de CF,.
En ce qui concerne l'établissement d'une connexion entre trois objets en 1D, un volume de contrôle intermédiaire CFo peut être introduit pour la redirection du flux et le réglage de l'épaisseur entre les différentes branches. L'approximation de l'équation 4 ci-dessus peut être appliquée pour simplifier la transmissibilité entre CFo et les volumes de contrôle environnants (7j0 = ai, T2o = 0.2, et Γ30 = a3). Mais, en raison de la connectivité à trois voies, il est impossible de supprimer le volume de contrôle intermédiaire en utilisant simplement une moyenne harmonique, comme c'est le cas pour des connexions 1D/1D et 2D/2D. En revanche, la connexion peut être modélisée par analogie entre le flux à travers les supports poreux et la conductance à travers un réseau de résistances en étoile. Une transformation triangle étoile empruntée à l'ingénierie électrique peut être utilisée pour éliminer un volume de contrôle à trois voies intermédiaire CF0 et permettre la simplification de la moyenne harmonique fournie par l'équation 4. Ainsi, la transmissibilité entre CF, et CVj, avec i,j = 1, 2, 3 (sans utiliser le volume du contrôle de croisement), peut être exprimée sous la forme :
(Éq. 6)
Pour un croisement avec des connexions n, l'équation 6 peut être généralisée sous la forme
(Éq. 7)
Les transformations ci-dessus peuvent s'appliquer en utilisant uniquement des informations contenues dans la liste de connectivité et peuvent s'appliquer à des problèmes en 3D pour éliminer tous les volumes de contrôle de croisement. Il faut remarquer que les transformations ci-dessus sont pour des cellules ne formant pas les éléments limites du volume du réservoir. De surcroît, les connexions doivent être établies pour des fractures proches mais déconnectées en tenant compte de la roche de fracture qui serait impliquée dans ce flux. Des connexions doivent être créées entre des fractures qui sont proches par rapport à la taille de la grille dans le réservoir de cette région pour garantir que de petites brèches dans le réseau de fractures ne forcent pas le flux à passer par de grands blocs de réservoir.
Enfin, selon l'étape 135c, un troisième jeu de connexions, des connexions matrice - fracture, peut être formé entre des cellules de maillage du volume de la fracture 245 et des cellules de maillage du réservoir intermédiaire 250 pour créer un modèle final 260 pour la simulation. Le maillage de la fracture 245 et le maillage du réservoir intermédiaire 250 définissent deux maillages volumétriques discrets qui se chevauchent dans l'espace. On détermine premièrement des croisements (à savoir, des faces se croisant géographiquement) de cellules de maillage de réservoir avec des cellules de maillage de fracture.
Dans un ou plusieurs modes de réalisation, une approximation de flux en deux points standard pour le calcul de la transmissibilité f, à travers une face pour une certaine cellule, C„ peut être calculée comme suit :
(Éq. 8) où Aj est la zone de la face, k, est la perméabilité de la cellule, c, est la direction entre la cellule et le centroïde de la face, f est la normale pour la face, et d, est la distance entre les centroïdes de la cellule et de la face. La moyenne harmonique peut alors être prise pour déterminer la transmissibilité entre les deux cellules. Pour Cmah une cellule de maillage de réservoir (matrice), et Cfrac, une cellule de maillage de fracture, la transmissibilité entre les deux faces peut être donnée sous la forme :
(Éq. 9)
Dans un ou plusieurs modes de réalisation, l'équation 9 peut être utilisée directement pour générer des connexions matrice-fracture. Cependant, dans un ou plusieurs modes de réalisation, les connexions matrice-fracture peuvent être générées plus précisément comme suit
La cellule de fracture, Cfrac, était à l'origine une face qui a ensuite été épaissie à l'étape 125 (figure IB) pour avoir une largeur d'ouverture Ap ; cette face initiale est désignée sous Fong. Pour de faibles valeurs d'ouverture Ap, le flux primaire sera à partir des deux faces extrudées à partir de Forig, mais seulement une partie de la face initiale peut être dans Cma/. Ainsi, admettons que Fjnter soit le croisement entre Cmat et Forig. On peut alors supposer que la zone de fracture Ajrac est égale à deux fois celle de la zone de Fjnter (c’est-à-dire., Afrac = 2 II Fjnter I). Il s'ensuit, alors, que :
(Éq. 10)
Pour éviter que de petites variations dans la position des fractures par rapport au centroïde de la cellule de réservoir aient un grand impact sur le flux entre les deux cellules, il peut être préférable de ne pas calculer simplement de manière géométrique les écarts de centroïde entre d le centroïde de la cellule de réservoir (matrice) et le centroïde de la face. Soit dma, =-—— ^ mat ' fmat une distance représentative entre la cellule matrice et les faces de la fracture à travers lesquelles le flux est modélisé, seule une valeur appropriée pour dmat est nécessaire pour résoudre tmah et par conséquent Tmatjrac '·
(Éq. 11)
Dans un ou plusieurs modes de réalisation, une valeur initiale pour d mat peut être donnée par le modèle conceptuel suivant :
(Éq. 12) où l est une ligne passant à travers le centroïde de Cma, le long de la direction de la face normale, et le segment de ligne lseg est déterminé par :
(Éq. 13)
Cependant, des expériences et des comparaisons de calcul peuvent également être utilisées pour déterminer l'équation, la corrélation ou le raffinement appropriés pour d mai .
La figure 18 est un schéma en 2D de l'interprétation précédente de dmat . La distance représentative de la cellule du réservoir (matrice) aux faces de la fracture est calculée en supposant que la fracture était au centroïde et que le flux nécessaire pour traverser un quart de la cellule va dans un sens ou dans l'autre.
Les figures 19A à 19C illustrent un maillage de fractures naturelles à titre d'exemple qui a été traité conformément au procédé 100 (figures IA à IC) décrit ci-dessus, à ceci près qu'aucun maillage en 2,5D de l'étape 110 n'a été effectué dans cet exemple précis. Le modèle a été simulé à l'aide du logiciel de simulation de réservoir Nexus® disponible dans le commerce. La figure 19A est une vue en perspective d'un réseau de fractures naturelles, la figure 19B est une vue en perspective du maillage traité selon le procédé 100, et la figure 19C est une section en coupe transversale horizontale de la figure 19B. L'ombrage des figures 19B et 19C indique le champ de pression. Dans un ou plusieurs modes de réalisation, le réseau de fractures peut être réduit par retranchement (non illustré) pour éviter des fractures s'étendant en dehors du réservoir faisant l’objet de la modélisation.
Des exemples de modes de réalisation ont été décrits pour ce qui est des appareils, des systèmes, des services et des procédés. Cependant, certains aspects des modes de réalisation divulgués peuvent se présenter sous la forme d'un logiciel qui s'exécute en utilisant une ou plusieurs unités de traitement/composants. Des aspects du programme de la technologie peuvent être considérés comme des « produits » ou des « articles de fabrication » généralement sous la forme de code exécutable et/ou de données associées qui est exécuté sur ou réalisé dans un type de support lisible par une machine. Ceci, afin d'implémenter les
diverses caractéristiques et fonctions décrites ci-dessus, certains ou tous les éléments des systèmes et des procédés peuvent être, dans un ou plusieurs modes de réalisation, implémentés en utilisant des éléments du système informatique 3000 de la figure 19. Le système informatique 3000 peut être utilisé pour manipuler ou transformer des données représentées sous forme de quantités physiques électroniques ou magnétiques dans des mémoires, des registres ou d'autres dispositifs de stockage de données, des dispositifs de transmission ou des dispositifs d'affichage de la plateforme informatique. Le système informatique 3000 peut comprendre du matériel, un logiciel, un micrologiciel, un support non transitoire lisible par un ordinateur sur lequel sont stockées une logique ou des instructions, ou une combinaison de ceux-ci. Toute programmation, rédaction de scripts, ou tout autre type de langage ou des combinaisons de langages peuvent être utilisés pour mettre en œuvre le procédé 100 dans le logiciel à exécuter par le système informatique 3000. Dans cette description, l'invention, qui comprend des termes tels que « traitement », « calcul », « calculer », « détermination », « génération », « identification » ou des termes analogues, peut faire référence à des actions ou des processus de calcul du système informatique 3000. Le système informatique 3000, selon la présente invention, n'est pas limité à une quelconque architecture ou configuration matérielle particulière.
Notamment, le matériel informatique, le logiciel ou une combinaison de ceux-ci, peut réaliser certains modules et composants utilisés pour mettre en œuvre le procédé 100 illustré par les figures IA à IC, abordées ci-dessus. Bien que les opérations puissent être décrites comme un processus séquentiel, certaines des opérations peuvent en réalité être exécutées en parallèle, simultanément et/ou dans un environnement réparti, et avec un code de programme stocké localement ou à distance pour que des machines monoprocesseur ou multiprocesseur y accèdent. De plus, dans certains modes de réalisation, l'ordre des opérations peut être réaménagé sans s'éloigner de l'esprit de l'objet de l'invention. Si une logique programmable est utilisée, cette logique peut s'exécuter sur une plateforme de traitement disponible dans le commerce ou un dispositif spécialisé. Des modes de réalisation de l'objet de l'invention peuvent être mis en œuvre par diverses configurations de système informatique, y compris des systèmes multiprocesseur multicœur, des miniordinateurs, des ordinateurs centraux, des ordinateurs reliés ou regroupés avec des fonctions réparties ainsi que des ordinateurs omniprésents ou miniatures qui peuvent être intégrés dans pratiquement n'importe quel dispositif.
En référence maintenant à la figure 19, le système informatique 300 peut comprendre un dispositif processeur 3004. Le dispositif processeur 3004 peut être un dispositif processeur spécialisé ou universel et peut comprendre des circuits numériques tels que des microprocesseurs, microcontrôleurs, matrices prédiffusées programmables par l’utilisateur, convertisseurs numérique-analogique, convertisseurs analogiques-numériques, tampons, verrous, mémoires, lecteurs, multiplexeurs, émetteurs/récepteurs universels asynchrones, et des éléments analogues. Des composants électroniques discrets peuvent être combinés dans un ou plusieurs circuits intégrés destinés à des applications spécifiques (ASIC) selon le cas. Le dispositif processeur 3004 peut être un monoprocesseur dans un système multicœur/multiprocesseur, ce système fonctionnant de manière autonome, ou dans un regroupement de dispositifs informatiques fonctionnant dans un regroupement ou une grappe de serveurs. Le dispositif processeur 3004 peut être connecté à une infrastructure de communication 3006, par exemple un bus, une file d'attente de messages, un réseau ou un programme de passage de messages multicœur.
Le système informatique 3000 peut également comprendre une mémoire principale 3008 et une mémoire secondaire 3010. La mémoire principale 3008 peut comprendre une mémoire volatile, par exemple une mémoire vive (RAM) qui stocke temporairement des instructions et données de logiciel pour exécution et ou manipulation par le dispositif processeur 3004. La mémoire secondaire 3010 peut comprendre, par exemple, une mémoire non volatile telle qu'une mémoire flash ou une mémoire morte programmable effaçable électriquement (EEPROM), un lecteur de disque dur 3012, et/ou un support de stockage amovible 3014 servant à stocker un code et des données persistants de logiciel. Le code et les données de logiciel peuvent être transférés entre la mémoire secondaire 3010 et la mémoire principale 3008 si nécessaire. Le lecteur de stockage amovible 3014 peut comprendre des supports de stockage magnétiques ou optiques, une mémoire flash, ou des éléments analogues. Le support de stockage amovible 3014 peut comprendre un logiciel informatique non transitoire et/ou des données.
Le système informatique 3000 peut également comprendre une interface de communication 3024. L'interface de communication 3024 permet de transférer le logiciel et les données entre le système informatique 3000 et un ou plusieurs périphériques externes ou réseaux de communication (non illustrés). Par exemple, l'interface de communication 3024 peut permettre au système informatique 3000 de recevoir une commande utilisateur (par exemple d'un clavier et d'une souris) et de transmettre des informations à un ou plusieurs dispositifs tels que, sans limitation, des imprimantes, des dispositifs de stockage de données externes ou des haut-parleurs. Un écran d'ordinateur 3030 du système informatique 3000 peut être mis en œuvre comme affichage traditionnel ou affichage tactile (c'est-à-dire un écran tactile). L'écran d'ordinateur 3030 peut se connecter à une infrastructure de communication via une interface d'affichage 3002 afin d'afficher le contenu électronique reçu. Par exemple, l'écran d'ordinateur 3030 peut être utilisé afin d'afficher des modèles d'entrée et des fractures raffinées. L'interface d'affichage 3002 peut comprendre des instructions ou un matériel (par exemple une carte graphique ou une puce) servant à fournir des fonctionnalités graphiques améliorées, tactiles et/ou tactiles multipoint associées à l'écran d'ordinateur 3030. L'interface de communication 3024 peut comprendre une carte d'interface réseau et/ou un émetteur-récepteur sans fil, par exemple. Le logiciel et les données transférés via l'interface de communication 3024 peuvent être sous forme de signaux, lesquels peuvent être électroniques, électromagnétiques, optiques ou d'autres signaux pouvant être reçus par l'interface de communication 3024. Ces signaux peuvent être fournis à l'interface de communication 3024 via une voie de communication 3026. La voie de communication 3026 transmet des signaux et peut être mise en œuvre en utilisant un fil ou un câble, de la fibre optique, une ligne de téléphone, une connexion de téléphone cellulaire, une connexion radiofréquence (RF) ou d'autres voies de communication. Le réseau de communication peut être tout type de réseau comprenant une combinaison d'un ou plusieurs réseaux suivants : un réseau étendu, un réseau local, un ou plusieurs réseaux privés, Internet, un réseau téléphonique tel que le réseau téléphonique public commuté (RTPC), un ou plusieurs réseaux cellulaires, et des réseaux de données sans fil. Le réseau de communication peut comprendre une pluralité de nœuds de réseau tels que des routeurs, des points d'accès/passerelles réseau, des commutateurs, des serveurs DNS [Domain Name Service, service de nom de domaine)], des serveurs proxy et d'autres nœuds de réseau pour aider au routage de données/de la communication entre les dispositifs.
Dans un ou plusieurs modes de réalisation, le système informatique 3000 peut interagir avec un ou plusieurs serveurs de base de données (non illustrés) pour exécuter le procédé 100 (figures IA à IC). Le système informatique 3000 peut demander des informations géologiques à une base de données pour attribuer des propriétés de réservoir à des cellules en vue d'effectuer une simulation. Par exemple, le système informatique 3000 peut demander des informations de diagraphie de puits à une base de données pour déterminer l'orientation ou la densité d'une fracture afin de permettre la modélisation des fractures selon les modes de réalisation divulgués. En outre, dans certains modes de réalisation, le système informatique 3000 peut jouer le rôle de système serveur pour un ou plusieurs dispositifs clients ou un système de pairs pour une communication de pair à pair ou un traitement parallèle avec un ou plusieurs dispositifs.
En résumé, l'invention décrit un procédé, un système et un support de stockage lisible par un ordinateur avec des instructions exécutables pour modéliser des fractures géologiques tridimensionnelles à l'intérieur d'un réservoir. Des modes de réalisation du procédé pour modéliser des fractures géologiques tridimensionnelles à l'intérieur d'un réservoir peuvent généralement comprendre : la génération d'un maillage volumétrique de matrice du réservoir ; la génération d'un maillage volumétrique de fracture des fractures géologiques ; l'établissement de connexions matrice-matrice à l'intérieur du maillage de matrice ; l'établissement de connexions fracture-fracture à l'intérieur du maillage de fracture ; et l'établissement de connexions matrice-fracture entre les maillages de matrice et de volume de fracture. Des modes de réalisation du système pour modéliser des fractures géologiques tridimensionnelles à l'intérieur d'un réservoir peuvent généralement comprendre : un processeur ; et une mémoire sur laquelle sont stockées des instructions, qui, si elles sont exécutées par le processeur, entraîne la réalisation par le processeur d'opérations comprenant la génération d'un maillage volumétrique de matrice du réservoir, la génération d'un maillage volumétrique de fracture des fractures géologiques, l'établissement de connexions matrice-matrice à l'intérieur du maillage de matrice, l'établissement de connexions fracture-fracture à l'intérieur du maillage de fracture, et l'établissement de connexions matrice-fracture entre les maillages de matrice et de volume de fracture. Des modes de réalisation du support de stockage lisible par un ordinateur avec des instructions exécutables pour modéliser des fractures géologiques tridimensionnelles à l'intérieur d'un réservoir peuvent généralement avoir des instructions comprenant : la génération d'un maillage volumétrique de matrice du réservoir ; la génération d'un maillage volumétrique de fracture des fractures géologiques ; l'établissement de connexions matrice-matrice à l'intérieur du maillage de matrice ; l'établissement de connexions fracture-fracture à l'intérieur du maillage de fracture ; et l'établissement de connexions matrice-fracture entre les maillages de matrice et de volume de fracture. L'un quelconque des modes de réalisation précédents peut comprendre l'un(e) quelconque des éléments ou caractéristiques suivant(e)s, seul(e) ou associé(e) les uns aux autres : le maillage de matrice est orthogonal ; l'établissement de connexions matrice-matrice comprend en outre la discrétisation à l'aide d'approximations de flux à deux points du potentiel de pression entre des cellules adjacentes dans le maillage de matrice ; le maillage de matrice comprend des cellules non orthogonales ; l'établissement de connexions matrice-matrice comprend en outre la discrétisation à l'aide d'approximations de flux multipoints du potentiel de pression de toutes les cellules avoisinantes de cellules adjacentes dans le maillage de matrice ; l'approximation d'une transmissibilité entre des cellules adjacentes dans le maillage de fracture ; la détermination d'un débit entre les cellules adjacentes à l'aide de la transmissibilité ; la discrétisation à l'aide d'approximations de flux à deux points ou multipoints du débit ; la détermination de faces se croisant géographiquement entre des cellules du maillage de matrice et des cellules du maillage de fracture ; pour chaque face sécante, le calcul d'une valeur de transmissibilité de matrice au niveau de la face du maillage de matrice, le calcul d'une valeur de transmissibilité de fracture au niveau de la face du maillage de fracture, et le calcul d'une transmissibilité dans la face entre le maillage de matrice et le maillage de fracture comme moyenne harmonique des valeurs de transmissibilité de matrice et de fracture ; le calcul de la valeur de transmissibilité de matrice à l'aide d'une approximation de flux à deux points ; le calcul de la valeur de transmissibilité de fracture à l'aide d'une approximation de flux à deux points ; la génération d'un maillage volumétrique de fracture comprend l'extrusion d'une face d'origine de chaque cellule à l'intérieur d'un maillage de surface de fracture par une largeur d'ouverture correspondante ; l'établissement de connexions matrice-fracture comprend en outre, pour chaque face, le calcul des valeurs de transmissibilité de fracture et de matrice comme fonctions du croisement de la face d'origine correspondante du maillage de surface de fracture avec la face du maillage de matrice ; pour chaque face, le calcul des valeurs de transmissibilité de fracture et de matrice comme fonctions du croisement de la face d'origine correspondante du maillage de surface de fracture avec la face du maillage de matrice ; la détermination d'une distance représentative entre le centroïde d'une cellule dans le maillage de matrice et la face sécante de la cellule ; le calcul de la valeur de transmissibilité de matrice pour la face de la cellule en fonction de la distance représentative ; la réception d'une spécification de réservoir ; l'identification, sur la base de la spécification de réservoir, d'un jeu de fractures comprenant des fractures autorisant une dimension 2,5 et d'autres fractures ; la génération d'un modèle de réservoir non structuré comprenant un maillage d'extrusion qui modélise les fractures autorisant une dimension 2,5 en trois dimensions ; le raffinement anisotrope d'une ou plusieurs cellules dans le modèle de réservoir non structuré correspondant à d'autres fractures ; la résolution d'un réseau de fractures dans le modèle de réservoir non structuré à l'aide de cellules raffinées ; la génération d'un modèle de réservoir raffiné à l'aide du réseau de fractures ; les fractures autorisant une dimension 2,5 ont une géométrie qui a été discrétisée dans un plan bidimensionnel par une collection de segments de ligne ; pour chaque segment de ligne associé à chaque fracture dans les fractures autorisant une 2,5 D, la génération d'un ensemble de stades à un rayons spécifiés à partir du segment de ligne, la génération de boucles fermées autour du segment de ligne, et la génération d'éléments de forme à l'intérieur des boucles fermées du segment de ligne ; la génération du maillage en tant que maillage contraint autour de boucles fermées des fractures autorisant une 2,5 D pour remplir un espace restant du plan bidimensionnel ; l'identification d'une direction dans les trois dimensions dans lesquelles les cellules doivent être raffinées ; la division d'un rebord des cellules, le rebord étant dans la direction dans les trois dimensions ; le procédé de modélisation de fractures géologiques tridimensionnelles à l'intérieur du réservoir est exécuté par un système informatique. L'abrégé de l'invention est destiné uniquement à fournir une manière de déterminer rapidement, par une lecture rapide, la nature et l'essentiel de l'invention technique, et il représente uniquement un ou plusieurs modes de réalisation.
Bien que divers modes de réalisation aient été illustrés en détail, l'invention ne se limite pas aux modes de réalisation présentés. L'homme du métier peut déduire des modifications et des adaptations des modes de réalisations ci-dessus. Ces modifications et adaptations sont comprises dans l'esprit et l'étendue de l'invention.
SIMULATION OF FRACTURED TANKS USING MESH
MULTIPLE
TECHNICAL AREA
The present invention generally relates to a system and method for generating a grid that can be used to construct a subsurface reservoir simulation model, and more particularly to a system and method configured to model geological fractures.
BACKGROUND
In the oil and gas industry, reservoir modeling involves the construction of a computer model of an oil reservoir to improve reserve estimation and decision making for field development. For example, geological models can be created to provide a static description of a reservoir prior to production. Tank simulation models can be created to simulate the fluid flow inside the tank during its production life.
A problem with reservoir simulation models is the challenge of fracture modeling within a reservoir, which requires a thorough understanding of matrix flow characteristics, fracture network connectivity, and matrix-fracture interaction. These fractures can be described as open cracks or voids within the formation, and they can be either natural or artificially generated from a wellbore. Precise fracture modeling is important because fracture properties such as spatial distribution, aperture, length, height, conductivity, and connectivity significantly affect the flow of fluid from the reservoir to the well. drilling.
Mesh generation techniques are used in reservoir modeling. Two traditional mesh generation techniques for 3D tank simulation are the structure-based mesh and the extrusion-based mesh. In structured techniques, hexahedra are connected in a 3D logical space ijk in which each inner mesh node is adjacent to 8 hexahedra. The extensions of the structured techniques include a local refinement of the mesh in which local regions of an original grid are replaced by finer grids. This can be time-consuming, expensive in computing resources, and prohibitively expensive when dealing with general tank geometries, such as arbitrary 3D fracture surfaces. Due to the inherent 2.5 (2.5D) dimensional nature of existing extrusion techniques, similar limitations apply to these techniques. In addition, there are completely unstructured meshing techniques, such as, for example, tetrahedral and polyhedral meshing schemes. The increased complexity of these techniques often results in a decrease in robustness compared to structured techniques, particularly in the presence of imperfect geometry input.
As a result, simulation of reservoirs with large fracture systems, with arbitrary geometry and orientation, is difficult, and there is a trade-off between sufficient accuracy and reasonable computing time. For example, a simulation of a shale reservoir can generate a network of natural fractures consisting of tens of thousands of geometrically defined fractures by hundreds of thousands of triangles. Such complex systems are not easily solved using a 2.5D tank mesh system and when solved in three dimensions, often produce prohibitively large simulation models that take an important time to simulate.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments are described in detail below with reference to the accompanying figures, in which:
Figs. 1A-1C are high level flow diagrams that describe a multi-mesh process for modeling a fractured hydrocarbon reservoir using a multi-mesh system according to one or more embodiments;
Fig. 2 is a perspective of the upper surface of a structured or extruded mesh definition of a reservoir as an example provided as a model of the structured earth, according to one or more embodiments;
Fig. 3 is a perspective view of an example hydraulic fracture model defined using surfaces, according to one embodiment;
Fig. 4 is a perspective view of an exemplary natural fracture model defined using surfaces, according to one embodiment;
Fig. 5A is a plan view of an exemplary initial structured reservoir model referenced in the flow diagram of Fig. 1A;
Figure 5B is a cross-sectional top view of the reservoir model of Figure 5A taken along lines 5B-5B of Figure 5A;
Fig. 6A is a plan view of the reservoir model of Fig. 5A, shown with a portion of the mesh removed for subsequent insertion of a 2.5D unstructured fracture mesh;
Fig. 6B is a top view in cross-section of the reservoir model of Fig. 6A taken along the lines 6B-6B of Fig. 6A;
Fig. 7A is a plan view of the reservoir model of Fig. 6A, shown with an inserted 2.5D unstructured fracture mesh in the upper layer;
Figure 7B is a cross-sectional top view of the reservoir model of Figure 7A taken along the lines 7B-7B of Figure 7A;
Fig. 7C is a top view in cross-section of the reservoir model of Fig. 7B, shown with an unstructured fracture mesh extruded downwardly;
Fig. 8 is a flow diagram of a process for 2.5D modeling of certain fractures according to Fig. 1A and some illustrative examples of the present invention;
Fig. 9 depicts exemplary refinement patterns for a single hexahedral cell within a three-dimensional space UVW, in some illustrative aspects of the present invention, which may be used in the flow diagram of the present invention. Figure 1A;
Figures 10 and 11 depict representative triangular prism cells representing a logical two-dimensional UW coordinate system and a numerical scheme for the prism edges, in some illustrative aspects of the present invention, which may be used in the diagram. flow of Figure 1A;
Figure 12 depicts refinement patterns for a single prism cell using a single U-direction paradigm within the logical two-dimensional UW coordinate system, according to some illustrative examples of the present invention. , which can be used in the flow diagram of Figure 1A;
Fig. 13 depicts four-way refinement patterns using a multiple U-direction paradigm within the logical two-dimensional UW coordinate system, in some aspects by way of illustration of the present invention, which can be used in the flow diagram of Figure 1A;
Fig. 14 depicts a representative non-triangular prism (e.g., a general prismatic element) representing the logical two-dimensional coordinate system, according to certain features of the present invention, which may be used in the flow diagram of Fig. 1A;
Fig. 15 illustrates a possible refinement of a general prismatic element by subdividing the element into hexahedrons, according to some illustrative examples of the present invention, which may be used in the flow diagram of Fig. 1A. ;
Figs. 16 and 17 are flow diagrams describing a process for refining the adaptive, anisotropic and extended geometry cell according to Fig. 1A and some illustrative examples of the present invention;
Fig. 18 is a schematic 2D representation of a scheme for generating reservoir-fracture mesh connections according to Fig. 1C and some illustrative examples of the present invention;
Figs. 19A-19C illustrate an exemplary natural fracture grid that has been processed in accordance with the method of Figs. 1A-1C according to one embodiment; and
Fig. 20 is a block diagram of an exemplary computer system according to an embodiment in which the method of Figs. 1A to 1C can be implemented.
DETAILED DESCRIPTION
The present disclosure may include a repetition of the numerals and / or letters in the present invention. This repetition is done for the sake of simplicity and clarity and does not in itself imply a relationship between the various embodiments and / or configurations discussed in the discussion. In addition, terms relating to space, such as "below", "below", "below", "above", "above", "wellhead", "well bottom", "upstream""," Downstream "and similar expressions, may be used here to facilitate the description to describe the relationship of one element or feature with another or other elements or with another or other characteristics such as illustrated in the figures. The space terms are intended to encompass different orientations of the apparatus during use or operation in addition to the orientation described in the figures.
The present invention presents in detail a method and system for simulating tanks with large fracture systems, arbitrary geometry and orientation, with sufficient accuracy and in a reasonable time using commercially available simulators by selectively solving data in substantially reduced-size simulation models. Several fracture and reservoir models are combined to form a single reservoir model that can be easily simulated with a lower computation demand and yet has sufficient resolution to capture flow patterns near fractures. Accordingly, the disclosed embodiments provide a system, method, and computer program product for generating hybrid computational meshes around complex and discrete fractures for the purpose of reservoir simulation.
FIGS. 1A-1C together form a three-part high-level flow diagram defining a multiple-mesh process 100 for modeling a fractured hydrocarbon reservoir according to one or more embodiments. Figure 1A defines a first part of a method 100 for creating a volumetric mesh of the fractured reservoir which appropriately resolves desired fractures. More particularly, the first part of the method 100 described in FIG. 1A reveals an initial two-phase process according to an embodiment in which a 2.5-dimensional mesh algorithm (2.5D), such as a stadium mesher. , is used in conjunction with an extended anisotropic adaptive geometry (AGAR) refinement algorithm to produce a refined reservoir model from a structured grid earth model. This combination can maintain the benefits of 2.5D mesh computing speed and mastery control, when desired, while also using an extended AGAR algorithm to solve networks. fractures in 3D. A network of fractures can be represented as geometric and fracture properties. The set of fractures can be divided into two groups: those to be solved in the mesh in dimension 2.5 and those to be solved only in the final three-dimensional mesh. Fractures allowing dimension 2.5 include fractures represented by vertical planes or substantially vertical planes with respect to the horizon. Other fractures may include fractures represented by horizontal planes or substantially horizontal planes. A 2.5 mesh is first created using the stage 2.5 mesh to solve fractures for a 2.5 dimension in a three-dimensional (3D) space. A prolonged AGAR algorithm then anisotropically solves the other fractures to produce a refined reservoir model. Refinement, as used in the present invention, refers to the division of cells in three-dimensional space which results in a higher model of mesh resolution. The extended AGAR algorithm can be directly applied to topologies including hexahedral, triangular and other general prismatic prisms to provide appropriate cell gradation in the near-fracture region. FIG. 1B defines a second part of a method 100 for modeling fractures as a volumetric mesh which is independent of the mesh of the tank. Finally, as shown in Figure IC, the two independent overlapping meshes are combined to form a single model to allow for a fast simulation of an extremely complex fracture network with sufficiently accurate results.
However, depending on the type of data entered and the desired simulation, it is possible to omit certain illustrated steps of the method 100. In addition, in other implementations, the steps defined in FIGS. outside the order described in the figures. For example, two blocks presented in a sequential order may, in fact, be executed substantially concomitantly, or the blocks may sometimes be executed in the reverse order, depending on the functionality concerned.
The flow diagram of Figs. 1A-1C illustrates an architecture, functionality, and use of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In one or more embodiments, each block and / or combination of blocks of the illustrated flow diagram may be implemented by special hardware systems that perform the indicated functions or actions, or combinations of special computer hardware. with computer instructions.
With reference to FIG. 1A, a reservoir model 200 initially provides a subsurface stratigraphic detail of a reservoir, including, for example, a geoscientific interpretation, a petroleum system modeling, a geochemical analysis, a stratigraphic mesh, the facies, net cell volume and petrophysical property modeling. Earth modeling platforms include platforms such as, for example, DecisionSpace®, which is commercially available from Halliburton Energy Services Inc. of Houston, Texas. A variety of other earth modeling platforms may, however, also be used with or instead of the present description. In addition, Tank Model 200 can provide robust data recovery and integration of historical or real-time reservoir-related data that cover all aspects of well planning, construction and completion processes. such as, for example, drilling, concreting, cable logging, well testing and simulation. Such data may include logging data, well trajectories, rock petrophysical property data, rock mechanical property data, surface data, fault data, data from surrounding wells, data derived from geostatistics, etc. A database (not shown) can store this information. A database platform is, for example, the INSITE® software, commercially available from Halliburton Energy Services Inc., Houston, Texas. A variety of other database platforms, software platforms, and associated systems can be used to retrieve, store, and integrate well-related data.
Users of the tank simulation can enter the tank description in several forms. For example, users can start with a structured model of the earth or with a definition that can be easily converted into a structured model of the earth. The initial tank models contain only vertical mesh columns. However, the structured reservoir mesh 200 can be obtained by any suitable method and provided in a suitable form. Figure 2 illustrates in graphic form the definition of a structured or extruded mesh of a reservoir provided as a structured model of the Earth (EM). Mesh shading may indicate hydrocarbon content, density, porosity, a combination thereof, or a similar characteristic.
The initial fracture model 220 provides the geometric definition of the fracture network, with the petrophysical and mechanical property distributions for the fractures, which is also described in FIG. Exemplary fracture system modules can be implemented using, for example, Fracpro® or Gohfer® platforms. Other platforms and software systems may, however, be used to implement the Fracture Systems Module 220.
The fracture model 220 can be separated in step 105 into a first set of fractures 223, generally hydraulic fractures, which are well suited for 2.5-dimensional modeling (2.5D) and a second set of fractures 227, usually natural fractures, which are less suitable for 2.5D modeling. The two sets of fractures are not necessarily mutually exclusive. In other words, some subsets of fractures can be found in both sets of fractures. Graphic illustrations of a hydraulic fracture model and an exemplary natural fracture model are shown respectively in Figures 3 and 4, which can be defined as surfaces. The shading of the surfaces may represent the size or strength of fracture fluids, for example.
The reservoir and fracture models of FIGS. 2 to 4 respectively comprise the initial data to form the final model of fracture networks of the multi-mesh process 100. Referring to FIG. 1A, the structured reservoir model 200 can be modified to replacing a portion of the existing structured reservoir mesh with one or more fracture patterns, as indicated in step 110. Remember that in step 105, a subset 223 of the fractures 220 (particularly hydraulic fractures) to be solved in the structured reservoir model 200 by a 2.5D mesh. Generally, a subset 223 is a simple selection of fractures that are connected to the wellbore by high conductivity paths. The subset 223 may be integrated into a structured reservoir model 200 at step 110 using a 2.5D mesh algorithm, such as a stellar mesh, to resolve vertical, plane fractures. - a geometry often used to represent hydraulic fractures - to create an unstructured extruded reservoir mesh 230.
For example, FIG. 5A is a plan view of an exemplary initial structured reservoir model 200. FIG. 5B is a cross-sectional top view of the initial structured reservoir model 200 of FIG. 5A taken according to FIG. lines 5B-5B. A region 202 associated with a single hydraulic fracture is identified. Figs. 6A and 6B are respectively top plan and cross-sectional views of the structured reservoir model 200 shown at an intermediate phase of step 110 with the region of fracture 202 removed. Although a rectangular region 202 has been identified and removed to insert the fractures 220, any suitable polygon shape can be used depending on what the conditions dictate.
Figs. 7A and 7B are respectively top plan and cross-sectional views of an unstructured reservoir model 230 with an unstructured two-dimensional fracture mesh 204 initially projected onto the upper surface of an otherwise structured mesh. A two-dimensional (2D) mesh scheme may be used to add a resolution near the subset of the fracture 223 to create a fracture mesh 204. As shown in the cross-sectional top view of FIG. 7C, the mesh fracture 204 is then projected onto the surface of the next lower mesh and the process is repeated until the filling of the region 202 with new elements. You will note that in the sectional view of FIG. 7C, the 2.5 D 204 fracture grid appears structured. The mesh of the initial structured reservoir model 200 can be modified to remove the section 202 to be replaced by the unstructured fracture mesh 204, and the mesh layers of the initial structured reservoir model 200 can be used to guide the extrusion of the mesh. The properties of the initial structured reservoir model 200 are mapped to the new mesh topology of the unstructured reservoir model 230.
Although it is possible to use any appropriate 2.5 D mesh algorithm for step 110, in one or more embodiments, a stadium generator, which can be used to quickly generate grids. Unstructured using elements structured around complex geometries, can be used as follows: A subset of fractures 223 can be discretized in a two-dimensional plane by a collection of line segments. The collection of line segments represents the intersection between the two-dimensional plane and the three-dimensional geological fractures. Each fracture of the subset 223 may be represented by a collection of linear segments to approximate a curvature of the fracture.
For each segment of the fracture line in the 2D plane, a set of stages is generated with a specified radius from the respective fracture line segment. Then, closed loops are generated around all line segments of a fracture. The process of generating the closed loop around the fracture line segments may involve calculating a crossover of all stadium sides for each specified radius for each line segment of the fracture and discarding segments contained for each linear segment in each segment of the fracture line that are entirely contained by stages of other line segments in the segment of the fracture line. As a result of the creation of closed loops, shape elements can be generated inside the closed loops of the linear segment. For example, parametric segments can be generated over a length and radius of each linear segment. Quadrilateral elements are formed where possible within the structured region, with polygons being formed within the remaining regions of the closed loops.
After generating the shape elements, a constrained mesh is generated around the closed loops of the set of segments of the fracture line, filling the rest of the plane in 2D. In one or more embodiments, a Delaunay triangulation algorithm is used to generate the constrained mesh around the closed loops of the set of segments of the fracture line. Thus, the 2D plane is now entirely composed of cell elements of the segments of the fracture line and the constrained mesh. At this point, the process can extrude each of the cells in the 2D plane into a third dimension to create one or more 3D cell layers.
Cells within a closed loop of a segment of the fracture line represent a 3D fracture, while cells within the mesh represent rocky layers that encompass fractures. Thus, the method can assign reservoir properties such as, without limitation, porosity and permeability, to each of the cells in 3D in order to model the fluid flow of the reservoir. A 2.5D stage mesh algorithm will be discussed in more detail below.
FIG. 8 is a flow diagram illustrating a method 2500 for modeling 3D fractures using a 2.5D stadimetric mesher according to one or more embodiments. The method 2500 begins at block 2502 by receiving a set of fractures 223 (Fig. 1A) with a geometry that has been discretized in a 2D plane by a collection of line segments. Moreover, the method 2500 can begin by carrying out the discretization of a set of fractures 223 in a 2D plane by a collection of line segments. The line segment collection can represent the intersection between the 2D plane and the 3D geological fractures. As demonstrated by block 2503, each fracture can be represented by a collection of linear segments to approximate a curvature of the fracture.
At block 2504, for each segment of the fracture line in the 2D plane, method 2500 realizes block 2506 to generate a set of stages with a specified radius from the segment of the respective fracture line. Then, at block 2508, method 2500 then generates closed loops around all line segments of a fracture. In some embodiments, block 2508 includes a method for generating closed loops around line segments of the fracture. This process may include calculating a crossing of all stadium sides for each specified radius for each line segment of the fracture, as shown at block 2509 of Figure 8, and setting aside contained segments for each linear segment in each segment of the fracture line that are entirely contained by stages of other line segments in the segment of the fracture line, as shown at block 2511.
After completion of block 2508 (and optional blocks 2509 and 2511 in some embodiments), method 2500 proceeds to block 2510. At block 2510, shape elements may be generated within closed loops. of the linear segment. For example, in one embodiment, method 2500 generates parametric segments along a length and radius of each linear segment, as shown in block 2513.
The method 2500 then forms quadrilateral elements where possible within the structured region at block 2515, and forms polygons within the remaining regions of the closed loops at block 2517. After generated the shape elements, the method 2500 can generate a constrained mesh around the closed loops of the set of segments of the fracture line, filling the remainder of the 2D plane at the block 2512. In one embodiment, an algorithm of Delaunay triangulation can be used to generate the constrained mesh around the closed loops of the set of segments of the fracture line. Thus, the 2D plane now consists entirely of cell elements of the segments of the fracture line and the constrained mesh. At this point, the method 2500 can extrude each of the cells in the 2D plane into a third dimension to create one or more 3D cell layers. Cells within a closed loop of a segment of the fracture line may represent a 3D fracture, while cells within the mesh may represent rocky layers that encompass fractures. Thus, the method 2500 can assign reservoir properties such as, without limitation, porosity and permeability, to each of the cells in 3D in order to model the fluid flow of the reservoir, as shown by block 2516.
Returning to FIG. 1A, after the creation of the unstructured model mesh 230 to capture the pressure field near the first subset of fractures 223, at step 115, an extended algorithm of adaptive geometry refinement meshing Anisotropic (AGAR) may be used to capture the flux near the second subset of remaining fractures 227. In other words, an unstructured AGAR algorithm can be used to refine the unstructured model mesh 230 to solve the remaining fractures 227, thus creating a refined reservoir model mesh 235.
In one or more embodiments, the refinement may be coarse for all remaining fractures 227. Often, a significant portion of the subset 227 fractures will contribute less significantly to the flow of the reservoir system and produce less pressure gradients. severe. When this is expected, these areas do not require as large a mesh resolution as the fractures 223 managed primarily with the 2.5 D mesh pattern. As a result, it is possible to obtain a reduction in the count of elements compared to a use in the whole tank of the unstructured AGAR algorithm. However, the unstructured AGAR algorithm can be refined to provide higher resolution near particular fractures that are expected to contribute more significantly to the flow of the reservoir.
An extended AGAR mesh algorithm adapted for use in step 115 in one or more embodiments will now be described. In general, AGAR mesh algorithms refine the cell edges up to "n" times and divide no rim (ie dividing the cell) that would produce a shorter rim than
TargetSize. As defined herein, the TargetSize represents the desired mesh size, or flange length, for resolving the width of the fracture. In some embodiments, the value of the TargetSize is provided to the system based on a desired level of precision and the desired time to solution. It can be determined whether a given cell should or should not be refined and in what direction refinements should occur. In some embodiments, there may be two types of rules for determining whether a cell is to be refined: 1) the gradation rules (the rules that provide slow transitions on the element side) and 2) the crossover rules ( rules that ensure that fractures are adequately represented).
To summarize the AGAR implementation of step 115, it is necessary to take into account the direction U (a direction among three cardinal directions in a space in 3D). It should be noted that t / is a direction in a topological sense and not in a Euclidean sense. The "U direction" for each cell is independent of the U direction for a neighboring cell. In addition, in one cell, a flange U may point in a slightly different direction than another U flange. As will be described in more detail below, considering the U direction, the extended AGAR algorithm will analyze all the cells. in a model and refine cells close to the fracture in the U direction if all the U flanges are longer than C x TargetSize and at least one of the following five rules is satisfied: 1) a stepped U flange crosses a fracture; 2) for any pair of opposite flanges in the U direction, exactly one of the two stepped flanges intersects a fracture; 3) a U flange has two or more "hanging"nodes; 4) For any pair of opposite edges in the U direction, exactly one of the two ledges has two or more hanging nodes; or 5) the unseparated cell crosses a fracture but no step rim of the cell crosses a fracture. Referring to the C χ TargetSize, for a scalar variable specific to an implementation or provided by a user, C, step 115 (Fig. IA) will not divide any flange (hence, cells) that is shorter than C χ TargetSize. In this illustrative method, C is chosen as V2, but may be other variables such as, for example, 4/3 or any finite value. This process is repeated for each direction in 3D space.
As used herein, the term "suspended node" is generally used to refer to a node created during the refinement of a neighboring cell, which is not necessary to maintain the underlying geometry of the cell. interest. For example, the underlying geometry can not be a hexahedron (as shown in the examples of FIG. 9), a prism (as shown in the examples of FIGS. 10 to 13), or other types of elements extradited. Consider an H cell, when a neighboring cell is refined, an extra node is added to the hexahedron H-cell. This node is "suspended" from cell H. In yet other examples, the requirement of edge length may be omitted for rules 3 and 4 if strict adherence to the hanging node directive is adopted.
FIG. 9 illustrates a set 300 of possible refinement configurations 306, 312 and 316 for a single hexahedron cell 304 within a 3D space UVW 302. In particular FIG. 9 illustrates how, for a hexahedron, certain modes embodiments can use a local space, logical UVW 302, and each cell is analyzed and refined in a certain subset of these three dimensions, U, V and W as demonstrated by substeps 308, 310 and 314 of FIG. 9. Once the desired refinement directions have been determined for a cell, step 115 of the extended AGAR algorithm (Fig. IA) achieves refinement (i.e., dividing the flanges) for that cell. cell. Figure 9 illustrates eight possible refinement configurations for a single cell within a UV-W302 3D space. The step of the extended AGAR algorithm 115 (FIG. 1A) can perform an iterative refinement by first determining whether the cells close to the fracture must be refined in the U, V or W dimensions / directions (sub-steps , 308, 310, and 314 shown in Figure 9), and then, if so, dividing the flanges in the directions as shown to create cell refinements 306, 312 and / or 316. The eight Possible cell refinement patterns 304, 306, 312 and 314 range from refinement in non-refinement directions (hexahedron 304) to refinement in all 3 refinement directions (rightmost refinement 316). Since these cells will be those that will be positioned in the region close to the fracture, the mesh resolution of the images thus obtained will be greatly improved.
Fig. 10 illustrates a representative triangular prism cell 404 and a 2D UW logic coordinate system 402 and a numerical scheme for the edges of the prism 404. Some embodiments include two alternatives for extending the aforementioned refinement concept to the prisms. One is the "single U direction" option shown in Figure 10. The single U direction encompasses all the triangular face edges of the prism 404. According to this definition of directions, refinement, when triangular faces of prism 404, is always isotropic with respect to the face. In the example of FIG. 10, using the single U direction option 400, each of the flanges 1 to 6 is considered to be in the U direction. The refinement in U will refine all the edges and the refinement can be done in the same direction. any of the subsets of {U, W}.
Another option is here called the "multiple U directions" option, illustrated in FIG. 11. FIG. 11 illustrates a triangular prism cell 504 and a 2D UW 502 logic coordinate system and a numerical scheme for the prism edges. 504. Using the multiple U-directions option 500 in Figure 11, the refinement would be in U-direction pairs. Thus, the refinement could be in a subset of the directions {U1U2, U1U3, U2U3, W ] 502 shown in Figure 11. Generally, in the rules applied by some embodiments, not all 16 permutations in all four directions are allowed (for example, W, U], U2, and U3 ) during the AGAR refinement step 115 (FIG. In the example of Figure 11, multiple U directions are considered in pairs. For example, refinement in U) U2 will refine flanges 1, 2, 4, 5 of prism 504.
FIG. 12 illustrates an example of AGAR refinement of the U 600 single direction paradigm. Following the general notation and the extended AGAR algorithm presented above, and the use of the canonical numbering of the triangular prism in FIG. 11, the edges of the cell, C /, are labeled as {e, j} for j - 1 ... 9. Now consider an abstract Boolean function on the flanges, Test ({e (i /}). the cell can be refined in: U if any edge from the set {and, e, j, e, j, e, j, e, j, e, <*} satisfies Test ({e, y}) (or even substep 606 of Figure 12), and W if any edge from the set {e, 7, e, ^, e, p} satisfies Test ({e, j}) (see substep 610 of FIG. 12).
The above condition is called the main condition for gradation. We will now define opposite conditions. For quadrilaterals in prism 604, the rule is the same as for hexahedra (for example, as shown above with reference to Figure 9). If, say two opposite edges on the face, exactly one of these edges satisfies Test ({e, 7}), then the direction that divides these two edges will also be refined. For example, the flanges {e, j, eu) are opposite edges on a quadrilateral face. If the rim {e ,, *} satisfies Test ({c, y}) but not the rim {e, /}, then this condition would be satisfied, and the direction W would be added to the refinement set. Similarly, if the edge {e, j} satisfies Test ({ei7}) but not the edge {eits}, the direction W would be added to the refinement game. As for the triangular face, if exactly one satisfies Test ({e, 7}), then U is added to the refinement game. For example, if the flange {eu} satisfies Test ({e, j}) but not the flanges {eh5, e ^}, the direction W would be added to the refinement set.
For the AGAR extended algorithm gradation rules, Test ({e, 7}) is set to true if and only if {eld} has been defined at least twice. For the crossing rules of the extended AGAR algorithm, Test ({e;, 7}) is defined as true if the stepped edge {e, j} intersects a fracture of interest. Figure 12 illustrates the possible combinations of refinements 608 and 612 using the single U-direction paradigm 600.
FIG. 13 illustrates how one can, in an alternative of the single U direction presented above with reference to FIG. 12, obtain a paradigm of multiple directions U 700. In particular, FIG. 13 illustrates refinements 708, 712 , 716, 720 and 722 in the four logical dimensions / directions 702 for a multiple direction U 700 paradigm of a 704 prism. Using the multiple directions U 700 paradigm, the cell will be refined in: U1U2 and U1U3 if n ' any flange from the game {eu, eu) satisfied Test ({e (J}) (see sub-steps 706 and 710 of Fig. 13) U1U2 and U2U3 if any flange from the game , j, e, j} satisfies Test ({e ,, 7}) (see sub-steps 706 and 714 of FIG. 13) U1U3 and U2U3 if any edge from the set {e, j, e , ^} satisfies Test ({e, 7}) (see sub-steps 710 and 714 of Fig. 13) and W if any edge from the set {eL 7, e, s, eu) satisfies Test ({eii7}) (see the sub-state) pe 718 of Figure 13).
In addition to these primary conditions, there are opposite conditions. For quadrilaterals, the two U paradigms are very similar. If, say two opposing edges on one face, exactly one of these edges satisfies Test ({e, 7}), then the direction that divides these two edges will also be refined. If the rim {e, j} satisfies Tested ,,,}) but not the rim {eu}, the W direction would be added to the refinement set. In one example, with respect to the rule of the triangular face, if exactly one rim satisfies Test ({e;> 7}), then U1U2 and U1U3 can be added to the refinement set. In this paradigm, no opposite conditions are added for triangular faces. However, alternative rules can be determined and tested in paradigms beyond paradigms 600 and 700 illustrated respectively in Figures 13 and 13.
Fig. 14 depicts a representative non-triangular prism 1004 (e.g., a general prismatic element) representing the logical two-dimensional coordinate system 1002.
Figure 15 illustrates a possible refinement of a general prismatic element 1104 by subdividing the element into hexahedrons. As described above, the AGAR extended algorithm step 115 (Fig. 1A) can be used to implement methods that extend the hexahedron-based AGAR scheme to also include triangular prisms, such as those illustrated. in FIGS. 10 to 13. For triangular and quadrilateral extruded meshes, this combination is sufficient. Assuming a coherent extruded topology, the paradigms presented above with reference to Figures 10 to 13 will provide a valid mesh if some of the elements are degenerate. Figures 14 and 15 illustrate how certain embodiments may directly extend the single-directional paradigm U into non-triangular prisms, using a midpoint sub-division algorithm. For non-triangular prisms, such as the non-triangular prism 1004 of FIG. 14, the anisotropy can be maintained in the UW space 1002. As can be seen in the refinement 1104 of FIG. 14, using this algorithm of FIG. refinement, the non-hexahedral prismatic elements 1004 are subdivided into hexahedrons. Since hexahedra have three logical dimensions, compared to the two shown in Figures 14 and 15 for non-hexahedral prismatic elements, the possibility of anisotropic refinement increases after the refinement of the original element.
To further generalize, a midpoint sub-division algorithm can be applied for all convex polyhedric cells, including non-extruded cells. It should be noted that this would change the refinement algorithm for triangular prisms of the one presented above with reference to FIGS. 10 to 13. However, for non-extruded cells, a single dimensional U space can be used by discarding the refinements anisotropic for these general cells. In cases where the majority of cells are extruded (hexahedron or other prism cells), anisotropy for these cells will still provide a significant advantage over fully isotropic refinement. In addition, an anisotropic refinement on a regular cell bordering an irregular cell does not violate the requirement of shaping on the mesh. The polygonal face of the irregular neighboring cell is simply divided.
In view of the foregoing detailed description, an illustrative method for step 115 of Fig. 1A will now be described with reference to the flow diagrams of Figs. 16 and 17. Referring to Fig. 16, the method 2100 begins at of block 2102. In one example, block 2102 includes data from the unstructured extraduct tank model 230. At block 2104, a cell in the unstructured extraded reservoir model 230 can be analyzed to determine if the cell in a mesh must be refined anisotropically (that is, refined in any particular direction in a 3D space). If it is determined that the cell under analysis does not require refinement, control proceeds to block 2109. At block 2109, it is determined whether there are other cells to be analyzed. If there are no more cells to analyze, the command goes to block 2110. Otherwise, if it is determined that there is another cell remaining to be analyzed, the command returns to block 2104 where that cell will then be analyzed to determine if refinement may be necessary.
If, at block 2104, it is determined that the cell requires refinement, the algorithm moves to block 2108 where this cell is refined. As previously described, the gradation and crossover rules can be used to determine whether a cell needs to be refined. Once the cell is refined in all directions determined to be necessary, the algorithm goes to block 2109 where a determination is made as to whether there are other cells to be analyzed. The process is repeated until all cells have been analyzed. When the analysis of all cells is complete, at block 2110, the fracture network within the reservoir model is resolved using the refined cells. The refined reservoir model thus obtained will have a higher level of mesh resolution in areas encircling fractures (eg, near fracture and fracture areas), and lower mesh resolution in areas not near the divide.
Fig. 17 is a flow diagram of an exemplary refinement process 2200 used in block 2104 of Fig. 16. The location of fractures within the fracture system is known based on fracture data 220 (Fig. Figure IA). Using these data, as well as the gradation and crossing rules described above, these cells in regions close to the fracture of the model that require refinement can be located. For cells requiring refinement, all the edges (and, thus, the cells) can be cut in half in each direction of refinement. The newly created cells will then be scanned again in the next iteration, thereby ultimately increasing the mesh resolution. The high-resolution mesh thus obtained provides more accurate numerical results in regions close to the fracture / fracture. The C χ TargetSize (for example, where C = V2) can be determined as previously described.
At block 2104 (i), it can be determined whether all edges in the UVW directions for the cell (each direction is analyzed separately) are longer than C χ TargetSize. If none of the ledges are longer than C χ TargetSize, no refinement is required and the control goes to block 2109. However, if one or more ledges are longer than C χ TargetSize, the five rules shown above can then apply. At this point, at blocks 2104 (ii) through (vi), it can be determined if one or more of the following conditions are satisfied: ii) a stepped directional flange crosses a fracture; iii) for any pair of opposite edges in the 3D direction, exactly one of the two stepped flanges intersects a fracture; (iv) a directional ledge has two or more "hanging"nodes; v) for any opposite pair of flanges in the 3D direction, exactly one of the two flanges has two or more suspended nodes; or vi) the unseparated cell crosses a fracture but no unseparated rim of the cell crosses a fracture.
At block 2104 (ii), it can be determined whether the staggered version of the cell has a flange in the analyzed direction that intersects a fracture. At block 2104 (iii), a pair of opposite flanges in a given direction may be analyzed to determine if only one of the stepped flanges intersects a fracture. At block 2104 (ii), it can be determined whether a rim in the analyzed direction has two or more hanging nodes. In Figure 17, item 2209 is provided as an illustration of this principle. Element 2209 is described below.
As shown in FIG. 17, the element 2209 comprises two adjacent cell faces 2210 and 2220 (shown in 2D for simplicity) having two nodes 2212 and 2214 positioned between them. In the example of element 2209, the first refinement would have divided cell 2210 into two using node 2212. The second refinement would have split one of the new cells in half using node 2214. Therefore, nodes 2212 and 2214 are suspended from cell 2220 because, although cell 2210 has been refined (in a previous iteration), cell 2220 has not been refined. Since the cell 2220 has at least two hanging nodes, it will also be refined in later iterations.
At block 2104 (v) of method 2200, pairs of opposite flanges in the analyzed direction may be examined to determine if only one of the flanges has two or more hanging nodes. At block 2104 (iv), it can be determined whether an unseparated cell crosses a fracture but no unseparated rim of the cell crosses a fracture.
If the decision is positive for any of the five rules illustrated above with reference to blocks 2104 (iv), the method 2200 places the command at block 2108 where that cell is refined. Otherwise, if the decision is negative for all five rules, the command moves to block 2109. This process will continue iteratively until each cell in the model has been analyzed, as shown below. above in connection with Figure 16.
Referring now to FIG. 1B, in addition to creating a refined reservoir mesh 235, the method 100 includes creating a mesh for the fracture system. The mesh of the fracture can be represented as a volumetric mesh or a mesh of surface with a property of thickness (opening). In some cases, the fracture data may initially be provided as a discretized surface. If this surface is discretized with sufficient resolution for simulation, it can be used directly, together with an aperture value provided. In other cases, the surfaces will have to be meshed or refined to reach the desired resolution.
Accordingly, a suitable fracture surface mesh 240 can be constructed from the fracture data in step 120. For fractures 220 already defined as a surface mesh, this mesh can be used as such, or algorithms of Refinement or magnification can be used in step 120 to create the desired resolution. In step 125, each element of the fracture mesh of the surface of the fracture 240 can then be thickened by an opening value of the fracture to form a volumetric mesh of the fracture 245.
Although generally the volume of the fracture network in the fracture mesh 245 is not a sufficient fraction of any reservoir cell in the refined reservoir mesh 235, at this stage, it can be determined what fracture volume is located inside any tank cell. If desired, the reservoir properties of the refined reservoir mesh 235 can be modified at step 130 to take into account the volume that is present in the volumetric mesh of the fracture 245. The refined reservoir and fracture meshes 235, 245 will overlap, as shown below, the pore volume in a refined reservoir mesh 235 may be reduced to account for the volume now represented by the overlapping mesh of the fracture volume 245. In other words, the volumes of Matrix blocks encircling the fractures in the refined reservoir mesh 235 may be modified at step 130 to maintain the exact pore volume by removing the pore volume from the matrix control volumes that connect fractures, thereby obtaining a mesh size. intermediate reservoir 250. The pore volume removed depends on the number and size of fractures to which the control volume of the matrix is connected.
The mesh of the fracture 245 and the mesh of the intermediate tank 250 define two discrete volumetric meshes which overlap in space. Referring now to FIG. 1C, according to one or more embodiments, the method 100 comprises combining the fracture volume mesh 245 with the mesh of the intermediate reservoir 250 to form a final reservoir model 260. At step 135, three distinct sets of connections between the fracture volume mesh 245 and the intermediate reservoir mesh 250 are formed: Matrix-matrix connections, fracture-fracture connections, and matrix-fracture connections.
Connections of a first set, matrix-matrix connections, may be formed in step 135a between pairs of adjacent cells in the intermediate reservoir mesh 250. These connections may be calculated in a conventional manner using approximations. two-point flow (TPFA), multipoint flow approximations (MPFA) or other approximations. The TPFA scheme uses the pressure potential at the centers of two adjacent cells to calculate the flow between said cells. The MPFA scheme additionally utilizes the pressure potential from all neighboring cells of two adjacent cells to calculate the flow between pairs of cells. With orthogonal grids (the grid may be orthogonal to the permeability field - often referred to as "k-orthogonal"), the TPFA scheme may be sufficiently accurate. However for non-orthogonal grids, as is often the case with unstructured grids, the TPFA scheme loses accuracy and the MPFA scheme may be preferred to maintain accuracy.
A second set of connections, fracture-fracture connections, may be formed at step 135b between adjacent pairs of cells in the fracture 245 mesh. In one or more embodiments, a finite difference discretization technique of Control volume using a two-point flow approximation can be used. For both multiphase and single flow, material compensation for each control volume requires knowledge of the surrounding control volumes-a list of connectivity-and the rate associated with each connection, which can be determined using the transmissibility for each control volume. a porous fractured support, as described below.
For any form of control volume and problem dimension, the flow can be indicated in the form:
(Eq. 1) where p is the pressure, Q 2 is the flow from cell 1 to cell 2, T 2 is the geometric part of the transmissibility, and λ represents the mobility of the fluid using the upstream information. In the case of a multiphase flow, different flows, pressures and mobilities apply for each phase. The mobility element of the transmissibility, which is different for each phase, can be calculated in the usual way.
The geometric component of the transmissibility, T] 2, which is the same for each phase, can be expressed as:
(Eq 2) where, Aj is the area of the interface between two control volumes (using the information of CVj, where CVj denotes the control volume / th), kj being the permeability of CV "D, is the distance between the centroid of the interface and the centroid of CV "", is the normal unit vector at the interface inside CVh and f is the unit vector along the direction of the line joining the centroid of the control volume with the centroid of the interface. The set of geometrical information necessary to calculate T 2 is defined in the domain of the grid. The calculation of the above transmissibility can be used directly for either 2D problems or 3D problems. In a 2D configuration, the interface is a segment, while in a 3D configuration, the interface is a polygon.
The digital connection between two fractures can be accomplished by the use of an intermediate control volume (CVo). The object of this intermediate control volume is to allow a redirection of the flow and a variation of the thickness between two fractures. However, in one or more embodiments, it may be advantageous not to introduce CVo, or its associated unknowns, into the numerical model, since an intermediate control volume may introduce numerical problems due to the small size of CVo by compared to the control volumes of the two cells, CVj and CF . Transmissibility between CVi and CF can be expressed, while implicitly taking into account the CVo intermediate control volume, as follows:
(Eq.3) where Γιο is the transmissibility between CVI and CV0 and Γ02 is the transmissibility between CVo and CV2. Accordingly, Tn is simply a harmonic mean of Γ10 and Γ02, which is appropriate for cells in series.
The definition of Γ12 requires knowledge of Γ10 and Γ02, which makes it necessary to define the intermediate control volume geometrically. In order to avoid the introduction of this geometric definition, which can be complex in certain configurations, it is possible to make the following simplification. Since the size of the intermediate control volume is generally small compared to adjacent control volumes, and the intermediate control volume is generally characterized by similar permeability to surrounding fracture control volumes, it can be assumed that:
(Eq. 4)
Similarly, it can be assumed that Γ02 ~ 0.2. Therefore, T 2 can be approximated by:
(Eq.5) where A, is the fracture opening and the other variables are as defined above. In this configuration, rit · f = 1.
The 1D technique above can be extended to allow the establishment of fracture-fracture connections between two coplanar 2D objects intersecting the 3D space. An intermediate control volume can be introduced to connect the objects in 2D to allow the expression of the transmissibility between two control volumes with different thicknesses and orientations. Moreover, because the intermediate control volume is relatively small in size and almost the same permeability as the surrounding control volumes, the simplifications introduced also apply. As a result, the definition of the transmissibility of equation 2 above can be used, noting that ",,, /, and CF, are coplanar. The variable A, is the area of the interface between CF, and CFo, which is / xe "where / is the length of the calculated interface in the grid domain, and the variable e, is the thickness of CF ,.
As regards the establishment of a connection between three objects in 1D, an intermediate control volume CFo can be introduced for the redirection of the flow and the adjustment of the thickness between the different branches. The approximation of equation 4 above can be applied to simplify the transmissibility between CFo and the surrounding control volumes (7j0 = ai, T2o = 0.2, and Γ30 = a3). But, because of the three-way connectivity, it is impossible to suppress the intermediate control volume simply by using a harmonic average, as is the case for 1D / 1D and 2D / 2D connections. On the other hand, the connection can be modeled by analogy between the flux through the porous supports and the conductance through a star resistance network. A star triangle transformation borrowed from electrical engineering can be used to eliminate an intermediate three-way control volume CF0 and allow simplification of the harmonic mean provided by equation 4. Thus, the transmissibility between CF, and CVj, with i, j = 1, 2, 3 (without using the cross control volume), can be expressed as:
(Eq. 6)
For a crossing with n connections, equation 6 can be generalized in the form
(Eq. 7)
The above transformations can be applied using only information contained in the connectivity list and can be applied to 3D problems to eliminate all cross control volumes. It should be noted that the above transformations are for cells not forming the limiting elements of the volume of the tank. In addition, connections should be established for close but disconnected fractures taking into account the fracture rock that would be involved in this flow. Connections must be created between fractures that are close to the size of the grid in the reservoir of that region to ensure that small gaps in the fracture network do not force the flow to pass through large reservoir blocks.
Finally, according to step 135c, a third set of connections, matrix-fracture connections, can be formed between fracture volume mesh cells 245 and intermediate reservoir mesh cells 250 to create a final model 260 for the simulation. The mesh of the fracture 245 and the mesh of the intermediate tank 250 define two discrete volumetric meshes which overlap in space. Crosses (i.e., geographically crossing faces) of reservoir mesh cells are firstly determined with fracture mesh cells.
In one or more embodiments, a standard two-point flow approximation for calculating the transmissibility f, across a face for a certain cell, C "can be calculated as follows:
(Eq.8) where Aj is the area of the face, k, is the permeability of the cell, c, is the direction between the cell and the centroid of the face, f is the normal for the face, and d, is the distance between the centroids of the cell and the face. The harmonic mean can then be taken to determine the transmissibility between the two cells. For Cmah a reservoir mesh cell (matrix), and Cfrac, a fracture mesh cell, the transmissibility between the two faces can be given in the form:
(Eq. 9)
In one or more embodiments, equation 9 can be used directly to generate matrix-fracture connections. However, in one or more embodiments, the matrix-fracture connections can be generated more precisely as follows
The fracture cell, Cfrac, was originally a face which was then thickened at step 125 (Fig. 1B) to have an opening width Ap; this initial face is designated as Fong. For low Ap aperture values, the primary flux will be from both sides extruded from Forig, but only part of the initial face may be in Cma /. Thus, let us admit that Fjnter is the cross between Cmat and Forig. It can then be assumed that the Ajax fracture zone is twice that of the Fjnter zone (i.e., Afrac = 2 II Fjnter I). It follows, then, that:
(Eq 10)
To avoid small variations in the position of the fractures relative to the centroid of the reservoir cell having a large impact on the flow between the two cells, it may be preferable not to simply geometrically calculate the centroid differences between the two cells. the centroid of the reservoir cell (matrix) and the centroid of the face. Let dma, = --- ^ mat 'fmat be a representative distance between the matrix cell and the faces of the fracture through which the flux is modeled, only a suitable value for dmat is needed to solve tmah and hence Tmatjrac' ·
(Eq.11)
In one or more embodiments, an initial value for d mat can be given by the following conceptual model:
(Eq 12) where l is a line passing through the centroid of Cma, along the direction of the normal face, and the lseg line segment is determined by:
(Eq 13)
However, computational experiments and comparisons can also be used to determine the appropriate equation, correlation, or refinement for May.
Figure 18 is a 2D diagram of the previous interpretation of dmat. The representative distance from the reservoir cell (matrix) to the faces of the fracture is calculated assuming that the fracture was at the centroid and that the flow required to cross a quarter of the cell goes in one direction or the other.
FIGS. 19A-19C illustrate an exemplary natural fracture grid that has been processed in accordance with method 100 (FIGS. 1A-1C) described above, except that no 2.5D mesh of step 110 was done in this particular example. The model was simulated using the commercially available Nexus® tank simulation software. Fig. 19A is a perspective view of a natural fracture network, Fig. 19B is a perspective view of the mesh processed according to method 100, and Fig. 19C is a horizontal cross-sectional section of Fig. 19B. The shading of Figures 19B and 19C indicates the pressure field. In one or more embodiments, the fracture network may be reduced by retrenchment (not shown) to avoid fractures extending outside the reservoir being modeled.
Examples of embodiments have been described with respect to apparatus, systems, services and methods. However, certain aspects of the disclosed embodiments may be in the form of software that executes using one or more processing units / components. Aspects of the technology program may be considered "products" or "articles of manufacture" generally in the form of executable code and / or associated data that is run on or performed in a machine-readable form of media . This, in order to implement the
Various features and functions described above, some or all of the elements of the systems and methods may be, in one or more embodiments, implemented using elements of the computer system 3000 of Fig. 19. The computer system 3000 may be used to manipulate or transform data represented as electronic or magnetic physical quantities in memories, registers or other data storage devices, transmission devices or display devices of the computing platform. The computer system 3000 may comprise hardware, software, firmware, non-transitory computer-readable medium on which logic or instructions, or a combination thereof, are stored. Any programming, scripting, or any other type of language or combinations of languages can be used to implement the method 100 in the software to be executed by the computer system 3000. In this description, the invention, which includes terms such as "processing", "calculation", "calculating", "determination", "generation", "identification" or similar terms, may refer to actions or processes of computing computer system 3000. The computer system 3000, according to the present invention, is not limited to any particular architecture or hardware configuration.
In particular, the computer hardware, the software or a combination thereof, can realize some modules and components used to implement the method 100 illustrated in Figures IA to IC, discussed above. Although operations can be described as a sequential process, some of the operations may actually be run in parallel, concurrently and / or in a distributed environment, and with program code stored locally or remotely for single processor or multiprocessor machines get there. In addition, in some embodiments, the order of operations may be rearranged without departing from the spirit of the subject matter of the invention. If programmable logic is used, this logic can run on a commercially available processing platform or a dedicated device. Embodiments of the subject of the invention may be implemented by various computer system configurations, including multicore multiprocessor systems, minicomputers, mainframes, connected or grouped computers with distributed functions, and ubiquitous or miniature computers that can be integrated into virtually any device.
Referring now to FIG. 19, the computer system 300 may include a processor device 3004. The processor device 3004 may be a dedicated or universal processor device and may include digital circuitry such as microprocessors, microcontrollers, programmable gate arrays programmable by the user, digital to analog converters, analog-to-digital converters, buffers, latches, memories, readers, multiplexers, asynchronous universal transceivers, and the like. Discrete electronic components may be combined in one or more integrated circuits for specific applications (ASIC) as appropriate. The processor device 3004 may be a single processor in a multicore / multiprocessor system, which system operates autonomously, or in a cluster of computing devices operating in a cluster or cluster of servers. The processor device 3004 may be connected to a communication infrastructure 3006, for example a bus, a message queue, a network, or a multicore message passing program.
The computer system 3000 may also include a main memory 3008 and a secondary memory 3010. The main memory 3008 may comprise a volatile memory, for example a random access memory (RAM) which temporarily stores instructions and software data for execution and or manipulation by the processor device 3004. The secondary memory 3010 may comprise, for example, a non-volatile memory such as a flash memory or electrically erasable programmable read only memory (EEPROM), a hard disk drive 3012, and / or a storage medium removable disk 3014 for storing code and persistent software data. The code and software data may be transferred between secondary memory 3010 and main memory 3008 if necessary. The removable storage drive 3014 may include magnetic or optical storage media, flash memory, or the like. The removable storage medium 3014 may include non-transitory computer software and / or data.
The computer system 3000 may also include a communication interface 3024. The communication interface 3024 transfers software and data between the computer system 3000 and one or more external peripherals or communication networks (not shown). For example, the communication interface 3024 may allow the computer system 3000 to receive a user command (for example from a keyboard and a mouse) and to transmit information to one or more devices such as, without limitation, printers, external data storage devices or loudspeakers. A computer screen 3030 of the computer system 3000 may be implemented as a traditional display or touch display (i.e., a touch screen). The computer screen 3030 can connect to a communication infrastructure via a display interface 3002 to display the received electronic content. For example, the 3030 computer monitor can be used to display refined input models and fractures. The display interface 3002 may include instructions or hardware (e.g., a graphics card or chip) for providing enhanced, tactile and / or multi-touch graphics functionality associated with the computer screen 3030. Communication interface 3024 may include a network interface card and / or a wireless transceiver, for example. The software and data transferred via the communication interface 3024 may be in the form of signals, which may be electronic, electromagnetic, optical or other signals that may be received by the communication interface 3024. These signals may be provided to the communication interface 3024 via a communication channel 3026. The communication channel 3026 transmits signals and can be implemented using a wire or cable, optical fiber, a telephone line, a cellular telephone connection , a radio frequency (RF) connection or other communication channels. The communication network may be any type of network comprising a combination of one or more of the following networks: a wide area network, a local area network, one or more private networks, the Internet, a telephone network such as the public switched telephone network (PSTN) , one or more cellular networks, and wireless data networks. The communication network may include a plurality of network nodes such as routers, network access points / gateways, switches, DNS servers [Domain Name Service], proxy servers, and servers. other network nodes to help with data routing / communication between devices.
In one or more embodiments, computer system 3000 may interact with one or more database servers (not shown) to execute method 100 (FIGS. 1A-1C). Computer system 3000 may request geological information from a database to assign tank properties to cells for simulation purposes. For example, the computer system 3000 may request well logging information from a database to determine the orientation or density of a fracture to permit fracture modeling according to the disclosed embodiments. Further, in some embodiments, the computer system 3000 may act as a server system for one or more client devices or a peer system for peer-to-peer communication or parallel processing with one or more devices.
In summary, the invention describes a method, a system and a computer readable storage medium with executable instructions for modeling three-dimensional geological fractures within a reservoir. Embodiments of the method for modeling three-dimensional geological fractures within a reservoir may generally include: generating a reservoir matrix volumetric mesh; the generation of a volumetric mesh of fracture of the geological fractures; establishing matrix-matrix connections within the matrix mesh; establishing fracture-fracture connections within the fracture mesh; and establishing matrix-fracture connections between matrix and fracture volume meshes. Embodiments of the system for modeling three-dimensional geological fractures within a reservoir may generally include: a processor; and a memory on which are stored instructions, which, if executed by the processor, causes the processor to perform operations including generating a volumetric matrix mesh of the reservoir, generating a volumetric mesh of fracture of geological fractures, the establishment of matrix-matrix connections within the matrix mesh, the establishment of fracture-fracture connections within the fracture mesh, and the establishment of matrix-fracture connections between matrix meshes and fracture volume. Embodiments of the computer-readable storage medium with executable instructions for modeling three-dimensional geological fractures within a reservoir may generally have instructions including: generating a reservoir matrix volumetric mesh; the generation of a volumetric mesh of fracture of the geological fractures; establishing matrix-matrix connections within the matrix mesh; establishing fracture-fracture connections within the fracture mesh; and establishing matrix-fracture connections between matrix and fracture volume meshes. Any one of the preceding embodiments may comprise any of the following elements or features, alone or associated with each other: the matrix mesh is orthogonal; the establishment of matrix-matrix connections further comprises the discretization using two-point flux approximations of the pressure potential between adjacent cells in the matrix mesh; the matrix mesh comprises non-orthogonal cells; the establishment of matrix-matrix connections further comprises the discretization using multi-point flux approximations of the pressure potential of all adjacent cells of adjacent cells in the matrix mesh; the approximation of transmissibility between adjacent cells in the fracture mesh; determining a flow rate between adjacent cells using the transmissibility; discretization using two-point or multi-point flow rate approximations; determining geographically intersecting faces between cells of the matrix mesh and cells of the fracture mesh; for each secant face, calculating a matrix transmissibility value at the matrix mesh face, calculating a fracture transmissibility value at the fracture mesh face, and calculating a transmissibility in the face between the matrix mesh and the fracture mesh as the harmonic mean of the matrix and fracture transmissibility values; calculating the matrix transmissibility value using a two-point flow approximation; calculating the fracture transmissibility value using a two-point flow approximation; generating a volumetric fracture mesh comprises extruding an original face of each cell within a fracture surface mesh by a corresponding opening width; the establishment of matrix-fracture connections further comprises, for each face, the calculation of the fracture and matrix transmissibility values as functions of the crossing of the corresponding original face of the fracture surface mesh with the face of the mesh of matrix; for each face, calculating the fracture and matrix transmissibility values as functions of crossing the corresponding origin face of the fracture surface mesh with the face of the matrix mesh; determining a representative distance between the centroid of a cell in the matrix mesh and the secant side of the cell; calculating the matrix transmissibility value for the face of the cell as a function of the representative distance; receipt of a tank specification; identifying, based on the reservoir specification, a set of fractures comprising fractures allowing a size of 2.5 and other fractures; generating an unstructured reservoir model comprising an extrusion mesh that models fractures allowing 2.5 dimension in three dimensions; the anisotropic refinement of one or more cells in the unstructured reservoir model corresponding to other fractures; the resolution of a fracture network in the unstructured reservoir model using refined cells; the generation of a refined reservoir model using the fracture network; fractures allowing a dimension 2.5 have a geometry that has been discretized in a two-dimensional plane by a collection of line segments; for each line segment associated with each fracture in the 2.5 D fractures, generating a set of one-rayed stages from the line segment, generating closed loops around the line segment, and generating shape elements within the closed loops of the line segment; the generation of the mesh as a mesh constrains around closed loops fractures allowing a 2.5 D to fill a remaining space of the two-dimensional plane; the identification of a direction in the three dimensions in which the cells must be refined; the division of a rim of the cells, the rim being in the direction in the three dimensions; the method for modeling three-dimensional geological fractures inside the reservoir is performed by a computer system. The abstract of the invention is intended solely to provide a way to quickly determine, by a quick reading, the nature and essence of the technical invention, and it represents only one or more embodiments.
Although various embodiments have been illustrated in detail, the invention is not limited to the embodiments shown. The skilled person can deduce modifications and adaptations of the embodiments above. These modifications and adaptations are included in the spirit and scope of the invention.
权利要求:
Claims (37)
[1" id="c-fr-0001]
A method for modeling three-dimensional geological fractures within a reservoir, comprising: generating a matrix volumetric mesh of said reservoir; generating a volumetric fracture mesh of said geological fractures; establishing matrix-matrix connections within said matrix mesh; establishing fracture-fracture connections within said fracture mesh; and establishing matrix-to-fracture connections between said matrix and fracture volume meshes.
[2" id="c-fr-0002]
The method of claim 1, wherein: said matrix mesh is orthogonal; and said matrix-matrix connection establishment further comprises discretizing using two-point flux approximations of the pressure potential between adjacent cells in said matrix mesh.
[3" id="c-fr-0003]
The method of claim 1, wherein: said matrix mesh comprises non-orthogonal cells; and said matrix-matrix connection establishment further comprises discretizing using multipoint flow approximations of the pressure potential of all adjacent cells of the adjacent cells in said matrix mesh.
[4" id="c-fr-0004]
The method of claim 1, wherein said fracture-fracture connection establishment further comprises: approximating transmissibility between adjacent cells in said fracture mesh; determining a rate between said adjacent cells using said transmissibility; and discretizing using two-point or multi-point flow approximations of said flow rate.
[5" id="c-fr-0005]
The method of claim 1, wherein said matrix-to-fracture connection establishment further comprises: determining geographically intersecting faces between cells of said matrix mesh and cells of said fracture mesh; and for each secant face, calculating a matrix transmissibility value at the face of said matrix mesh, calculating a fracture transmissibility value at the face of said fracture mesh, and calculating transmissibility across the face between said matrix mesh and said fracture mesh as a harmonic mean of said matrix and fracture transmissibility values.
[6" id="c-fr-0006]
The method of claim 5, wherein said matrix-to-fracture connection establishment further comprises: calculating said matrix transmissibility value using a two-point flux approximation; and calculating said fracture transmissibility value using a two-point flow approximation.
[7" id="c-fr-0007]
The method of claim 5, wherein: said generation of a fracture volumetric mesh comprises extruding an original face of each cell within a fracture surface mesh by a width of corresponding opening; and said matrix-fracture connection establishment further comprises, for each face, calculating said fracture and matrix transmissibility values as functions of crossing the corresponding origin face of said fracture surface mesh with the face of said mesh of matrix.
[8" id="c-fr-0008]
The method of claim 7, wherein said matrix-to-fracture connection establishment further comprises: for each face, calculating said fracture and matrix transmissibility values as functions of crossing the corresponding origin face of said mesh of fracture surface with the face of said matrix mesh.
[9" id="c-fr-0009]
The method of claim 8, wherein said matrix-to-fracture connection establishment further comprises: determining a representative distance between the centroid of a cell in said matrix mesh and the secant face of said cell; and calculating said matrix transmissibility value for said face of said cell as a function of said representative distance.
[10" id="c-fr-0010]
The method of claim 1, wherein said generating said volumetric matrix mesh further comprises: receiving a tank specification; identifying, based on the reservoir specification, a set of fractures comprising fractures allowing a size of 2.5 and other fractures; generating an unstructured reservoir model comprising an extrusion mesh that models fractures allowing 2.5 dimension in three dimensions; the anisotropic refinement of one or more cells in the unstructured reservoir model corresponding to other fractures; the resolution of a fracture network in the unstructured reservoir model using refined cells; and the generation of a refined reservoir model using the fracture network.
[11" id="c-fr-0011]
The method of claim 1, wherein: 2.5 dimensional allowable fractures have a geometry that has been discretized in a two-dimensional plane by a collection of line segments; and said generation of said volumetric matrix mesh further comprises, for each line segment associated with each fracture in the 2.5 D-allowing fractures, generating a set of stages at a specified radius from the line segment, the generation of closed loops around the line segment, and the generation of shape elements inside the closed loops of the line segment, and the generation of the mesh as a mesh constrains around closed loops of the fractures allowing a 2 , D to fill a remaining space of the two-dimensional plane.
[12" id="c-fr-0012]
The method of claim 10, wherein said anisotropic refinement of cells further comprises: identifying a direction in the three dimensions in which the cells are to be refined; and dividing a rim of the cells, the rim being in the direction in all three dimensions.
[13" id="c-fr-0013]
The method of claim 1, wherein: the method for modeling three-dimensional geological fractures within the reservoir is performed by a computer system.
[14" id="c-fr-0014]
14. A computer-readable storage medium on which executable instructions are stored which, if executed by a computing device, causes the computing device to perform operations, the instructions comprising: generating a mesh volumetric matrix of said reservoir; generating a volumetric fracture mesh of said geological fractures; establishing matrix-matrix connections within said matrix mesh; establishing fracture-fracture connections within said fracture mesh; and establishing matrix-to-fracture connections between said matrix and fracture volume meshes.
[15" id="c-fr-0015]
The computer readable storage medium of claim 14, wherein: said matrix mesh is orthogonal; and said instructions further comprise discretizing using two-point flux approximations of the pressure potential between adjacent cells in said matrix mesh to establish said matrix-matrix connections.
[16" id="c-fr-0016]
The computer readable storage medium of claim 14, wherein: said matrix mesh comprises non-orthogonal cells; and said instructions further include discretizing using multipoint flow approximations of the pressure potential of all adjacent cells of adjacent cells in said matrix mesh to establish said matrix-matrix connections.
[17" id="c-fr-0017]
The computer readable storage medium of claim 14, wherein, for establishing said fracture-fracture connections, said instructions further include: approximating transmissibility between adjacent cells in said fracture mesh; determining a rate between said adjacent cells using said transmissibility; and discretizing using two-point or multi-point flow approximations of said flow rate.
[18" id="c-fr-0018]
The computer readable storage medium of claim 14, wherein, to establish said matrix-to-fracture connections, said instructions further include: determining geographically intersecting faces between cells of said matrix mesh and cells of said mesh fracture; and for each secant face, calculating a matrix transmissibility value at the face of said matrix mesh, calculating a fracture transmissibility value at the face of said fracture mesh, and calculating transmissibility across the face between said matrix mesh and said fracture mesh as a harmonic mean of said matrix and fracture transmissibility values.
[19" id="c-fr-0019]
The computer-readable storage medium of claim 18, wherein, to establish said matrix-to-fracture connections, said instructions further include: calculating said matrix transmissibility value using a flow approximation two points; and calculating said fracture transmissibility value using a two-point flow approximation.
[20" id="c-fr-0020]
The computer-readable storage medium of claim 18, wherein: to generate a fracture volumetric mesh, said instructions further include extruding an original face of each cell within a fracture surface mesh with a corresponding opening width; and to establish said matrix-fracture connections, said instructions further comprise, for each face, calculating said fracture and matrix transmissibility values as functions of crossing the corresponding original face of said fracture surface mesh with the face. said matrix mesh.
[21" id="c-fr-0021]
The computer-readable storage medium according to claim 20, wherein, for establishing said matrix-fracture connections, said instructions further comprise: for each face, calculating said fracture and matrix transmissibility values as functions of the crossing the corresponding original face of said fracture surface mesh with the face of said matrix mesh.
[22" id="c-fr-0022]
The computer readable storage medium of claim 21, wherein, to establish said matrix-to-fracture connections, said instructions further include: determining a representative distance between the centroid of a cell in said matrix mesh and the secant side of said cell; and calculating said matrix transmissibility value for said face of said cell as a function of said representative distance.
[23" id="c-fr-0023]
The computer readable storage medium of claim 14, wherein, to generate said matrix volumetric mesh, said instructions further include: receiving a tank specification; identifying, based on the reservoir specification, a set of fractures comprising fractures allowing a size of 2.5 and other fractures; generating an unstructured reservoir model comprising an extrusion mesh that models fractures allowing 2.5 dimension in three dimensions; the anisotropic refinement of one or more cells in the unstructured reservoir model corresponding to other fractures; the resolution of a fracture network in the unstructured reservoir model using refined cells; and the generation of a refined reservoir model using the fracture network.
[24" id="c-fr-0024]
The computer-readable storage medium of claim 14, wherein: 2.5-dimensional fractures have a geometry that has been discretized in a two-dimensional plane by a collection of line segments; and to generate said volumetric matrix mesh, said instructions further comprise, for each line segment associated with each fracture in the 2.5 D-allowing fractures, generating a set of stages at a specified radius from the segment. of line, the generation of closed loops around the line segment, and the generation of form elements inside the closed loops of the line segment, and the generation of the mesh as a mesh constrains around closed loops of fractures allowing a 2.5 D to fill a remaining space of the two-dimensional plane.
[25" id="c-fr-0025]
The computer-readable storage medium of claim 23, wherein, for anisotropically refining cells, said instructions further include: identifying a direction in the three dimensions in which the cells are to be refined; and dividing a rim of the cells, the rim being in the direction in all three dimensions.
[26" id="c-fr-0026]
26. A system for modeling three-dimensional geological fractures within a reservoir, comprising: a processor; and and a memory on which are stored instructions, which, if executed by the processor, causes the processor to perform operations comprising generating a matrix volumetric mesh of said reservoir, generating a volumetric mesh fracturing said geologic fractures, establishing matrix-matrix connections within said matrix mesh, establishing fracture-fracture connections within said fracture mesh, and establishing matrix-fracture connections between said matrix meshes and fracture volume.
[27" id="c-fr-0027]
The system of claim 26, wherein: said matrix mesh is orthogonal; and said instructions further comprise discretizing using two-point flux approximations of the pressure potential between adjacent cells in said matrix mesh to establish said matrix-matrix connections.
[28" id="c-fr-0028]
The system of claim 26, wherein: said matrix mesh comprises non-orthogonal cells; and said instructions further include discretizing using multipoint flow approximations of the pressure potential of all adjacent cells of adjacent cells in said matrix mesh to establish said matrix-matrix connections.
[29" id="c-fr-0029]
The system of claim 26, wherein, to establish said fracture-fracture connections, said instructions further include: approximating transmissibility between adjacent cells in said fracture mesh; determining a rate between said adjacent cells using said transmissibility; and discretizing using two-point or multi-point flow approximations of said flow rate.
[30" id="c-fr-0030]
30. The system of claim 26, wherein, to establish said matrix-fracture connections, said instructions further comprise: determining geographically intersecting faces between cells of said matrix mesh and cells of said fracture mesh; and for each secant face, calculating a matrix transmissibility value at the face of said matrix mesh, calculating a fracture transmissibility value at the face of said fracture mesh, and calculating a transmissibility in the face between said matrix mesh and said fracture mesh as a harmonic mean of said matrix and fracture transmissibility values.
[31" id="c-fr-0031]
The system of claim 30, wherein, to establish said matrix-to-fracture connections, said instructions further include: calculating said matrix transmissibility value using a two-point flow approximation; and calculating said fracture transmissibility value using a two-point flow approximation.
[32" id="c-fr-0032]
The system of claim 30, wherein: to generate a fracture volumetric mesh, said instructions further include extruding an original face of each cell within a fracture surface mesh by a corresponding opening width; and to establish said matrix-fracture connections, said instructions further comprise, for each face, calculating said fracture and matrix transmissibility values as functions of crossing the corresponding original face of said fracture surface mesh with the face. said matrix mesh.
[33" id="c-fr-0033]
The system of claim 32, wherein, to establish said matrix-fracture connections, said instructions further comprise: for each face, calculating said fracture and matrix transmissibility values as functions of the crossover of the original face. corresponding one of said fracture surface mesh with the face of said matrix mesh.
[34" id="c-fr-0034]
The system of claim 33, wherein, for establishing said matrix-fracture connections, said instructions further include: determining a representative distance between the centroid of a cell in said matrix mesh and the secant side of said matrix cell ; and calculating said matrix transmissibility value for said face of said cell as a function of said representative distance.
[35" id="c-fr-0035]
The system of claim 26, wherein, to generate said matrix volumetric mesh, said instructions further include: receiving a tank specification; identifying, based on the reservoir specification, a set of fractures comprising fractures allowing a size of 2.5 and other fractures; generating an unstructured reservoir model comprising an extrusion mesh that models fractures allowing 2.5 dimension in three dimensions; the anisotropic refinement of one or more cells in the unstructured reservoir model corresponding to other fractures; the resolution of a fracture network in the unstructured reservoir model using refined cells; and the generation of a refined reservoir model using the fracture network.
[36" id="c-fr-0036]
36. The system of claim 26, wherein: 2.5 dimensional allowable fractures have a geometry that has been discretized in a two-dimensional plane by a collection of line segments; and to generate said volumetric matrix mesh, said instructions further comprise, for each line segment associated with each fracture in the 2.5 D-allowing fractures, generating a set of stages at a specified radius from the segment. of line, the generation of closed loops around the line segment, and the generation of form elements inside the closed loops of the line segment, and the generation of the mesh as a mesh constrains around closed loops of fractures allowing a 2.5 D to fill a remaining space of the two-dimensional plane.
[37" id="c-fr-0037]
37. The system of claim 35, wherein, for anisotropic refining of cells, said instructions further comprise: identifying a direction in the three dimensions in which the cells are to be refined; and dividing a rim of the cells, the rim being in the direction in all three dimensions.
类似技术:
公开号 | 公开日 | 专利标题
FR3041803A1|2017-03-31|
EP2581767B1|2014-04-30|Method for constructing a mesh of a fractured reservoir with a limited number of nodes in the matrix environment
FR3028333A1|2016-05-13|CREATING A RESERVOIR MESH USING A PROLONGED ANISOTROPIC REFINEMENT, ADAPTED TO GEOMETRY, OF A POLYEDRE
FR2962229A1|2012-01-06|SMOOTHING OF STAIR-STEPPED GEOMETRY IN GRIDS
FR3016983A1|2015-07-31|METHOD FOR CONSTRUCTING A VOLUME MESH FOR MODELING GEOLOGICAL STRUCTURES
EP2924232A2|2015-09-30|Method for constructing an optimised network for reservoir simulation in a subterranean formation
FR3046479A1|2017-07-07|
GB2529957B|2019-11-13|2.75D meshing algorithm
AU2013393306B2|2017-08-10|2.5D stadia meshing
FR3029664A1|2016-06-10|DEFINITION OF NON-LINEAR PETROFACIES FOR A RESERVOIR SIMULATION MODEL
US20160209545A1|2016-07-21|A geostatistical procedure for simulation of the 3d geometry of a natural fracture network conditioned by well bore observations
US9715762B2|2017-07-25|3D stadia algorithm for discrete network meshing
FR3048300A1|2017-09-01|3D GEOCELLULAR HYBRID REPRESENTATION OF SELECTED NATURAL FRACTURE NETWORK SUBASSEMBLIES
FR3027134A1|2016-04-15|USE OF A REPRESENTATIVE ELEMENTARY VOLUME FOR DETERMINING A SUB-SET VOLUME IN A GROUND MODEL OF A ZONE OF INTEREST
FR3055723A1|2018-03-09|POINT-VECTOR-BASED MODELING OF OIL TANK PROPERTIES FOR TANK-FREE SIMULATION MODEL
EP3017430B1|2021-04-07|Lofting algorithm for discrete network meshing
AU2013398344A1|2016-02-04|Local updating of 3D geocellular model
FR2983615A1|2013-06-07|Method for refining simulation model used to simulate behavior of environment with sedimentary basin, involves producing chart based on portion of scalar field values, and applying chart to variable distributed in space in area
同族专利:
公开号 | 公开日
GB201802797D0|2018-04-04|
US20180232950A1|2018-08-16|
CA2996269A1|2017-03-30|
AU2015409650A1|2018-03-08|
GB2556598A|2018-05-30|
US10529131B2|2020-01-07|
WO2017052543A1|2017-03-30|
NO20180220A1|2018-02-12|
AR106027A1|2017-12-06|
CA2996269C|2021-01-12|
GB2556598B|2021-07-21|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US20060025976A1|2000-06-29|2006-02-02|Object Reservoir, Inc.|Method and system for representing reservoir systems|
FR2870621A1|2004-05-21|2005-11-25|Inst Francais Du Petrole|METHOD FOR GENERATING A THREE-DIMENSIONALLY THREADED HYBRID MESH OF A HETEROGENEOUS FORMATION CROSSED BY ONE OR MORE GEOMETRIC DISCONTINUITIES FOR THE PURPOSE OF MAKING SIMULATIONS|
US20100138196A1|2008-12-03|2010-06-03|Chevron U.S.A. Inc.|System and method for predicting fluid flow characteristics within fractured subsurface reservoirs|
US20130231907A1|2010-11-23|2013-09-05|Yahan Yang|Variable Discretization Method For Flow Simulation On Complex Geological Models|
US20120179436A1|2011-01-10|2012-07-12|Saudi Arabian Oil Company|Scalable Simulation of Multiphase Flow in a Fractured Subterranean Reservoir as Multiple Interacting Continua|
FR2981475A1|2011-10-12|2013-04-19|IFP Energies Nouvelles|METHOD FOR CONSTRUCTING A MESH OF A FRACTURE RESERVOIR WITH A LIMITED NUMBER OF NODES IN THE MATRIX|
US8190414B2|2008-03-26|2012-05-29|Exxonmobil Upstream Research Company|Modeling of hydrocarbon reservoirs containing subsurface features|
MX2011005663A|2008-12-03|2011-06-16|Chevron Usa Inc|System and method of grid generation for discrete fracture modeling.|
NO339744B1|2012-08-10|2017-01-30|Schlumberger Technology Bv|Hybrid, local non-reconciliation method for multiphase flow simulations in heterogeneous cracked media|
US20140136171A1|2012-11-13|2014-05-15|Chevron U.S.A. Inc.|Unstructured Grids For Modeling Reservoirs|
EP3017429A4|2013-07-02|2017-05-10|Landmark Graphics Corporation|2.5d stadia meshing|
CN105474272A|2013-07-02|2016-04-06|兰德马克绘图国际公司|2.75D meshing algorithm|
GB201421111D0|2014-08-05|2015-01-14|Airbus Operations Ltd|System and method of generating an axially structured volume mesh for simulating design components|
GB2545608B|2014-11-12|2020-06-17|Halliburton Energy Services Inc|Reservoir mesh creation using extended anisotropic, geometry-adaptive refinement of polyhedra|
FR3041026B1|2015-09-15|2017-10-20|Ifp Energies Now|METHOD FOR CHARACTERIZING THE NETWORK OF FRACTURES OF A FRACTURE SLOT AND METHOD FOR OPERATING IT|FR2991089B1|2012-05-22|2014-05-16|IFP Energies Nouvelles|METHOD FOR OPERATING A SUBTERRANEAN ENVIRONMENT ACCORDING TO AN OPERATING SCHEME DEFINED BY AN OPTIMIZED REPRESENTATION|
EP3017429A4|2013-07-02|2017-05-10|Landmark Graphics Corporation|2.5d stadia meshing|
US10572611B2|2016-04-29|2020-02-25|Exxonmobil Upstream Research Company|Method and system for characterizing fractures in a subsurface region|
EP3447237B1|2017-08-21|2019-12-25|Repsol, S.A.|A method for estimating the fractured volume in a reservoir domain by injecting a high pressure fluid|
US11217014B2|2020-02-06|2022-01-04|The Boeing Company|Topological surface detector|
CN112081583B|2020-09-25|2021-08-17|西南石油大学|Unconventional storage layer seam network fracturing multi-scale support yield calculation method and device|
法律状态:
2017-07-26| PLFP| Fee payment|Year of fee payment: 2 |
2018-07-18| PLFP| Fee payment|Year of fee payment: 3 |
2019-08-30| PLFP| Fee payment|Year of fee payment: 4 |
2021-05-07| ST| Notification of lapse|Effective date: 20210405 |
优先权:
申请号 | 申请日 | 专利标题
PCT/US2015/051836|WO2017052543A1|2015-09-24|2015-09-24|Simulating fractured reservoirs using multiple meshes|
[返回顶部]