专利摘要:
The invention relates to a control system (2) for the cleanliness of a place (1), especially sanitary facilities, the system comprising means for counting (4) the number of entries in the place, the counting means being capable of supplying counting data, at least one panel (5) mounted in the place and comprising means for signaling a need for cleaning the place, the signaling means being able to provide a satisfaction data, and a means for indication for a cleaning agent to indicate the cleaning of the place, the means of indication being able to provide data of the last cleaning comprising at least the date and time of the last cleaning, in which the count data, the need for cleaning, and the last cleaning are used by an algorithm to schedule the next cleaning by a cleaning agent (AN).
公开号:FR3041800A1
申请号:FR1559226
申请日:2015-09-30
公开日:2017-03-31
发明作者:Patrick Adam;Christophe Pistoresi
申请人:Antalios;
IPC主号:
专利说明:

Tableau 1
On peut noter ce qui suit par rapport au tableau : - Au cas 2), il n'y a pas eu de visite du lieu entre l'agent de nettoyage et la personne responsable de l'évaluation. On peut considérer que son évaluation de Moyennement Satisfait (3) n'est pas tout à fait conforme à la réalité, donc on peut donner moins d'importance (poids) à cette évaluation. - Au cas 6), l'évaluation qui précède étant relativement haute (Moyennement Satisfait), et l'évaluation qui suit étant aussi relativement haute (Moyennement Satisfait), on peut considérer que son évaluation de Très Insatisfait n'est pas tout à fait appropriée (soit elle est plus exigeante que les autres, soit elle essaie de fausser volontairement les données) on peut donner moins d'importance (poids) à cette évaluation. - Enfin, à partir du cas 8), on peut considérer que l'état sanitaire se dégrade, plusieurs évaluations successives étant de plus en plus négatives.
Les évaluations peuvent être aussi utilisées pour évaluer le travail de l'agent de nettoyage AN et/ou le niveau de propreté requis. Dans le premier cas, si tout de suite après l'intervention de l'agent le niveau de satisfaction est moyen, il faut contrôler le travail de l'agent. Dans le dernier cas, il faut augmenter les standards de nettoyage du lieu en général.
Il est possible de disposer d'une version « temporaire » du système, qui permet d'évaluer les comportements d'utilisateurs pendant une durée donnée, par exemple quelques mois, afin d'établir un programme de nettoyage convenable. Ensuite, le système sera enlevé ou remplacé par un système fixe. De même, un simple comptage d'utilisateurs, sans mettre en
place le panneau 5 et le reste du système, peut être employé dans un premier temps, afin d'établir un premier programme de nettoyage, qui sera affiné au fil de temps.
Algorithmes
Capital de Propreté
Une valeur « capital de propreté » CP peut être utilisée pour lier l'état de propreté du sanitaire 1 au temps, notamment le temps restant TR avant le prochain nettoyage, afin de calculer dans combien de temps l'état des sanitaires nécessitera un nettoyage. Ainsi, le moment le plus adéquat pour le prochain nettoyage peut être déterminé.
Ce capital de propreté CP dépend alors du temps passé TP depuis le dernier nettoyage, du nombre d'utilisateurs entretemps, et du niveau de satisfaction.
Il a été constaté qu'en général, l'état de propreté ne dépend pas seulement du nombre d'utilisateurs dans un laps de temps, mais aussi de la répartition temporelle du nombre d'utilisateurs. Plus précisément, un grand nombre d'utilisateurs dans un court laps de temps salit plus rapidement les sanitaires par rapport au même nombre d'utilisateurs dans un lapse de temps plus important. Une forte affluence crée en général un stress pour se dépêcher, et les utilisateurs ont tendance à laisser des gouttes d'eau sur les lavabos, des traces de savon, des serviettes qui débordent de la corbeille, etc.
Le but ici est de permettre au système de contrôle 2 de pouvoir déterminer et d'auto-ajuster la valeur initiale du capital de propreté CP en fonction des évènements, qui peut varier d'un sanitaire à un autre. L'algorithme devrait permettre: - de faire varier à moyen terme la valeur initiale (plusieurs cycles de nettoyage nécessaires à un ajustement) ; - d'augmenter ou diminuer la valeur du capital de propreté CP ; et - de prendre en compte l'avis de l'agent de nettoyage AN lors de son passage.
En conséquence, une valeur initiale CPO est déterminée en fonction des habitudes de travail des équipes de nettoyage déjà en service, c'est-à-dire l'intervalle moyen entre deux passages dans un même sanitaire, ajusté avec un coefficient expérimental qui sera affiné au fil des utilisations, comme donné par l'équation suivante : CP0 = IM x COex [équation 1] dans lequel CPo est le capital de propreté initial, IM est un intervalle moyen (par exemple, 60 minutes), et COex est un coefficient expérimental, qui permet de prendre en compte les variations entre deux cycles de nettoyage. L'avis de l'agent de nettoyage AN lors de son arrivée sur site est pris en compte dans le calcul afin d'ajuster la valeur initiale du capital de propreté CP.
Si l'évaluation de l'agent est négative (valeur 1, 2), son intervention est justifiée, et le capital de propreté ne change pas : CPn+i = CPN [équation 2]
Si l'évaluation de l'agent de nettoyage AN est positive (valeur 3, 4), son intervention aurait pu attendre car les sanitaires sont encore propres à son arrivée.
En conséquence, le capital de propreté CP peut être augmenté comme suit : CPn+i = CPn + (COan x CPn) [équation 3] dans lequel COan est un coefficient d'évaluation par l'agent qui peut varier, par exemple une évaluation « très bonne » donne lieu à une augmentation du capital plus important qu'une évaluation « bonne ».
La valeur initiale CPo et les coefficients COex, COan seront affinés au cours de l'utilisation des sanitaires pour qu'à terme le capital de propreté CP des sanitaires soit très prévisible.
Pourcentage de satisfaction
Le pourcentage de satisfaction PS est défini comme la somme des avis positif (Très Satisfait et Moyennement Satisfait) divisé par le nombre total d'avis, donné par l'équation suivante : PS = (NEjs + NEMs)/(NEt) x 100 [équation 4] dans lequel N Ers est le nombre d'évaluations Très Satisfait, NEMs est le nombre d'évaluations Moyennement Satisfait, et NET est le nombre total d'évaluations, c'est-à-dire : NET = NEjs + NEms + NEMi + NETi [équation 5] dans lequel NEMi est le nombre d'évaluations Moyennement Insatisfait et NEti est le nombre d'évaluations Très Insatisfait.
Si le nombre total d'évaluations NEj est égal à 0, on peut suspecter une éventuelle panne d'équipement. Par exemple, si le compteur 4 indique qu'une dizaine d'utilisateurs ont utilisé les sanitaires mais qu'aucun n'a laissé une évaluation, il est possible que le système ait un disfonctionnement. Le pourcentage de satisfaction PS peut être mis à 0% ou à une autre valeur estimée, et un agent peut être envoyé sur place pour vérifier le bon fonctionnement du système.
Par contre, si le compteur 4 indique qu'aucune personne n'est entrée depuis le dernier nettoyage, il est considéré que le niveau de propreté est toujours maximal et le pourcentage de satisfaction PS est mis à 100%.
De même, si le système 2 constate que dans un intervalle de temps il n'y a pas eu de détection de passage, il peut déclencher une procédure de vérification, surtout s'il y a lieu pendant une heure de haute fréquentation (pendant la journée).
Calcul de la durée avant passage L'équation suivante permet de calculer, à temps N, le temps restant TR à temps N+l avant le prochain nettoyage: TRn+i = TRn - (COps)*(AT) - (COFr)*(Fn+i - FN) [équation 6] dans lequel TRn+i correspond au temps restant TR à temps N+l, TRn correspond au temps restant TR actuellement à temps N, COps correspond à un coefficient de satisfaction, ΔΤ correspond à l'intervalle entre deux calculs, COfr correspond à un coefficient de la fréquentation, Fn+i correspond à la fréquentation à temps N+l, et FN correspond à la fréquentation à temps N.
Le coefficient de satisfaction peut être égal à 1.5 si le pourcentage de satisfaction PS est inférieur ou égal à 40 % (PS < 0.4), égal à 1 si le pourcentage de satisfaction PS est entre 40 et 70 % (0.4 < PS < 0.7) et égal à 0.5 si le pourcentage de satisfaction PS est supérieur ou égal à 70 % (0.7 < PS). C'est-à-dire que le délai avant le prochain nettoyage est raccourci par rapport au délai standard si la satisfaction est en-dessous du niveau standard, reste inchangé si la satisfaction est conforme au niveau standard, et prolongé si la satisfaction est au-dessus du niveau standard.
Le coefficient de fréquentation COfr est déterminé expérimentalement par un audit sur le lieu d'installation.
La figure 3 montre un graphe de calcul du prochain nettoyage PN, avec le temps restant TR sur l'axe y et le temps passé TP sur l'axe X, une courbe DI de la durée programmée, et deux courbes D2, D3 de la durée modifiée selon les données de comptage et/ou satisfaction. Des données « négatives » (fréquentation importante et/ou évaluations négatives) diminuent la durée avant le prochain nettoyage, comme montré à la courbe D2 et des données « positives » (fréquentation légère et/ou évaluations positives) augmentent la durée avant le prochain nettoyage, comme montré à la courbe D3.
Ici, la valeur du temps restant est réactualisée toutes les cinq minutes (ΔΤ = 5 minutes), mais elle peut être réactualisée plus ou moins fréquemment.
Pour les exemples pratiques qui suivent, le coefficient de la fréquentation COfr, et la fréquentation (Fn+i - FN) ne sont pas pris en compte, pour des raisons de simplicité. En général, le coefficient de fréquentation COfr ne va pas varier énormément d'un cycle à l'autre, tandis que la fréquentation varie. Le coefficient de fréquentation COfr permet de donner plus ou moins d'importance au paramètre de fréquentation (Fn+i -Fn).
En fonction du lieu, de l'heure ou des utilisateurs, le coefficient peut être modifié pour que la fréquentation soit plus ou moins importante sur la diminution du capital de propreté. Pour un même lieu, selon le jour, l'heure, et d'autres facteurs, le passage d'un certain nombre d'utilisateurs dans les sanitaires n'aura pas le même impact. Pour pouvoir prédire la fréquentation entre le temps N et le temps N+l, il faudra avoir suffisamment de données historiques enregistrées pour pouvoir effectuer une analyse statistique des évènements et ainsi prévoir au mieux la fréquentation future. A temps passé 0 TP = 0, les sanitaires viennent d'être nettoyés, et il reste 30 minutes TRo = 30 avant le prochain passage programmé. Le prochain temps restant TR à 5 minutes (TP = 5) est égale à : TR5 = 30 - (1)*(5) = 25 minutes
Au temps passé TP = 5 minutes, le pourcentage de satisfaction est à 65% ce qui donne : TRio = 25 - (1)*(5) = 20 minutes
Au temps T = 10 minutes, le pourcentage de satisfaction est à 50% ce qui donne : TRis = 20 - (1)*(5) = 15 minutes A partir de 15 minutes, deux hypothèses sont montrées, D2, D3. Dans le cas de D2, il est considéré que l'état sanitaire se dégrade, avec un pourcentage de satisfaction de moins de 40%. TR20 = 15 - (1.5)*(5) = 7.5 minutes, et ensuite TR25 = 7.5 - (1.5)*(5) = 0 minutes.
Le prochain nettoyage est alors programmé pour intervenir à 25 minutes, au lieu de 30 minutes.
Dans le cas de D3, il est considéré que l'état sanitaire s'améliore, par exemple un utilisateur qui a ramassé des serviettes en papier et les a jetées dans la poubelle, avec un pourcentage de satisfaction supérieur à 70%. TR20 = 15 - (0.5)*(5) = 12.5 minutes et ainsi de suite, avec un délai total final de 45 minutes entre les nettoyages.
On peut donc comparer le calcul du temps avant le prochain passage à une gestion prédictive de l'approvisionnement, quel que soit le domaine d'application, le principe est identique.
Calcul du délai d'intervention
Le délai d'intervention d'un agent de nettoyage AN peut être calculé afin de programmer l'intervention au meilleur moment possible, en prenant en compte le temps nécessaire à son arrivé sur site. De cette façon on peut le prévenir le plus tard possible, mais suffisamment tôt pour qu'il soit opérationnel lorsque le capital de propreté CP est épuisé, ni avant, ni après.
Pour ce faire, le délai initial est fixé pour correspondre à un certain pourcentage du capital initial.
Do = COcp * CPo dans lequel Do correspond au délai initial, COcp correspond à un coefficient du capital de propreté CP, et CPo correspond au capital de propreté initial. En pratique, le coefficient COcp est compris entre 0% et 15%. Par exemple, si le capital CPo est égal à cinq heures (300 minutes) et le coefficient COcpest égal à 5%, le délai est égal à = 0.05*300 = 15 minutes. L'agent de nettoyage AN est prévenu que dans quinze minutes l'état des sanitaires ne sera plus acceptable, et le temps réel d'intervention est calculé. Le délai Do est enregistré, et au fil de temps une moyenne est calculée avec la valeur initiale, qui permet d'obtenir un délai de plus en plus précis. L'écart type de toutes les valeurs relevées est déterminé de façon à prendre en compte les aléas qui sont ou peuvent arriver lors des tournées de nettoyage.
Deux façons différentes d'estimer le délai peuvent être utilisées, chacune ayant des avantages et inconvénients en fonction du type de lieu à équiper, des équipes présentes sur place et du l'utilisation globale des sanitaires en question :
Dn+i = AVG(D) ± o [équation 7] dans lequel σ (sigma) correspond à l'écart type. Pour arriver plutôt en avance, sigma est ajouté à la moyenne, pour arriver plutôt en retard, sigma est retranché de la moyenne. L'équation suivante indique la moyenne des délais d'intervention de l'agent de nettoyage AN depuis la mise en service du système (ou réinitialisation) : AVG(Dn)=1/N *1D k=o à n [équation 8] L'équation suivante indique l'écart type de toutes les valeurs relevées : σΝ = V(Zk=o à n (DK - AVG(Dn))2 [équation 9]
De cette façon la valeur est ajustée au cours de l'utilisation du panneau 5 de façon à être la plus optimale possible. Ainsi, un agent de nettoyage AN sera averti au moment le plus propice, et la productivité sera améliorée en éliminant au maximum les pertes de temps inutiles. En outre, les sanitaires ne resteront pas longtemps dans un état de saleté trop élevé, ce qui garantit un niveau de service élevé.
On peut noter que dans cette approche, le délai d'intervention est considéré comme suivant une loi de distribution normale. Néanmoins, une autre loi peut être utilisée pour améliorer l'estimation du délai.
En outre, le délai d'intervention peut prendre en compte d'autres données, par exemple, si l'agent de nettoyage AN est actuellement en intervention dans un autre sanitaire, le temps nécessaire qu'il lui faudra pour arriver au nouveau site, et, s'il est en pause, la durée de celle-ci, etc.
En outre, le programme de calcul peut prendre en compte aussi le niveau de satisfaction pour programmer l'intervention. Par exemple, si le niveau de satisfaction est très bas, on peut considérer qu'il faudra plus de temps pour le nettoyer.
Calcul de la fréquentation par intervalle
La fréquentation des sanitaires peut être calculée par intervalle de temps, c'est-à-dire par exemple pendant un jour (24 heures) et par tranches d'une heure.
Dans l'exemple qui suit, un tableau est créé comprenant toutes les valeurs de la journée (ou de la durée de mesure) réparties selon un indice qui indique l'intervalle en question, un compteur qui correspond à la fréquentation mesurée et un minuteur qui correspond à la durée de l'intervalle restant.
Dans une première étape d'initialisation, montrée ici, les indices sont mis à zéro, un tableau (Tableau 2 ci-dessous - Note : Les tableaux ci-dessous ne montrent que 6 intervalles de 4 heures chacun, pour des raisons de simplicité) est créé comprenant n éléments selon le nombre d'intervalles. Les fréquentations mesurées pour chaque intervalle sont aussi mises à zéro, et les durées d'intervalle sont mises à 4 h (240 minutes). (Il est noté que les durées des intervalles ne sont pas forcément égales, mais peuvent être plus ou moins longues selon les différentes périodes de la journée, par exemple un intervalle de 22h à 8h, et ensuite des intervalles de deux heures.)
Compteur = 0
Tableau 2
Dans une seconde étape de mesure, le tableau (Tableau 3 - ci-dessous) est mis à jour selon les données des moyens de comptage 4. Dès qu'une interruption relative au mouvement est détectée (soit les entrées, soit les sorties selon la configuration et l'installation du système), la valeur du compteur est augmentée = compteur +1. Une fois que le minuteur de l'intervalle restant expire, l'intervalle est terminé, et la valeur du compteur est enregistrée dans la colonne « Fréquentation Mesurée ».
Le tableau 3 montre un indice 1 terminé, avec 5 fréquentations, et 0 minute restante. L'indice est augmenté à 2, le compteur est en train de compter les interruptions à nouveau, 200 minutes restantes dans l'intervalle. En résumé, la valeur du compteur pour l'intervalle qui vient de se finir est enregistrée par rapport à l'intervalle correspondant de la table, la valeur du compteur est réinitialisée, l'indice est augmenté afin de passer au prochain intervalle, le minuteur est relancé et le compteur recommence.
Compteur = 6
Tableau 3
Comme montré au tableau 4 ci-dessous, la période de mesure, ici 24 heures, est terminée. Le tableau est complètement renseigné. L'indice est augmenté de 6 à 7, ce qui est supérieur à la taille maximale (indice = 6) du tableau, donc le tableau est enregistré et l'indice est réinitialisé.
Compteur = 0__
Tableau 4
Un tampon (« buffer ») circulaire peut être mis en œuvre pour sauvegarder des données de façon cyclique comme celle de la fréquentation par tranche horaire.
Durée estimée d'utilisation des sanitaires
Le temps moyen d'utilisation des sanitaires, même approximativement, peut être estimé grâce à un algorithme.
Pour se faire il est nécessaire d'enregistrer tous les mouvements effectués dans les sanitaires et d'en connaître l'horodatage par rapport au début du cycle de nettoyage. Les entrées/sorties et leurs horodatages par rapport au début du cycle de nettoyage sont corrélés pour avoir une valeur qui représente une durée moyenne qui sera affinée tout au long de la mise en service du système car plus le nombre d'éléments est élevé, plus la valeur exprimée sera proche du temps moyen d'utilisation. L'algorithme se décompose donc en deux parties, la première correspondant à l'enregistrement sous forme de tableau de tous les évènements d'entrées et de sorties avec leurs horodatages. Deux compteurs sont utilisés : un pour les entrées et un pour les sorties ainsi qu'un minuteur qui se lance au début du cycle de nettoyage, lorsque le capital de propreté est au plus haut. Lorsque une entrée ou une sortie est détectée, la valeur du minuteur au moment de l'interruption est lue et stockée dans la case du tableau ayant l'index du compteur actuel d'entrées ou de sorties. Le compteur entrée ou sortie est incrémenté et une fois que le tableau est rempli, que le cycle de nettoyage est fini ou simplement que l'on a suffisamment d'éléments pour qu'une moyenne cohérente soit calculée, la durée moyenne est calculée.
Le nombre d'éléments du tableau à prendre en compte est déterminé et un tableau temporaire comprenant la différence temporelle entre chaque entrée et chaque sortie est obtenu :
Ai = |Si - Ei | [équation 10] dans lequel Si est la sortie correspondant à un indice i, Ei est l'entrée correspondant à un indice i, et Ai (delta i) est la différence entre les deux.
Le k-ième percentile (en principe k est compris entre 50 et 98) du tableau temporaire est calculé, ce qui permet d'éliminer les valeurs trop éloignées de la moyenne générale, et la valeur obtenue est multipliée par un coefficient calculé expérimentalement pour obtenir la valeur estimée du temps d'utilisation moyen. DEU = COcr * Ak-ième percentile [équation 11] dans lequel DEU est la durée estimée d'utilisation et COcr correspond à un coefficient de correction.
Il sera compris par l'Homme du Métier que l'invention décrite peut être mise en œuvre différemment, avec des différents algorithmes utilisés, des moyens de stocker et/ou de traiter les données, etc.
Dans d'autres modes de réalisation, la zone d'instructions ZI du panneau 5 peut être un écran tactile intégrant les actionneurs, des instructions écrites sur un autocollant ou directement sur le panneau, etc. En outre, le panneau 5 n'offre pas forcément un choix parmi plusieurs niveaux de satisfaction, mais peut tout simplement demander aux utilisateurs de signaler un besoin de nettoyage en appuyant sur un actionneur marqué « Oui ».
Les moyens d'indication MI de passage d'un agent de nettoyage AN peuvent être un clavier numérique pour entrer une code identifiant, un lecteur d'une carte sans contact portée par l'agent, un lecteur biométrique (empreintes...) etc.
Au lieu d'un dispositif laser comme décrit en relation avec la Fig. 2B, tout autre moyen pour compter les entrées/sorties peut être mis en place, par exemple un tapis pression, une caméra qui compte automatiquement (sans nécessiter la présence d'un opérateur), etc.
En outre, les données de satisfaction et de comptage ne sont pas nécessairement horodatées. Le système peut toute simplement prendre en considération le nombre d'entrées, le niveau de satisfaction, et le temps depuis le dernier nettoyage pour programmer le prochain nettoyage, sans avoir besoin du horodatage de chaque évènement.
En outre, il n'est pas nécessaire que les moyens de comptage comptent le nombre de sorties.
Enfin, au lieu d'un panneau 5 qui comprend lui-même une mémoire et reçoit des données du compteur, le compteur 4 peut envoyer les données de comptage à l'unité de traitement 6, soit en temps-réel, ce qui permet à l'unité de traitement d'effectuer l'horodatage et l'analyse, soit de manière différée.
Title of the invention
System for monitoring the health status of a place and method for determining the next cleaning
Background of the invention
The present invention relates to a system that allows the control of the sanitary state of a place, for example a sanitary room, and a method of determining the time of the next cleaning. The sanitary condition of a place, for example a sanitary or "sanitary" premises of a site (a restaurant, a shopping center, an airport, etc.), may vary according to the number of users, the number of available cleaning agents, cleaning frequency, etc.
The level of cleanliness of the place is often perceived by the users as an indicator of the level of service and quality, and can leave a good or bad impression not only of sanitary, but of the site in general. However, it is sometimes difficult for the owners of the site to maintain the sanitary clean because a large number of users or non-respectful users can degrade quickly, although the sanitary have just been cleaned.
A fixed cleaning program, for example once an hour, may not be sufficient if there are a large number of users in a short period of time (after the arrival of an airplane or bus for example), or may not be necessary if there were few users and / or they did not soil the premises. A variable cleaning program, in which the owner asks the cleaning agents to periodically check the sanitary facilities and clean them only if necessary, is also a waste of time and resources.
US Patent 6,819,238 discloses a signaling system of a need for cleaning. The system includes a panel installed on the sanitary wall, with a push button and text that indicates that by pressing the button, the user can signal that the sanitary needs to be cleaned. The panel is connected to an externally mounted signaling device, the device comprising a light that illuminates once the button is pushed.
On the other hand, such a system has drawbacks, for example bad-faith users can press the button although the toilets do not need to be cleaned, forcing the cleaning agent to move for nothing.
Object and summary of the invention
The main purpose of the present invention is therefore to overcome such drawbacks by proposing a system for monitoring the cleanliness of a place, in particular sanitary facilities, the system comprising: a means of counting the number of entrances to the place, the counting means being able to provide counting data, - at least one panel mounted in the place and comprising: - means for signaling a need for cleaning the place, the signaling means being able to provide a satisfaction data and an indication means for a cleaning agent to indicate the cleaning of the place, the means of indication being able to provide data of the last cleaning comprising at least the date and time of the last cleaning, in wherein the count, cleaning need, and last cleaning data is used by an algorithm to schedule the next cleaning by a cleaning agent.
Preferably, the count and satisfaction data are associated with timestamps that are used by the algorithm.
Also preferably, the counting means also counts the number of exits from the place, the input and output data being time stamped and used to evaluate the average duration of each visit.
The panel may further include a display of the last cleaning data which is updated automatically upon cleaning indication by the cleaning agent via the indicating means.
Similarly, the panel may further include a display of the next cleaning calculated by the algorithm, the display of the next cleaning being adjusted in real time based on the counting data, the need for cleaning, and the last cleaning.
Preferably, the system is connected to a processing unit and configured to send the counting data, the cleaning data, and the last cleaning data to the processing unit, the processing unit making it possible to establish lists of information about one or more panels, their locations, the latest cleaning, the cleaning agents that performed it, the hours and cleaning agents planned for the next cleaning, the cleaning frequencies during the day, the average satisfaction levels , the total user counts per day, the number of times per hour and / or the panel states.
The system may further include a display configured to indicate to users information regarding a cleaning in progress or soon and / or another place to use.
The counting means may comprise two lasers mounted in the frame of a door, each laser having a beam which crosses the length of the door and a sensor in front of the laser and which receives the beam, the order of interruption of the beams indicating the entry or exit of a user.
The cleaning need signaling means may allow users to indicate a level of satisfaction with the cleanliness of the place, which will be used to plan the next cleaning. In this case, the panel advantageously stores an indication of a satisfaction level by a cleaning agent, this indication being used by the algorithm to evaluate the indications by the users. The subject of the invention is also a method for determining the next cleaning of a place equipped with the system as defined above, the method comprising the steps of: counting, by the counting means, the number of persons entering the room; place, - provide counting data, - detect the signaling, by a user, of a need to clean the place via the signaling medium - provide a satisfaction data, - indicate, by a cleaning agent, the cleaning of the place, - provide last cleaning data including at least the date and time of the last cleaning, and - use, by an algorithm, the metering data, the need for cleaning, and the last cleaning to schedule the next cleaning by a cleaning agent.
Preferably, the time remaining before the next cleaning is calculated by an algorithm using a satisfaction coefficient determined according to levels of satisfaction indicated by the users, a coefficient of attendance and the attendance indicated by the counting means.
The estimated time of use of the location can be calculated by an algorithm that uses input and output data provided by the counting means.
A cleanliness capital can be calculated by an algorithm to link the state of cleanliness of the place to the time, in order to calculate in how long the sanitary state will require cleaning. The invention also relates to a computer program stored on a non-transitory support, the program comprising an algorithm configured to implement a work as defined above.
BRIEF DESCRIPTION OF THE DRAWINGS Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings which illustrate an embodiment having no limiting character. In the figures: - Figure 1 shows a front view of a place equipped with a cleaning control system according to one embodiment; FIGS. 2A, 2B show a perspective view of a user counting system and a front view of a satisfaction panel used in the context of the cleaning control system, and FIG. 3 represents a graph. between the time remaining before the next cleaning and the time since the last cleaning.
Detailed description of the invention
Figure 1 shows a front view of a place 1 equipped with a sanitary control system 2. The place 1, here sanitary, includes toilets, basins or sinks, stations for drying hands, etc.. The control system 2 comprises an input / output 3 (here, a gate) equipped with a counting means 4 of the number of user inputs and outputs (described in more detail with reference to FIG. 2A), a satisfaction panel 5 (mounted for example on the wall next to the door), a central processing unit 6 and a display 7 (mounted for example outside the sanitary). A cleaning agent AN is responsible for cleaning the sanitary 1 regularly, according to the time since the last cleaning, the level of satisfaction of cleanliness indicated by users, and the number of users since the last cleaning.
Figure 2A shows a perspective view of the user counting means 4 or "counter". The counter 4 is here a set of two lasers L1, L2 mounted parallel side by side, in particular horizontally in the frame of the door 3, each laser L1, L2 having a respective laser beam F1, F2 which extends transversely in the opening of the door frame and which is picked up by a respective sensor C1, C2, C1, C2 sensors being mounted in front of the lasers L1, L2 on the edges of the door frame 3. Anyone who enters or leaves interrupts the beams, Fl first and then F2 for a person who enters, F2 first and then Fl for a person who goes out. The sensors C1, C2 send interrupt data to the panel 5, which records the interruption order (F1, F2 or F2, F1) associated with a time stamp of the interruption as a count data item.
FIG. 2B is a front view of the satisfaction panel 5, which comprises an instruction zone ZI, at least one means of signaling the level of satisfaction of the cleanliness of the place, here an actuator A (for example, a push button and preferably several buttons A1, A2, A3, A4), and coupled to or comprising means MI indicating passage of a cleaning agent AN.
The panel 5 is preferably connected to the counting means 4 and further comprises a clock and a power source (a battery or a connection to a power supply network). In addition, the panel 5 is strong and resists shocks and tearing, or other forms of vandalism. The panel 5 may furthermore comprise a memory for storing data, a data processing unit, and a data communication means, for example by USB key, by wired or non-wired connection, to the processing unit 6. and / or display 7.
In this embodiment, the ZI instruction zone is a liquid crystal display (LCD) screen which asks users to indicate their level of satisfaction with the cleanliness of the place by pressing on actuators A1 to A4 that are marked Very Satisfied (TS), Moderately Satisfied (MS), Moderately Unsatisfied (MI), Very Dissatisfied (TI), etc. A pressing on one of these actuators is detected by the panel 5, which records it associated with a timestamp of the support as a satisfaction data.
The passage MI indication means allows the cleaning agent to signal its passage and comprises for example 1-wire or "Dallas key" technology, a way to send data with transmission speeds and a cost lower. The passage signaling is detected by the panel 5, which stores the signaling associated with a timestamp of the passage as data of the last cleaning. Upon arrival and / or departure, the cleaning agent reports his passage, which is stored with a timestamp of the passage. The identity of the agent may possibly also be associated with the passage. This data is recorded and stored in the memory of the panel and / or sent to the processing unit 6. In addition, the cleaning agent AN can evaluate the health status of the sanitary 1 and press the corresponding actuator. This evaluation is used to better relativize the user satisfaction data, which are not cleaning professionals and generally have more negative perceptions than reality. After the cleaning agent AN passes, it is assumed that the level of cleanliness / satisfaction is restored to the highest (Very Satisfied).
In one embodiment, the panel 5 further indicates the time of the last cleaning, preferably automatically updated when indicating the passage of the cleaning agent, and the time of the next programmed cleaning, which is modified based on metering and satisfaction data.
In one embodiment, if the user gives a negative opinion (Moderately Unsatisfied or Very Dissatisfied), the time before the next cleaning decreases accordingly, for example by five or ten minutes respectively. The use of metering, satisfaction, and last cleaning data to determine the time of the next cleaning will be explained in more detail below.
The panel 5 may allow other indications and possibilities, for example indicate the number of users since the last cleaning, allow a user to report other information (a medical emergency, a need for toilet paper, etc.), inform users of the average assessment of the venue, put a user in contact with a manager, etc. The processing unit 6 can be connected to several sanitary facilities 1, each being equipped with such a control system 2. The processing unit 6 allows user flow management. For example, a first health unit detects that there has been a significant passage of users and that its sanitary condition has deteriorated while a second sanitary has been little used and remains relatively clean. The display 7 outside the first sanitary can redirect users to the second sanitary. Likewise, a current or future cleaning, a large number of users present at the same time, or any other reason, may be displayed and / or cause the redirection of users. From the processing unit 6, a manager can access information, for example a list of the panels 5 installed on the site and / or a list of cleaning agents AN. In the case of a list of panels 5, the information concerning a designation of the panel, its location, the last cleaning, the agent who performed it, the time and the agent planned for the next cleaning, the frequency cleaning in the day, the average satisfaction level, the total user count per day, the attendance by time slot, the status of the panel in real time (the state of the battery, state of the connection to the means of counting 4 and / or processing unit 6), etc.
The list of cleaning agents AN may include the number of cleanings performed per day, per hour, the time spent for each cleaning (by scoring before and after cleaning), the evaluation of his work, etc.
In addition, it is possible to consult the statistics of work, to display a curve representative of the frequency of cleaning, to display a curve representing the level of overall satisfaction or by site, etc.
Table 1 below gives an example of use of the control system 2 of cleanliness of the place 1. At 12:10, the cleaning agent finishes the cleaning, signals its passage, and the level of satisfaction is given at most Highly Satisfied (4). At 12:15, a person comes in and leaves a moderately satisfied rating (3). At 12:16, two people enter but do not leave evaluation. At 12:18, two people come in and leave a Very Satisfied rating (4). At 12:20, a person comes in and leaves a moderately satisfied rating (3). At 12:21, a person comes in and leaves a Very Dissatisfied rating (1). At 12:25, a person comes in and leaves a moderately satisfied rating (3). At 12:30, a person comes in and leaves a moderately dissatisfied assessment (2). At 12:34, two people enter and leave a moderately dissatisfied assessment (2). At 12:40, a person comes in and leaves a Very Dissatisfied rating (1).
Table 1
The following can be noted in relation to the table: - In Case 2), there was no site visit between the cleaning officer and the person responsible for the assessment. It can be considered that his evaluation of Moderately Satisfied (3) is not completely in line with reality, so we can give less importance (weight) to this evaluation. - In case 6), the above assessment being relatively high (Moderately Satisfied), and the following evaluation being also relatively high (Moderately Satisfied), one can consider that his evaluation of Very Dissatisfied is not quite appropriate (either it is more demanding than the others, or it tries to distort the data voluntarily) we can give less importance (weight) to this evaluation. - Finally, starting from case 8), one can consider that the sanitary state is degraded, several successive evaluations being more and more negative.
Evaluations can also be used to evaluate the AN cleaning agent's work and / or the level of cleanliness required. In the first case, if immediately after the intervention of the agent the level of satisfaction is average, it is necessary to control the work of the agent. In the latter case, it is necessary to increase the cleaning standards of the place in general.
It is possible to have a "temporary" version of the system, which can be used to evaluate user behaviors for a given period of time, for example a few months, in order to establish a suitable cleaning program. Then the system will be removed or replaced by a fixed system. Likewise, a simple count of users, without
place the panel 5 and the rest of the system, can be used at first, in order to establish a first cleaning program, which will be refined over time.
algorithms
Cleanliness Capital
A "net capital" value CP may be used to link sanitary cleanliness 1 to time, including the remaining time TR before the next cleaning, in order to calculate how long the sanitary state will require cleaning. Thus, the most appropriate time for the next cleaning can be determined.
This CP cleanliness capital depends on the time spent TP since the last cleaning, the number of users in the meantime, and the level of satisfaction.
It has been found that in general, the state of cleanliness does not only depend on the number of users in a period of time, but also on the temporal distribution of the number of users. Specifically, a large number of users in a short period of time more quickly sanitizes the sanitary ware compared to the same number of users in a longer period of time. A high influx usually creates a stress to hurry, and users tend to leave drops of water on the sinks, traces of soap, towels that spill out of the trash, and so on.
The purpose here is to allow the control system 2 to be able to determine and self-adjust the initial value of the cleanliness capital CP according to the events, which can vary from one sanitary to another. The algorithm should allow: - to vary in the medium term the initial value (several cleaning cycles necessary for an adjustment); - increase or decrease the value of the CP Cleanliness Fund; and - to take into account the opinion of the cleaning agent AN during his visit.
Consequently, an initial CPO value is determined according to the working habits of the cleaning crews already in service, that is to say the average interval between two passages in the same sanitary, adjusted with an experimental coefficient which will be refined. over uses, as given by the following equation: CP0 = IM x COex [equation 1] where CPo is the initial net capital, IM is a mean range (eg, 60 minutes), and COex is a coefficient experimental, which allows to take into account the variations between two cycles of cleaning. The opinion of the cleaning agent AN upon arrival on site is taken into account in the calculation in order to adjust the initial value of the CP cleanliness capital.
If the agent's evaluation is negative (value 1, 2), his intervention is justified, and the cleanliness capital does not change: CPn + i = CPN [equation 2]
If the evaluation of the cleaning agent AN is positive (value 3, 4), his intervention could have waited because the sanitary facilities are still clean on his arrival.
As a consequence, the CP cleanliness capital can be increased as follows: CPn + i = CPn + (COan x CPn) [Equation 3] in which COan is an evaluation coefficient by the agent that can vary, for example an evaluation "Very good" results in a larger capital increase than a "good" valuation.
The initial value CPo and the coefficients COex, COan will be refined during the use of sanitary so that in the long term the cleanliness capital CP sanitary is very predictable.
Percentage of satisfaction
The PS satisfaction percentage is defined as the sum of the positive opinions (Very Satisfied and Moderately Satisfied) divided by the total number of opinions, given by the following equation: PS = (NEjs + NEMs) / (NEt) x 100 [ equation 4] in which N Ers is the number of Very Satisfied assessments, NEMs is the number of ratings Moderately Satisfied, and NET is the total number of assessments, ie: NET = NEjs + NEms + NEMi + NETi [equation 5] in which NEMi is the number of moderately dissatisfied assessments and NEti is the number of highly dissatisfied ratings.
If the total number of evaluations NEj is equal to 0, one can suspect a possible equipment failure. For example, if the counter 4 indicates that a dozen users have used the sanitary but none has left an evaluation, it is possible that the system has a malfunction. The PS satisfaction percentage can be set to 0% or some other estimated value, and an agent can be sent on-site to verify that the system is working properly.
On the other hand, if the counter 4 indicates that no person has entered since the last cleaning, it is considered that the level of cleanliness is always maximum and the percentage of satisfaction PS is set to 100%.
Likewise, if the system 2 finds that within a time interval there has been no detection of passage, it can trigger a verification procedure, especially if it is necessary during an hour of high traffic (during the day).
Calculation of the duration before passage The following equation makes it possible to calculate, at time N, the remaining time TR at time N + 1 before the next cleaning: TRn + i = TRn - (COps) * (AT) - (COFr) * (Fn + i - FN) [equation 6] in which TRn + i corresponds to the remaining time TR at time N + 1, TRn corresponds to the remaining time TR currently at time N, COps corresponds to a satisfaction coefficient, ΔΤ corresponds to interval between two calculations, COfr corresponds to a coefficient of attendance, Fn + i corresponds to attendance time N + l, and FN corresponds to attendance time N.
The satisfaction coefficient can be equal to 1.5 if the PS satisfaction percentage is less than or equal to 40% (PS <0.4), equal to 1 if the PS satisfaction percentage is between 40 and 70% (0.4 <PS <0.7) and equal to 0.5 if the PS satisfaction percentage is greater than or equal to 70% (0.7 <PS). That is to say, the delay before the next cleaning is shortened compared to the standard delay if the satisfaction is below the standard level, remains unchanged if the satisfaction is in conformity with the standard level, and prolonged if the satisfaction is at above the standard level.
The coefficient of attendance COfr is determined experimentally by an audit at the place of installation.
FIG. 3 shows a calculation graph of the next cleaning PN, with the remaining time TR on the y axis and the time spent TP on the X axis, a DI curve of the programmed duration, and two curves D2, D3 of the modified duration according to the counting data and / or satisfaction. "Negative" data (high attendance and / or negative ratings) decreases the duration before the next cleanup, as shown in D2 and "positive" data (light attendance and / or positive ratings) increase the duration before the next cleanup as shown in curve D3.
Here, the value of the remaining time is updated every five minutes (ΔΤ = 5 minutes), but it can be updated more or less frequently.
For the practical examples that follow, the COFR attendance coefficient and attendance (Fn + i - FN) are not taken into account, for reasons of simplicity. In general, the coefficient of attendance COfr will not vary greatly from one cycle to another, while the attendance varies. The coefficient of attendance COfr makes it possible to give more or less importance to the attendance parameter (Fn + i -Fn).
Depending on the location, the time or the users, the coefficient can be modified so that the attendance is more or less important on the decrease of the capital of cleanliness. For the same place, depending on the day, time, and other factors, the passage of a number of users in the sanitary will not have the same impact. In order to be able to predict the number of times between time N and time N + 1, it will be necessary to have enough recorded historical data to be able to carry out a statistical analysis of the events and thus to foresee at best the future attendance. In time spent 0 TP = 0, the toilets have just been cleaned, and there is 30 minutes TRo = 30 before the next scheduled passage. The next remaining time TR at 5 minutes (TP = 5) equals: TR5 = 30 - (1) * (5) = 25 minutes
At the time spent TP = 5 minutes, the satisfaction percentage is 65% which gives: TRio = 25 - (1) * (5) = 20 minutes
At time T = 10 minutes, the satisfaction percentage is at 50% which gives: TRis = 20 - (1) * (5) = 15 minutes From 15 minutes, two hypotheses are shown, D2, D3. In the case of D2, it is considered that the health state is deteriorating, with a satisfaction percentage of less than 40%. TR20 = 15 - (1.5) * (5) = 7.5 minutes, and then TR25 = 7.5 - (1.5) * (5) = 0 minutes.
The next cleaning is then scheduled to occur at 25 minutes, instead of 30 minutes.
In the case of D3, it is considered that the sanitary condition improves, for example a user who has picked up paper towels and threw them in the trash, with a satisfaction percentage higher than 70%. TR20 = 15 - (0.5) * (5) = 12.5 minutes and so on, with a total final delay of 45 minutes between cleanings.
We can therefore compare the calculation of time before the next transition to a predictive management of supply, regardless of the field of application, the principle is identical.
Calculation of the intervention period
The response time of an AN cleaning agent can be calculated in order to schedule the intervention at the best possible time, taking into account the time required to arrive on site. In this way it can be prevented as late as possible, but early enough to be operational when the CP cleanup capital is exhausted, before, or after.
To do this, the initial deadline is set to correspond to a certain percentage of the initial capital.
Do = COcp * CPo where Do is the initial delay, COcp is a CP clean capital ratio, and CPo is the initial cleanliness capital. In practice, the COcp coefficient is between 0% and 15%. For example, if the capital CPo is equal to five hours (300 minutes) and the coefficient COcp is equal to 5%, the delay is = 0.05 * 300 = 15 minutes. The cleaning officer AN is warned that in fifteen minutes the sanitary state will no longer be acceptable, and the actual time of intervention is calculated. The delay C is recorded, and over time an average is calculated with the initial value, which makes it possible to obtain a more and more precise delay. The standard deviation of all measured values is determined to take into account the hazards that are or may occur during the clean-up rounds.
Two different ways of estimating the delay can be used, each having advantages and disadvantages depending on the type of place to be equipped, the teams present on site and the overall use of the sanitary in question:
Dn + i = AVG (D) ± o [equation 7] in which σ (sigma) corresponds to the standard deviation. To arrive rather early, sigma is added to the average, to arrive rather late, sigma is cut off from the average. The following equation shows the average response time of the cleaning agent AN since system commissioning (or reset): AVG (Dn) = 1 / N * 1D k = o to n [equation 8] The following equation indicates the standard deviation of all the readings: σΝ = V (Zk = o to n (DK - AVG (Dn)) 2 [equation 9]
In this way the value is adjusted during the use of the panel 5 so as to be as optimal as possible. Thus, an AN cleaning agent will be notified at the most convenient time, and productivity will be improved by eliminating unnecessary waste of time as much as possible. In addition, the toilets will not remain long in a state of too high dirt, which guarantees a high level of service.
It can be noted that in this approach, the response time is considered to follow a law of normal distribution. Nevertheless, another law can be used to improve the estimation of the delay.
In addition, the response time may take into account other data, for example, if the cleaning agent AN is currently working in another facility, the time it will take to get to the new site, and, if it is paused, the duration of it, etc.
In addition, the calculation program can also take into account the level of satisfaction to program the intervention. For example, if the level of satisfaction is very low, it may be considered that it will take longer to clean it.
Calculation of attendance by interval
Attendance to health facilities can be calculated by time interval, that is to say for example for one day (24 hours) and in increments of one hour.
In the following example, a table is created including all the values of the day (or of the measurement duration) distributed according to an index that indicates the interval in question, a counter that corresponds to the measured attendance and a timer that corresponds to the duration of the remaining interval.
In a first initialization step, shown here, the indices are set to zero, a table (Table 2 below - Note: The tables below show only 6 intervals of 4 hours each, for the sake of simplicity) is created comprising n elements according to the number of intervals. The counts measured for each interval are also set to zero, and the interval times are set to 4 hours (240 minutes). (It is noted that the interval times are not necessarily equal, but may be longer or shorter depending on the different periods of the day, for example an interval of 22h to 8h, and then intervals of two hours.)
Counter = 0
Table 2
In a second measuring step, the table (Table 3 - below) is updated according to the data of the counting means 4. As soon as an interruption relating to the movement is detected (either the inputs or the outputs according to FIG. configuration and installation of the system), the counter value is increased = counter +1. Once the timer of the remaining interval expires, the interval is completed, and the counter value is recorded in the "Measured Frequency" column.
Table 3 shows a finished index 1, with 5 matches, and 0 minutes remaining. The index is increased to 2, the counter is counting the interrupts again, 200 minutes remaining in the interval. In summary, the value of the counter for the newly ended interval is recorded relative to the corresponding interval of the table, the counter value is reset, the index is increased to move to the next interval, the timer is restarted and the counter starts again.
Counter = 6
Table 3
As shown in Table 4 below, the measurement period, in this case 24 hours, is over. The table is fully informed. The index is increased from 6 to 7, which is greater than the maximum size (index = 6) of the table, so the table is saved and the index is reset.
Counter = 0__
Table 4
A circular buffer can be implemented to save data in a cyclical manner, such as attendance by time slot.
Estimated duration of use of sanitary facilities
The average time of use of the toilets, even approximately, can be estimated thanks to an algorithm.
To do this it is necessary to record all the movements made in the sanitary and know the time stamp from the beginning of the cleaning cycle. The inputs / outputs and their time stamps relative to the start of the cleaning cycle are correlated to have a value which represents an average duration which will be refined throughout the commissioning of the system because the more the number of elements is high, the more the value expressed will be close to the average time of use. The algorithm is divided into two parts, the first corresponding to the tabular recording of all the input and output events with their timestamps. Two counters are used: one for the inputs and one for the exits as well as a timer which starts at the beginning of the cleaning cycle, when the capital of cleanliness is at the highest. When an input or an output is detected, the value of the timer at the time of the interruption is read and stored in the box of the table having the index of the current counter of inputs or outputs. The input or output counter is incremented and once the table is filled, the cleaning cycle is finished or simply that there are enough elements for a consistent average to be calculated, the average duration is calculated.
The number of elements of the array to be taken into account is determined and a temporary array including the time difference between each input and each output is obtained:
Ai = | Si - Ei | [Equation 10] wherein Si is the output corresponding to an index i, Ei is the input corresponding to an index i, and Ai (delta i) is the difference between the two.
The k-th percentile (in principle k is between 50 and 98) of the temporary array is calculated, which eliminates values too far from the overall mean, and the value obtained is multiplied by a coefficient calculated experimentally to obtain the estimated value of the average usage time. DEU = COcr * Akth percentile [equation 11] where DEU is the estimated duration of use and COcr is a correction coefficient.
It will be understood by those skilled in the art that the described invention can be implemented differently, with different algorithms used, means for storing and / or processing data, etc.
In other embodiments, the instruction zone ZI of the panel 5 may be a touch screen incorporating the actuators, instructions written on a sticker or directly on the panel, etc. In addition, the panel 5 does not necessarily offer a choice of several levels of satisfaction, but can simply ask users to signal a need for cleaning by pressing an actuator marked "Yes".
The indication means MI for the passage of a cleaning agent AN may be a keypad for entering an identifier code, a reader of a contactless card carried by the agent, a biometric reader (fingerprints, etc.), etc. .
Instead of a laser device as described in connection with FIG. 2B, any other means for counting the inputs / outputs can be set up, for example a pressure carpet, a camera that counts automatically (without requiring the presence of an operator), etc.
In addition, the satisfaction and count data are not necessarily time stamped. The system can simply take into account the number of entries, the satisfaction level, and the time since the last cleaning to schedule the next cleaning, without the need for the timestamp of each event.
In addition, it is not necessary that the counting means count the number of outputs.
Finally, instead of a panel 5 which itself comprises a memory and receives data from the counter, the counter 4 can send the counting data to the processing unit 6, in real time, which allows the processing unit to perform the time stamp and the analysis, either in a deferred manner.
权利要求:
Claims (15)
[1" id="c-fr-0001]
1. Control system (2) for the cleanliness of a place (1), including toilets, comprising: - a counting means (4) of the number of entries in the place, the counting means being able to provide counting data, - at least one panel (5) mounted in the place and comprising: - a signaling means (A, Al, A2, A3, A4) of a need to clean the place, the signaling means being capable of providing a satisfaction data, - an indication means (MI), for a cleaning agent to indicate the cleaning of the place, the means of indication being able to provide data of the last cleaning comprising at least the date and the time of the last cleaning, and - a memory for storing the count data, the need for cleaning, and the last cleaning and a processing unit of said data for programming, by means of an algorithm, the next cleaning by a cleaning agent (AN).
[2" id="c-fr-0002]
The system of claim 1, wherein the counting and satisfaction data is associated with timestamps that are used by the algorithm.
[3" id="c-fr-0003]
3. System according to one of claims 1 and 2, wherein the counting means (4) also counts the number of outputs of the place, the input and output data being timestamped and used to evaluate the average duration of each visit.
[4" id="c-fr-0004]
The system according to any one of claims 1 to 3, wherein the panel (5) further comprises a display of the last cleaning data which is updated automatically during the cleaning indication by the cleaning agent. cleaning (AN) via the indicating means (MI).
[5" id="c-fr-0005]
5. System according to any one of claims 1 to 4, wherein the panel (5) further comprises a display of the next cleaning calculated by the algorithm, the display of the next cleaning being adjusted in real time according to the data. counting, the need for cleaning and the last cleaning.
[6" id="c-fr-0006]
The system according to any one of claims 1 to 5, wherein the system is connected to a processing unit and configured to send the counting data, the need for cleaning and the last cleaning to the processing unit (6). ), the processing unit making it possible to establish lists of information concerning one or more panels, their locations, the last cleaning operations, the cleaning agents that carried out it, the hours and cleaning agents planned for the next ones cleanings, cleaning frequencies in the day, average satisfaction levels, total user counts per day, attendance by time slot and / or panel statuses.
[7" id="c-fr-0007]
The system of any one of claims 1 to 6, further comprising a display configured to indicate to users information regarding a current or future cleaning and / or other location to be used.
[8" id="c-fr-0008]
8. System according to any one of claims 1 to 7, wherein the counting means (4) comprises two lasers (L1, L2) mounted in the frame of a door (3), each laser having a beam (Fl , F2) which passes through the length of the door and a sensor (C1, C2) in front of the laser and which receives the beam, the order of interruption of the beams indicating the entry or exit of a user.
[9" id="c-fr-0009]
9. System according to any one of claims 1 to 8, wherein the signaling means (A, Al, A2, A3, A4) of the cleaning need allows users to indicate a level of satisfaction with the cleanliness of the place. , which will be used to plan the next cleaning.
[10" id="c-fr-0010]
The system of claim 9, wherein the panel (5) stores an indication of a satisfaction level by a cleaning agent, which indication is used by the algorithm to evaluate the indications by the users.
[11" id="c-fr-0011]
11. A method of determining the next cleaning of a place equipped with the system according to any one of claims 1 to 10, comprising the steps of: counting, by the counting means, the number of people entering the place, - provide a metering data, - detect the signaling, by a user, of a need for cleaning the premises via the signaling means, - provide a satisfaction data, - indicate, by a cleaning agent, the cleaning of the place - provide a last cleaning data including at least the date and time of the last cleaning, and - use, by an algorithm, the metering data, the need for cleaning and the last cleaning, to schedule the next cleaning by a cleaning agent (AN).
[12" id="c-fr-0012]
12. The method of claim 11, wherein the remaining time (TR) before the next cleaning is calculated by an algorithm using a satisfaction coefficient (COps) determined according to levels of satisfaction indicated by users, a coefficient of attendance ( COfr) and the attendance indicated by the counting means (4).
[13" id="c-fr-0013]
The method according to one of claims 11 and 12, wherein the estimated time of use of the location is calculated by an algorithm that uses input and output data provided by the counting means (4).
[14" id="c-fr-0014]
14. A method according to any one of claims 11 to 13, wherein a cleanliness capital (CP) is calculated by an algorithm to link the state of cleanliness of the place (1) to time, to calculate in how long sanitary conditions will require cleaning.
[15" id="c-fr-0015]
15. Computer program stored on a non-transitory support, the program comprising an algorithm configured to implement a work according to any one of claims 11 to 14.
类似技术:
公开号 | 公开日 | 专利标题
EP3151177A1|2017-04-05|System for monitoring the sanitary status of a site and method for determining the next cleaning
US7778937B2|2010-08-17|Systems and methods for predicting wait time for service transactions
US10529219B2|2020-01-07|Hand hygiene compliance monitoring
Glaze et al.2002|Probation and parole in the United States, 2001
US10430737B2|2019-10-01|Restroom convenience center
KR20160143701A|2016-12-14|A system and method for monitoring food waste
WO2006135922A3|2007-08-16|Method for assessing improvement in hand hygiene practices
US20150177917A1|2015-06-25|Toilet management systems, methods, and techniques
WO2008013756A2|2008-01-31|Bank queue monitoring systems and methods
CN110027946A|2019-07-19|Forecast elevator passenger traffic
JP4575102B2|2010-11-04|Game machine data management device
CN106357445B|2019-05-31|A kind of user experience monitoring method and monitoring server
JP2011090498A|2011-05-06|Operation load adjustment method and operation load adjustment device corresponding to operation situation
FR2856166A1|2004-12-17|System/equipment e.g. heating equipment, state adjustment and/or abnormal situation e.g. accident, detection system, has comparison unit comparing presence estimator value and indicator of individual effective presence to decide action
de Véricourt et al.2009|Judgement accuracy under congestion in service systems
US20110077075A1|2011-03-31|Method and system for parimutuel wagering on outcomes
WO2006122057A2|2006-11-16|Managing customer service staffing loads in the context of in-person transactions
FR2743651A1|1997-07-18|METHOD AND INSTALLATION FOR MONITORING PEOPLE IN A HOUSE
JP2011060054A|2011-03-24|Conference time management apparatus and conference time management method
Lahiri et al.2009|On the use of density forecasts to identify asymmetry in forecasters’ loss function
KR20100041378A|2010-04-22|Water-tissue provide system through advertisement seeing and hearing
US20210150825A1|2021-05-20|Generating people counts based on dispenser usage
EP3732635A1|2020-11-04|System and method for maintenance management during a mass gathering
Diab et al.2014|Extraboard team sizing: An analysis of short unscheduled absences among regular transit drivers
Camiat2018|Optimisation d'Horaires Axée sur la Productivité des Médecins Aux Urgences
同族专利:
公开号 | 公开日
US20170091691A1|2017-03-30|
BR102016022156A2|2017-08-08|
EP3151177A1|2017-04-05|
FR3041800B1|2017-11-24|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US6255946B1|1999-03-22|2001-07-03|Jae Han Kim|System for detecting an object passing through a gate|
US20090092008A1|2003-05-21|2009-04-09|Hurley Corporation|Apparatus for diarizing janitorial service|
US7439857B1|2006-04-10|2008-10-21|Bodenhamer Jr William|Bathroom servicing request communication devices and method|
US6819238B2|2002-11-26|2004-11-16|Edwards Systems Technology, Inc.|Method and apparatus for signaling service needs for a public restroom|SG10201707635WA|2017-09-15|2019-04-29|Smartclean Tech Pte Ltd|Methods and system design for predictive cleaning using artificial intelligence based smart alerting|
SG10201808649XA|2018-02-12|2019-09-27|Rigel Tech S Pte Ltd|A SYSTEM AND METHOD FOR TOILET ROOM MANAGEMENT EMPLOYING IoT SENSORS|
CN110766821A|2019-10-29|2020-02-07|深圳市律远汇智科技有限公司|A fingerprint identification equipment that is used for high accuracy of attendance|
法律状态:
2016-09-23| PLFP| Fee payment|Year of fee payment: 2 |
2017-03-31| EXTE| Extension to a french territory|Extension state: PF |
2017-03-31| PLSC| Publication of the preliminary search report|Effective date: 20170331 |
2018-03-01| PLFP| Fee payment|Year of fee payment: 3 |
2019-02-26| PLFP| Fee payment|Year of fee payment: 4 |
2019-09-18| PLFP| Fee payment|Year of fee payment: 5 |
2021-06-11| ST| Notification of lapse|Effective date: 20210506 |
优先权:
申请号 | 申请日 | 专利标题
FR1559226A|FR3041800B1|2015-09-30|2015-09-30|SYSTEM FOR CONTROLLING THE HEALTH CONDITION OF A PLACE AND METHOD OF DETERMINING THE NEXT CLEANING|FR1559226A| FR3041800B1|2015-09-30|2015-09-30|SYSTEM FOR CONTROLLING THE HEALTH CONDITION OF A PLACE AND METHOD OF DETERMINING THE NEXT CLEANING|
BR102016022156-0A| BR102016022156A2|2015-09-30|2016-09-26|SYSTEM OF CONTROL OF THE SANITARY STATE OF A SITE AND PROCESS OF DETERMINATION OF THE NEXT CLEANING|
EP16190835.5A| EP3151177A1|2015-09-30|2016-09-27|System for monitoring the sanitary status of a site and method for determining the next cleaning|
US15/281,164| US20170091691A1|2015-09-30|2016-09-30|System for controlling the sanitary status of premises and method for determining the next cleaning|
[返回顶部]