专利摘要:
The present invention relates to methods for making an elastomeric-silica composite with a destabilized silica dispersion, as well as elastomer-silica composites made from these methods. The advantages obtained with the processes are further described.
公开号:FR3038899A1
申请号:FR1656792
申请日:2016-07-13
公开日:2017-01-20
发明作者:Jincheng Xiong;Green Martin C;Williams William R;Dimitry Fomitchev;Adler Gerald D;Mcdonald Duane G;Ron Grosz
申请人:Cabot Corp;
IPC主号:
专利说明:

*N-(1,3-diméthylbutyl)-N’-phényle-p-phénylènediamine (Flexsys, St. Louis, MO) ‘‘composant actif principal: S-(3-(triéthoxysilyl)propyl)octanethioate (Momentive, Friendly, WV) *“ DiphénylGuanidine (Akrochem, Akron, OH) ““N-tert-Butylbenzothiazole-2-sulphénamide (Emerald Performance Materials, Cuyahoga Falls, OH) NR = caoutchouc naturel S = comme indiqué
Tableau B
[0111] La vulcanisation a été effectuée dans une presse chauffée réglée à 150DC pendant une durée déterminée par un rhéomètre à caoutchouc traditionnel (c'est-à-dire, T90 + 10 % de T90, où T90 est la durée pour obtenir 90 % de vulcanisation).
[0112] Propriétés des composés de caoutchouc/silice.
[0113] Les propriétés de traction des échantillons vulcanisés (T300 et T100, allongement de rupture, résistance à la traction) ont été mesurées selon la norme ASTM D-412. La tangente delta 60° a été déterminée en utilisant un balayage sous contrainte dynamique en torsion de 0,01 % à 60 % à 10 Hz et 60 °C. La tangente Umax a été prise comme valeur maximale de la tangente DDdans cette plage de contraintes.
[0114] Exemple 1.
[0115] Une bouillie de silice avec 27,8% en poids de silice Zeosil® 1165 a été préparée comme décrit ci-dessus pour la méthode de test du potentiel zêta de la bouillie. La bouillie a ensuite été diluée en utilisant soit de l'eau désionisée, soir un surnageant obtenu par l'ultracentrifugation des 27,8 % en poids de bouillie pour fabriquer une série de bouillies de silice à différentes concentrations de silice. Le potentiel zêta des différentes bouillies de silice a été mesuré pour montrer la relation entre la concentration de silice dans la bouillie et le potentiel zêta de la bouillie. Le potentiel zêta de la bouillie de silice, comme indiqué dans le tableau 1, semble dépendre de la concentration de silice lorsque la bouillie de silice est fabriquée en utilisant de l'eau désionisée. En revanche, comme indiqué dans le tableau 2, lorsque la bouillie a été diluée en utilisant le surnageant obtenu par l'ultracentrifugation des 27,8 % en poids de bouillie liquide, le potentiel zêta reste globalement le même aux différentes concentrations de silice.
Tableau 1
Potentiel zêta de la bouillie de silice fabriquée en utilisant de l'eau désionisée
Tableau 2
Potentiel zêta de la bouillie de silice obtenue par la dilution de 27,8 % en poids de bouillie de silice en utilisant le surnageant des 27,8 % en poids de bouillie de silice.
[0116] Ce résultat montre qu'une augmentation de l'amplitude du potentiel zêta lorsque de telles bouillies de silice sont diluées avec de l'eau désionisée est principalement due à la réduction de la force ionique de la bouillie. Les ions de la bouillie de silice sont supposés provenir des sels résiduels présents dans la silice issue du procédé de fabrication des particules de silice. L'amplitude élevée du potentiel zêta des bouillies de silice (toujours supérieur à 30 mV) indique que la silice a une stabilité électromagnétique élevée dans la bouillie.
[0117] Exemple 2.
[0118] L'effet de l'ajout de sel ou d'acide à différentes concentrations à des bouillies de silice sur le potentiel zêta de ces bouillies est décrit dans le tableau 3. Les bouillies ont été préparées dans de l'eau désionisée par la méthode de test Slurry Zêta Potential décrite ci-dessus. Les données résumées dans le tableau 3 décrivent la dépendance du potentiel zêta des bouillies liquides de silice et des bouillies liquides de silice déstabilisée sur la concentration de silice, la concentration de sel et la concentration d'acide. L'ajout de sel ou d’acide à la bouillie de silice réduit l'amplitude du potentiel zêta et ainsi la stabilité de la bouillie de silice. Comme indiqué dans le tableau 3, le potentiel zêta dépend principalement de la concentration de sel ou d'acide dans la bouillie ou la bouillie déstabilisée et non de la concentration de silice.
Tableau 3
Potentiel zêta de la bouillie déstabilisée de silice à différentes concentrations de bouillie, concentrations de sel et concentrations d'acide.
ND = non déterminé.
[0119] Les résultats indiqués dans le tableau 3 décrivent la dépendance du potentiel zêta des bouillies de silice et des bouillies de silice déstabilisée sur la concentration d'acide acétique et la concentration de silice. Les données montrent que les valeurs du potentiel zêta dépendent plus de la concentration d'acide que de la concentration de silice. Une relation similaire entre le potentiel zêta et la concentration d'acide et la concentration de silice est observée avec l'acide formique. À une concentration donnée, l'acide formique réduit plus l'amplitude du potentiel zêta que l'acide acétique. Comme indiqué dans le tableau 3, une combinaison d'acide formique et de chlorure de calcium a été efficace pour réduire l'amplitude du potentiel zêta.
Les résultats indiqués dans le tableau 3 montrent que la stabilité des particules de silice dans la bouillie peut être efficacement réduite par l'ajout d'agents de déstabilisation, comme un acide ou un sel ou une combinaison d'acide et de sel. Des résultats similaires ont été obtenus avec le nitrate de calcium et l'acétate de calcium.
[0120] Exemple 3.
[0121] Dans cet exemple, l'importance de la déstabilisation de la dispersion des particules de silice avant la mise en contact la dispersion de silice avec le latex d'élastomère a été établie. Plus précisément, quatre expériences ont été réalisées en utilisant l'appareil de mélange (c) de la figure 1 doté de trois entrées (3, 11, 14) pour introduire jusqu'à trois fluides dans une zone de réaction confinée (13), de sorte qu'un fluide percute les autres fluides selon un angle de 90 degrés par un jet à grande vitesse à une vitesse comprise de 15 à 80 m/s (voir figure 1 (c)). Dans trois des quatre expériences, la silice a été concassée comme décrit ci-dessus dans le procédé B et de l'acide acétique a été éventuellement ajouté comme décrit dans les exemples 3-A à 3-D ci-dessous. La bouillie ou la bouillie déstabilisée a été ensuite mise sous pression de 100 à150 psig et introduite dans la zone de réaction confinée par l'entrée (3) à un débit volumétrique de 60 litres par heure (l/h) de manière à ce que la bouillie ou la bouillie déstabilisée soit introduite sous forme de jet à grande vitesse à 80 m/s dans la zone de réaction. Simultanément, un concentré de latex de caoutchouc naturel (latex 60CX12021, teneur en caoutchouc sec de 31 % en poids, de Chemionics Corporation, fallmadge, Ohio, dilué dans de l'eau désionisée) a été introduit par la seconde entrée (11) par une pompe péristaltique à un débit volumétrique de 106 l/h et à une vitesse de 1,8 m/s. Ces débits ont été sélectionnés et les flux ont été ajustés pour obtenir un produit de composite élastomère comprenant 50 phr (parties par cent parties en poids de caoutchouc sec) de silice. La bouillie de silice ou la bouillie de silice déstabilisée et le latex ont été mélangés en combinant le flux de latex à vitesse réduite et le jet à grande vitesse de bouillie de silice ou de bouillie de silice déstabilisée entraînant le flux de latex dans le jet de bouillie ou de bouillie déstabilisée de silice au point d'impact. La cadence de production (sur une base de matière sèche) a été réglée à 50 kg/h. Les rapports spécifiques réels silice-caoutchouc dans les composites de caoutchouc obtenus avec le procédé sont répertoriés dans les exemples ci-dessous. L'analyse TGA a été effectuée après le séchage selon le procédé du procédé B.
[0122] Exemple 3-A: [0123] Premier fluide : Une dispersion aqueuse déstabilisée de 25 % en poids de silice avec 6,2 % en poids (ou M) d'acide acétique a été préparée comme décrit dans le procédé B ci-dessus. Le potentiel zêta de la bouillie déstabilisée était de -14 mV, ce qui indique que la bouillie était déstabilisée de façon significative par l'acide. La bouillie déstabilisée de silice a été pompée en continu sous pression dans la première entrée (3).
[0124] Deuxième fluide : Du latex d'élastomère a été introduit dans la zone de réaction par la seconde entrée (11).
[0125] Le premier fluide a percuté le deuxième fluide dans la zone de réaction.
[0126] Résultats : Une inversion de phase liquide-solide s'est produite dans la zone de réaction lorsque la bouillie déstabilisée de silice et le latex ont été intimement mélangés par l'entraînement du flux de latex à vitesse lente dans le jet à grande vitesse de bouillie déstabilisée de silice. Pendant le procédé d'entraînement, la silice a été intimement distribuée dans le latex et le mélange a coagulé en une phase solide qui contenait de 70 % en poids à 85 % en poids d'eau. De ce fait, un flux d'une phase continue de caoutchouc solide contenant de la silice en forme de ver ou de corde a été obtenu à la sortie de la zone de réaction (15). Le composite était élastique et pouvait être étiré jusqu'à 130 % de la longueur initiale sans rompre. L'analyse TGA sur le produit séché a montré que le composite élastomère contenait 58 phr de silice.
[0127] Exemple 3-B : [0128] Premier fluide : Une dispersion aqueuse déstabilisée de 25 % en poids de silice avec 6,2 % en poids d'acide acétique a été préparée selon le procédé B décrit ci-dessus. Le potentiel zêta de la bouillie était de -14 mV, ce qui indique que la bouillie était déstabilisée de façon significative par l'acide. La bouillie déstabilisée de silice a été pompée en continu sous pression dans la première entrée (3).
[0129] Deuxième fluide : Du latex d'élastomère a été introduit dans la zone de réaction par la seconde entrée (11).
[0130] Troisième fluide : De l'eau désionisée a été également injectée dans la zone de réaction par la troisième entrée (14) à un débit volumétrique de 60 l/h et une vitesse de 1,0 m/s.
[0131] Les trois fluides sont entrés en contact et se sont percutés dans la zone de réaction.
[0132] Résultats : Une inversion de phase liquide-solide s'est produite dans la zone de réaction et une phase continue de caoutchouc solide ou semi-solide contenant de la silice en forme de corde ou de ver a été obtenue par la sortie de la zone de réaction. Une quantité significative de liquide trouble contenant de la silice et/ou du latex s'est écoulée par la sortie (7) avec la phase continue de caoutchouc solide ou semi-solide contenant de la silice. La phase continue de caoutchouc contenant de la silice contenait environ 70 % en poids à environ 75 % en poids d'eau sur la base du poids du composite. L'analyse TGA sur le produit séché a montré que le composite élastomère contenait 44 phr de silice. Ainsi, l'ajout d'eau par la troisième entrée a eu un impact négatif sur le procédé, donnant lieu à un produit ayant une teneur plus faible en silice (44 phr contre 58 phr dans l'exemple 3-A) et à des déchets importants.
[0133] Exemple 3-C : [0134] Premier fluide : Une solution aqueuse d'acide acétique à 10 % en poids sans silice a été préparée. Une alimentation continue de fluide acide a été pompée avec une pompe péristaltique à un débit volumétrique de 60 l/h par la troisième entrée (14) dans la zone de réaction à une vitesse de 1,0 m/s au moment de l'entrée dans la zone de réaction.
[0135] Deuxième fluide : Du latex d'élastomère a été introduit dans la zone de réaction par la deuxième entrée (11) avec une pompe péristaltique à une vitesse de 1,8 m/s et à un débit volumétrique de 106 l/h.
[0136] Les deux fluides sont entrés en contact et se sont percutés dans la zone de réaction.
[0137] Résultats : Une phase collante de caoutchouc solide en forme de ver a été formée. L'analyse TGA sur le produit séché a montré que la phase de caoutchouc solide ne contenait pas de silice.
[0138] Exemple 3-D : [0139] Premier fluide : Une dispersion aqueuse déstabilisée de 25 % en poids de silice sans acide acétique a été préparée selon le procédé B décrit ci-dessus. La bouillie de silice a été pompée sous pression continue et introduite par la première entrée (3) à un débit volumétrique de 60 l/h et à une vitesse de 80 m/s au point d'entrée dans la zone de réaction. Le potentiel zêta de la bouillie était de -32 mV, ce qui indique que la silice était dispersée de façon stable dans la bouillie. Ainsi, dans cet exemple 3-D, la bouillie de silice n'a pas été déstabilisée par l'ajout d'acide à la bouillie avant l'impact avec le fluide de latex.
[0140] Deuxième fluide : Du latex d'élastomère a été introduit dans la zone de réaction par la deuxième entrée (11) avec une pompe péristaltique à une vitesse de 1,8 m/s et à un débit volumétrique de 106 l/h.
[0141] Troisième fluide : Après une période initiale de flux continu des premier et second fluides, une solution aqueuse d'acide acétique à 10 % en poids a été injectée par la troisième entrée (14) dans la zone de réaction à un débit volumétrique passant de 0 à 60 l/h et à une vitesse passant de 0 à 1,0 m/s. Les trois fluides se sont percutés et mélangés dans la zone de réaction.
[0142] Résultats : Initialement, avant l'injection d'acide, aucune phase continue de caoutchouc contenant de la silice ne s'était formée et seul un liquide trouble était observé par la sortie (15) de la zone de réaction. Lors de l'injection d'acide dans la zone de réaction (13), une phase continue de caoutchouc semi-solide contenant de la silice a commencé à se former à mesure de l'augmentation du flux d'acide acétique par la troisième entrée de 0 à 60 l/h. Les matériaux s'écoulant par la sortie contenaient encore une quantité significative de liquide trouble, ce qui indique une quantité importante de déchet. L'analyse TGA du produit sec a montré que la phase continue de caoutchouc contenant de la silice formée dans ce cycle expérimental ne contenait que 25 phr de silice. Compte tenu des conditions de production sélectionnées et de la quantité de silice utilisée, si la silice avait été incorporée de façon importante dans la phase de caoutchouc contenant de la silice, comme dans l'exemple 3-A, la silice aurait donné lieu à une phase de caoutchouc contenant de la silice comprenant un excès de 50 phr de silice.
[0143] Ces expériences montrent que la bouillie de silice doit être déstabilisée avant l'impact initial avec le latex d'élastomère afin d'obtenir la phase continue de caoutchouc contenant de la silice souhaitée. L'exemple 3-A a permis d'obtenir ce que l'on peut considérer comme une capture efficace de la silice dans la phase continue de caoutchouc solide contenant de la silice, tandis que l'exemple 3-D illustre un procédé comparatif utilisant une bouillie de silice initialement stable et ayant une efficacité inférieure de moitié à l'efficacité de l'exemple 3-A utilisant une bouillie de silice initialement déstabilisée. L'observation d'un liquide trouble quittant le point de sortie de la zone de réaction indique un mélange insuffisant de la silice avec le latex et une proportion inférieure de silice capturée dans la phase continue de caoutchouc. En théorie, dans les procédé comparatifs 3B et 3D, la déstabilisation des fluides a été insuffisante pendant le mélange. Les résultats indiquent en outre que la capture insuffisante de la silice s'est produite lorsqu'un fluide supplémentaire a été ajouté alors que le premier fluide et le deuxième fluide étaient en train de se mélanger ; de telles conditions de procédé génèrent des quantités indésirables de déchet. 0144]Exemple 4.
[0145] Dans ces exemples, le procédé selon différents modes de réalisation de l'invention a été exécuté dans l'appareil illustré sur la figure 1 ((a) ou (b)) dans différentes conditions comme décrit dans le tableau 4, en utilisant le procédé A ou le procédé B décrit ci-dessus. Les conditions de fonctionnement ont été sélectionnées pour obtenir une phase continue de caoutchouc solide ou semi-solide contenant de la silice avec les rapports silice-caoutchouc indiqués dans le tableau 4 (« plant » = de plantation).
Tableau 4
S/0 = sans objet a. Les exemples 4-6 et 4-22 ont utilisé de la silice Agilon 454 (silice précipitée traitée avec des agents de couplage silane, fournis par PPG Industries Inc.). Les exemples 4-24 et 4-32 ont utilisé de la silice Zeosil® 175GR (silice conventionnelle précipitée de Solvay S.A.). Les exemples 4-25 et 4-33 ont utilisé de la silice Zeosil® Premium 200MP (HDS avec une grande surface de contact de 200 m2/g, fournie par Solvay S.A.). L'exemple 4-41 a utilisé de la silice Hi-Sil® 243LD (fournie par PPG Industries Inc, et l'exemple 4-42 a utilisé de la silice Agilon 400 (fournie par PPG Industries Inc). Dans tous les autres exemples, de la silice précipitée ZEOSIL® Z1165 MP a été utilisée. L'exemple 4-38 comprenait 1,5 % en poids (sur la base du poids total de bouillie) de noir de carbone N134 (Cabot Corporation) dans de la bouillie de silice. b. Les valeurs du potentiel zêta ont été estimées par interpolation des courbes déterminées expérimentalement de la dépendance du potentiel zêta par rapport à la concentration du sel ou de l'acide des bouillies de la même qualité de silice.
Tableau 4
(suite)
ND = non déterminé, S/O = sans objet. c. La vitesse de la buse d'entrée correspond à la vitesse de la bouillie de silice qui passe dans une buse (3a) au niveau de la première entrée (3) vers la zone de réaction (13) avant d'entrer en contact avec le latex. d. Les débits de la bouillie et du latex correspondent aux débits volumétriques en l/heure de la bouillie de silice et du latex liquide, respectivement, lorsqu’ils sont introduits dans la zone de réaction.
[0146] Dans tous les exemples, à l'exception des exemples 4-13 et 4-14, les conditions de fonctionnement sélectionnées ont permis d'obtenir une phase continue de caoutchouc solide contenant de la silice sous une forme cylindrique grossière. Le produit contenait une quantité importante d'eau, était élastique et compressible, et a expulsé l'eau et les solides retenus après compression manuelle. Le matériau solide pouvait être étiré, par exemple, le matériau de l'exemple 4-17 pouvait être étiré ou allongé de 130 à 150 % de sa longueur d'origine sans se rompre. Les particules de silice étaient uniformément distribuées dans une phase continue de caoutchouc et ce produit était sensiblement dépourvu de particules de silice libres et de grains de silice plus gros sur les surfaces extérieure et intérieure. Dans certains des exemples (4-13 et 4-14), les conditions de fonctionnement sélectionnées ont permis d'obtenir un produit semi-solide ayant une consistance de pâte, comprenant une phase continue de caoutchouc semi-solide contenant de la silice. À l'examen visuel, on a observé des particules de silice piégées à l'intérieur du produit, mais uniformément distribuées dans la phase de caoutchouc. Le matériau semi-solide a expulsé l'eau et la teneur en solides retenus pendant la suite du traitement dans une ou plusieurs opérations ultérieures sélectionnées pour développer le matériau de type pâte en une phase continue de caoutchouc solide contenant de la silice. Pour la phase continue de caoutchouc solide ou semi-solide contenant de la silice, non seulement la silice doit être déstabilisée (par ex., par un traitement préalable avec des acides et/ou des sels), mais les débits volumétriques de la bouillie de silice par rapport au latex doivent être ajustés non seulement pour obtenir un rapport silice-caoutchouc souhaité (phr) dans le composite élastomère, mais également pour équilibrer le degré de déstabilisation de la bouillie avec la cadence de mélange de la bouillie et du latex et la vitesse de coagulation des particules de caoutchouc de latex. Grâce à ces ajustements, comme la bouillie de silice entraînait le latex, distribuant intimement les particules de silice dans le caoutchouc, le caoutchouc dans le latex est devenu une phase continue solide ou semi-solide en une fraction de seconde après combinaison des fluides dans le volume confiné de la zone de réaction. Ainsi, le procédé a formé des composites uniques élastomère-silice au moyen d'une étape d'impact continu des fluides à une vitesse suffisante, des concentrations et des volumes liquides/solides sélectionnés et des débits de liquide ajustés pour distribuer uniformément et intimement la silice particulaire fine dans le latex et, parallèlement, pendant l'exécution d'une telle distribution, pour donner lieu à une inversion de phase liquide-solide du caoutchouc.
[0147] Exemple 5.
[0148] Dans ces exemples comparatifs, les mêmes étapes de base et le même appareil que ceux de l'exemple4 ont été utilisés (procédé A; figure 1(a)), mais la combinaison des conditions du procédé sélectionnées pour chacun des exemples comparatifs du tableau 5 n'a pas permis de créer une phase continue de caoutchouc solide ou semi-solide et un composite silice-élastomère n'a pas pu être obtenu. Le tableau 5 ci-dessous indique la concentration de silice dans la bouillie et la concentration d'acide acétique ou de nitrate de calcium, ainsi que d'autres détails de ces exemples.
Tableau 5
Tableau 5 (suite)
S/0 = sans objet a. Les valeurs du potentiel zêta ont été estimées par interpolation des courbes déterminées expérimentalement de la dépendance du potentiel zêta par rapport à la concentration du sel ou de l'acide des bouillies de la même qualité de silice. b. La vitesse de la buse d'entrée correspond à la vitesse de la bouillie de silice qui passe dans une buse (3a) au niveau de la première entrée (3) vers la zone de réaction avant d'entrer en contact avec le latex. c. Les débits de la bouillie et du latex correspondent aux débits volumétriques en l/heure de la bouillie de silice et du latex liquide, respectivement, lorsqu'ils sont introduits dans la zone de réaction. d. Les exemples 5-11 et 5-12 ont utilisé de la silice Agilon® 454.
[0149] Les exemples 5-8, 5-9 et 5-10 montrent que sans pré-déstabilisation de la silice dans la bouillie, la phase continue de caoutchouc contenant de la silice a été produite, même lorsque l'utilisation des étapes de procédé restantes a été utilisée selon les modes de réalisation de la présente invention. Les exemples comparatifs 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 et 5-7 montrent que même avec une déstabilisation préalable dans la bouillie (potentiel zêta de la silice inférieur à 25 mV), une phase continue de caoutchouc contenant de la silice n'a pas pu être obtenue avec la combinaison des débits volumétriques relatifs et le degré de dilution de l'agent de déstabilisation (par ex., Ca(N03)2 ou acide acétique) dans la zone de réaction lorsque les fluides ont été mélangés. Sans être lié à une théorie quelconque, on peut avancer qu'une telle concentration faible de l'agent de déstabilisation dans le mélange de bouillie et de latex dans la zone de réaction peut réduire la vitesse de coagulation des particules de caoutchouc de latex de sorte qu'une phase continue de caoutchouc n'a pas pu être formée dans le temps de résidence court dans la zone de réaction. Dans l'exemple comparatif 5-1 avec 18,5 % en poids de bouillie de silice déstabilisée et 30,6 % en poids de concentré de latex DRC, un rapport des débits relatifs de la bouillie déstabilisée et du latex a été réglé sur 0,73 (V/V) pour fournir un rapport silice-caoutchouc de 50 phr dans la zone de réaction. En théorie, les particules de caoutchouc de latex n'ont pas coagulé dans le temps de résidence de 0,48 seconde du mélange dans la zone de réaction à un rapport de débit volumétrique relativement faible de la bouillie déstabilisée par rapport au latex, moyennant quoi la concentration d'origine de Ca(N03)2 de 14,8 mM dans la bouillie de silice déstabilisée a été diluée de 58 % à 6,2 mM dans la zone de réaction. Ainsi, il n'a pas été possible dans ces conditions pour produire une phase continue de caoutchouc solide ou semi-solide contenant de la silice comprenant 50 phr de silice. En revanche, lorsqu'une concentration élevée de sel (par ex., 0,5 % en poids pour l'exemple de l'invention 4-8 contre 0,22 % en poids pour l'exemple comparatif 5-1) a été utilisée (potentiel zêta de -17,1 mV contre -22 mV) et que le rapport de débit volumétrique de la bouillie par rapport au latex a été réglé sur 0,73 pour obtenir un produit de caoutchouc adéquat contenant 50 phr de silice, un produit adéquat a été obtenu. L'exemple comparatif 5-3 montre qu'une phase continue de caoutchouc solide contenant de la silice n'a pas pu être obtenue à des réglages de 40 phr de silice et un rapport des débits volumétriques bouillie-latex de plantation de 0,57 (V/V), tandis que de tels produits ont été obtenus lorsque le rapport des débits était de 0,93 et de 1,50, formant ainsi un composite élastomère avec 45,4 phr et 76,9 phr de silice, respectivement (exemples de l'invention 4-10 et 4-11). Les rapports de débit volumétrique bouillie-latex plus élevés dans les exemples de l'invention 4-10 et 4-11 ont donné lieu à une moindre dilution du sel dans la zone de réaction que dans l'exemple comparatif 5-3, produisant ainsi une phase continue de caoutchouc solide contenant de la silice.
La concentration de sel dans la bouillie de silice déstabilisée à 18,5 % de l'exemple comparatif 5-2 était de 0,48% avec un potentiel zêta de -17 mV, indiquant un degré de déstabilisation à la mesure de ceux des exemples de l'invention 4-4 (-14,1 mV) et 4-5 (-18,4 mV), mais aucune phase continue de caoutchouc solide contenant de la silice n'a été formée à un réglage de production de teneur en silice de 30 phr avec le concentré de latex à un rapport de débit relativement faible sélectionné pour l'exemple comparatif 5-2. Sans souhaiter être lié à une quelconque théorie, on estime qu'une dilution trop importante du sel et/ou de la bouillie de silice déstabilisée par du concentré de latex dans la zone de réaction dans l'exemple comparatif 5-2 a réduit le taux de coagulation des particules de latex de caoutchouc dans la zone de réaction dans une telle mesure qu'une phase continue de caoutchouc cohérent ne se formerait pas dans le temps de résidence de 0,36 seconde dans la zone de réaction.
[0150] Lors du mélange de latex de plantation avec 10 % en poids de bouillie de silice déstabilisée par du Ca(N03)2 à 0,65 % (potentiel zêta à -15,4 mV), l'exemple comparatif 5-5 n'a pas produit de phase continue de caoutchouc solide contenant de la silice à un rapport silice-caoutchouc de 60 phr et un rapport de débit volumétrique bouillie-latex de 0,57. Ces conditions n'ont pas fourni suffisamment de sel et/ou de bouillie déstabilisée dans la zone de réaction pour une coagulation rapide des particules de latex de caoutchouc dans la zone de réaction. En général, soit le degré de déstabilisation de la bouillie silice et/ou le rapport de débit bouillie-latex adéquat pour coaguler le concentré de latex ne sont pas suffisants pour coaguler le latex de plantation.
[0151] Des résultats ont été obtenus lorsque de l'acide a été utilisé pour déstabiliser la bouillie des exemples comparatifs 5-6 et 5-7 et l'exemple de l'invention 4-17, respectivement. Lorsque de l'acide a été utilisé comme unique agent pour déstabiliser la bouillie, un seuil préféré du rapport molaire acide-ammoniac dans le mélange de la bouillie et du latex dans la zone de réaction, en dessous duquel la phase continue de caoutchouc solide ou semi-solide contenant de la silice ne peut pas se former dans la zone de réaction, a été défini. Dans ces expériences, le seuil du rapport molaire acide-ammoniac qui est souhaité a toujours été supérieur à 1,0, ce qui a fait que le pH du produit sortant la zone de réaction était acide. Dans le cas des exemples comparatifs 5-6 et 5-7, les réglages de production du rapport silice-caoutchouc de 20 phr et de 25 phr respectivement, les rapports de débit volumétrique bouillie-latex relativement bas de 0,28 et 0,36 ont été utilisés, respectivement. À ces rapports de débit bas, la bouillie acide n'a pas été suffisamment acide pour neutraliser l'ammoniac dans le latex. Les rapports molaires acide-ammoniac pour les exemples comparatifs 5-6 et 5-7 étaient respectivement de 0,66 et de 0,98. Dans les deux cas, seul un liquide trouble a été vaporisé hors de la zone de réaction. Au contraire, pour l'exemple de l'invention 4-17, un rapport de débit volumétrique bouillie-latex plus élevé de 1,14 a été utilisé pour obtenir une charge de silice de 54,8 phr par l'ajout d'une quantité suffisante d'acide par la bouillie dans la zone de réaction, pour neutraliser l'ammoniac du latex. Le rapport molaire acide-ammoniac dans la zone de réaction pour les exemples de l'invention 4-17 était de 3,14 et une phase continue de caoutchouc solide contenant de la silice a été produite sous forme de matière élastique en forme de ver quittant la zone de réaction. Ce matériau pouvait être étiré de 130 à 150 % de sa longueur originale sans se rompre.
[0152] Exemple 6.
[0153] Pour explorer les variables du procédé qui permettent la formation d'une phase continue de caoutchouc solide ou semi-solide contenant de la silice, une série d'expériences a été réalisée sous différentes combinaisons de variables de procédé, comprenant, non exclusivement, la concentration de silice dans la bouillie déstabilisée, la concentration d'acide ou de sels dans la bouillie déstabilisée, les types de latex (par ex., latex de plantation et concentré de latex), la concentration d'ammoniac dans le latex, les lots de latex, les débits de bouillie déstabilisée et de latex, les vitesses de bouillie déstabilisée et de latex dans la zone de réaction, et les concentrations d'acide et de sel dans la zone de réaction. Cette série d'expériences a été réalisée selon le procédé A et du nitrate de calcium a été utilisé comme sel. Les teneurs en solides des fluides et les vitesses de la buse d'entrée pour les expériences sont répertoriées dans les tableaux 6 et 7 pour un concentré de latex et un latex de plantation, respectivement. À un rapport de débit volumétrique bouillie-latex bas (c'est-à-dire un rapport silice-caoutchouc bas dans la zone de réaction), la bouillie déstabilisée et le sel ont été dilués par le latex et aucune phase continue de caoutchouc solide ou semi-solide contenant de la silice ne s'est formée. Le réglage pour le rapport silice-caoutchouc a été ensuite progressivement augmenté en augmentant le rapport de débit volumétrique bouillie -latex jusqu'à ce qu'une phase continue de caoutchouc solide ou semi-solide contenant de la silice ait été observée à la sortie de la zone de réaction. Dans les tableaux 6 et 7, le message « charge de silice délivrée dans la zone de réaction » (Silica Loading Delivered to Reaction Zone) indique le rapport silice-caoutchouc le plus bas auquel la phase continue de caoutchouc solide ou semi-solide a été produite. La concentration minimale de sel dans la zone de réaction (comprenant la bouillie de silice déstabilisée et le latex) pour la formation d’une phase continue de caoutchouc solide ou semi-solide contenant de la silice a été calculée pour chaque ensemble de conditions expérimentales (par ex., la concentration de silice dans la bouillie, la concentration de sel dans la bouillie, la vitesse de la bouillie). Pour les six premiers exemples répertoriés dans le tableau 6, la concentration de silice dans la bouillie déstabilisée a été la même, à savoir 18,5 % en poids mais la concentration de sel dans la bouillie déstabilisée a varié et le seuil inférieur de charge de silice pour la formation d'une phase continue de caoutchouc solide ou semi-solide contenant de la silice a été déterminée dans chaque exemple en augmentant le débit volumétrique de latex jusqu'à formation d'un coagulum. Les résultats du tableau 6 montrent que lorsque la concentration de sel dans la bouillie de silice déstabilisée était passée de 0,22 % en poids à 0,75 % en poids, il était possible de réduire le rapport de débit volumétrique bouillie-latex, de façon à obtenir une phase continue de caoutchouc solide ou semi-solide contenant de la silice ayant un rapport silice-caoutchouc plus bas. Par exemple, en augmentant la concentration de sel de 0,22 % en poids à 0,65 % en poids d’une bouillie de silice de 18,5 % en poids, le réglage phr minimum de la silice pour créer une phase de caoutchouc continue solide ou semi-solide contenant de la silice est passé de 80 phr de silice à 35 phr de silice avec l'augmentation du débit volumétrique relatif de latex et la diminution du rapport de débit volumétrique bouillie-latex de 1,17 à 0,51. Des résultats similaires ont été observés pour d'autres concentrations de bouillie de silice et lorsque de l'acide a été utilisé pour déstabiliser la bouillie de silice.
[0154] Tableau 6. Seuils de formation de la phase continue de caoutchouc solide ou semi-solide contenant de la silice : charge de silice en phr et concentration de nitrate de calcium sous différentes conditions lorsque de la bouillie de silice déstabilisée a été mélangée avec un concentré de latex dilué à 50 % (teneur en caoutchouc sec de 31 % en. poids ; teneur en ammoniac de 0,70 % en poids sauf pour le dernier exemple pour lequel la teneur en ammoniac était de 0,53 % en poids) en utilisant le procédé A.
Tableau 6
a. La vitesse de la buse d'entrée correspond à la vitesse de la bouillie de silice qui passe dans une buse (3a) au niveau de la première entrée (3) vers la zone de réaction avant d'entrer en contact avec le latex.
[0155] Tableau 7. Seuils de formation de la phase continue de caoutchouc solide ou semi-solide contenant de la silice : charge de silice phr et concentration de nitrate de calcium sous différentes conditions lorsque la bouillie de silice a été mélangée à du latex de plantation en utilisant le procédé A.
Tableau 7
a. La vitesse de la buse d'entrée correspond à la vitesse de la bouillie de silice qui passe dans une buse (3a) au niveau de la première entrée (3) vers la zone de réaction avant d'entrer en contact avec le latex.
[0156] Dans une expérience de coagulation en mode discontinu réalisée en mélangeant de la bouillie de silice avec du latex dans un baquet sous un mélange à cisaillement relativement faible, la quantité minimale de sel ou d'acide pour coaguler le latex dans le mélange est une constante, indépendante de la concentration d'origine de sel ou d'acide dans la bouillie de silice avant le mélange. En revanche, dans des procédé selon différents modes de réalisation de l'invention, la concentration seuil de sel dans la zone de réaction pour la formation d'une phase continue de caoutchouc solide ou semi-solide contenant de la silice augmente avec l'augmentation de la concentration de sel dans la bouillie de silice déstabilisée avant le mélange (c'est-à-dire le degré de déstabilisation de la bouillie de silice). Par exemple, dans le tableau 6, on peut voir que la concentration seuil de Ca(N03)2 pour coaguler le concentré de latex est indépendante de la concentration de silice dans la bouillie déstabilisée, mais dépend fortement de la concentration de sel d'origine dans la bouillie de silice déstabilisée. Lorsque la concentration de sel a été augmentée de 14,8 mM à 69,3 mM, la concentration de sel seuil est passée de 7,9 mM à 23,0 mM. Par comparaison, une série d'expériences de coagulation discontinue a été réalisée dans un baquet en utilisant une agitation à faible cisaillement et il a été déterminé que la concentration seuil de Ca(N03)2 pour coaguler le même concentré de latex était une constante à 10,7 mM, indépendante de la concentration de sel d'origine dans la bouillie déstabilisée, ainsi que de la concentration de silice dans la bouillie déstabilisée. Ces résultats mettent en lumière l'importance d'équilibrer le degré de déstabilisation de la bouillie de silice, la cadence du mélange, la vitesse d'agglomération des particules de silice et la vitesse de coagulation du latex sous fort cisaillement pouf produire efficacement une phase continue de caoutchouc solide ou semi-solide contenant de la silice.
[0157] De même, le rapport seuil acide-ammoniac pour la formation d'une phase continue de caoutchouc solide ou semi-solide contenant de la silice selon des modes de réalisation de la présente invention n'est pas une constante, mais augmente avec le degré de déstabilisation acide de la bouillie de silice.
[0158] Sur la base des variables de production décrites dans la présente invention, comme la vitesse de la bouillie de silice déstabilisée, la vitesse du latex, les débits relatifs des fluides de bouillie de silice déstabilisée et de latex, le degré de déstabilisation de la bouillie de silice, la concentration de silice dans la bouillie déstabilisée, la teneur en caoutchouc sec du latex et la concentration d'ammoniac du latex (par ex., la concentration d'ammoniac peut être réduite par barbotage à l'azote dans le latex ou au-dessus de la surface du liquide), il a été possible d'obtenir et/ou de prédire la formation d'une phase continue de caoutchouc solide ou semi-solide contenant de la silice sur une plage de charges de silice souhaitée. Ainsi, le procédé de l'invention peut être réalisé sur une plage optimisée de variables.
[0159] Exemple 7.
[0160] Les expériences comparatives suivantes utilisant un procédé discontinu multi-étapes ont été réalisées pour comparaison avec un procédé contenu selon certains modes de réalisation de l'invention.
[0161] Dans ces exemples comparatifs, une bouillie de silice a été combinée à du latex d'élastomère dans des conditions de mélange discontinu, en utilisant soit une bouillie de silice qui a été concassée (comme dans le procédé B ci-dessus), soit une bouillie de silice préparée sans concassage, à deux concentrations de bouillie : 25 % en poids et 6 % en poids respectivement (sur la base du poids total de la bouillie). La silice utilisée dans ces exemples était ZEOS IL® 1165 MP. Le latex d'élastomère utilisé dans toutes les expériences était du concentré de latex à teneur élevée en ammoniac (60CX12021, de Chemionics Corporation, Tallmadge, Ohio) dilué à 50 % (en poids) avec de l'eau désionisée.
[0162] Expérience 7-A : Mélange discontinu avec bouillie de silice concassée.
[0163] La bouillie de silice préparée ci-dessus a été mélangée avec une quantité souhaitée d'eau désionisée dans un baquet de 19 litres (5 gallons) pour obtenir la concentration de silice cible dans la bouillie.
[0164] Pour chaque cycle décrit ci-dessus, la quantité indiquée de bouillie de silice a été prélevée dans le réservoir à cycle de bouillie et mélangée pendant quinze minutes avec la quantité indiquée de latex d'élastomère dans un baquet de 19 litres (5 gallons) en utilisant un agitateur vertical à faible cisaillement (modèle n° 1750, Arrow Engineering Co, Inc., Hillside, NJ). À l'exception du cycle 5, du sel chlorure de calcium a été ensuite ajouté au mélange et le mélange s'est poursuivi jusqu'à ce qu'une coagulation complète apparaisse. Sauf indication contraire, le sel a été ajouté sous forme de solution de sel à 20 % en poids dans de l'eau désionisée. La quantité de sel utilisée (quantité sèche) est indiquée ci-dessous. Le terme « silice cible en phr » correspond à la quantité de silice en phr supposée être présente dans le composite de caoutchouc sur la base de la quantité de départ de silice utilisée, en supposant que toute la silice a été incorporée dans tout le caoutchouc. Les cycles 1 à 4 ont été asséchés et séchés selon les procédés du procédé B décrit ci-dessus.
[0165] Cycle 1 - Composite cible de caoutchouc-silice à 55 phr en utilisant 25 % en poids de bouillie de silice.
Conditions (pour environ 1,9 kg de matière sèche) : 2,7 kg de 25 % en poids de bouillie de silice, concassée 4.0 kg de concentré de latex 0,060 kg (équivalent de la quantité sèche) de sel en solution.
[0166] Observations : De gros morceaux de composite de caoutchouc par voie humide se sont formés autour de la lame de mélange après la fin de la coagulation. En revanche, la coagulation n'a pas permis d'incorporer la totalité du caoutchouc et de la silice dans le coagulum, un liquide laiteux restant dans le baquet de mélange et une couche de silice humide s'étant déposée au fond du baquet. Le coagulum séché pesait environ 0,5 kg, poids bien inférieur aux 1,9 kg ciblés. Une quantité significative de silice est apparue à la surface du produit de caoutchouc indiquant une mauvaise distribution de la silice dans le composite de caoutchouc. La silice est apparue très mal mélangée avec le caoutchouc dans le coagulum et des grains non dispersés de silice se sentaient et se voyaient dans le coagulum. On a observé que des particules de silice tombaient du coagulum séché. Lorsque le produit de caoutchouc sec a été découpé avec une paire de ciseaux, des particules de silice sont tombées de la surface de découpe. Après le séchage, l'analyse TGA du produit de caoutchouc a montré que les charges de silice étaient en moyenne de 44 phr.
[0167] Cycle 2 - Composite cible de caoutchouc-silice à 70 phr en utilisant 25 % en poids de bouillie de silice.
Conditions (pour environ 1,9 kg de matière sèche) : 3.1 kg de 25 % en poids de bouillie de silice, concassée 3,6 kg de concentré de latex 0,060 kg de sel, ajouté à sec.
[0168] Observations : De gros morceaux de caoutchouc humide se sont formés autour de la lame de mélange et le liquide post-coagulation était trouble ou laiteux. Une couche de silice restait au fond du baquet. Environ 1 kg de coagulum séché a été produit. Comme dans le cycle 1, une très mauvaise distribution des particules de silice dans le coagulum de caoutchouc a été observée. Après le séchage, l'analyse TGA du produit de caoutchouc a montré que les charges de silice étaient en moyenne de 53 phr.
[0169] Cycle 3 - Composite cible de caoutchouc-silice à 55 phr en utilisant 6 % en poids de bouillie de silice.
Conditions (pour environ 2 kg de matière sèche) : 2.6 kg de 25 % en poids de bouillie de silice, concassée 8,4 kg d'eau désionisée 4.0 kg de concentré de latex 0,090 kg de sel en solution.
[0170] Observations : Après l'ajout de sel, le mélange complet de latex et de bouillie s'est transformé en gel souple. Environ 0,9 kg de composite sec a été formé. Comme dans le cycle 1, une très mauvaise distribution des particules de silice dans le coagulum de caoutchouc a été observée. Après le séchage, la charge de silice dans le coagulum mesurée par l'analyse TGA était d'environ 45 phr.
[0171] Cycle 4 - Composite cible de caoutchouc-silice à 70 phr en utilisant 6 % en poids de bouillie de silice.
Conditions (pour environ 2 kg de matière sèche) : 3.1 kg de 25 % en poids de bouillie de silice, concassée 9,9 kg d'eau 3.7 kg de concentré de latex 0,10 kg de sel en solution.
[0172] Observations : Après l'ajout de sel, de petites miettes se sont formées dans le liquide laiteux. Un tamis a été utilisé pour collecter et compacter les petites miettes. Comme dans le cycle 1, une très mauvaise dispersion des particules de silice dans le coagulum de caoutchouc a été observée. Environ 0,7 kg de composite sec a été collecté avec la charge de silice dans la miette mesurée par l'analyse TGA à environ 50 phr.
[0173] Cycle 5 - Composite cible de caoutchouc-silice à 55 phr en utilisant 25 % en poids de bouillie de silice déstabilisée avec 1 % de CaCI2.
Conditions (pour environ 1,9 kg de matière sèche) : 4,0 kg de 25 % en poids de silice contenant 1 % de CaCI2, concassée 2.7 kg de concentré de latex [0174] Observations : Le latex a été placé dans un baquet de 19 litres (5 gallons) avec un agitateur vertical à faible cisaillement. La bouillie de silice déstabilisée à 25 % concassée contenant 1 % de CaCI2 a été versée dans le baquet avec agitation, et l'agitation s'est poursuivie jusqu'à la fin de la coagulation. Des observations visuelles et tactiles du morceau de caoutchouc ont révélé de grandes poches (taille du mm au cm) de bouillie de silice dans le morceau de caoutchouc et une grande quantité de particules de silice piégées mais non distribuées dans la phase de caoutchouc solide. La charge moyenne de silice dans le coagulum séché mesurée par l'analyse TGA était d'environ 58 phr. Les variations interéchantillons des charges de silice étaient supérieures à 10 phr.
[0175] Expérience 7-B : Mélange discontinu en utilisant de la bouillie de silice sans concassage.
[0176] Pour préparer la bouillie de silice sans concassage, la silice a été ajoutée lentement à l'eau en utilisant uniquement un agitateur vertical (modèle n° 1750, Arrow Engineering Co, Inc., Hillside, NJ). Lorsque la silice a semblé être complètement dispersée, le latex a été ajouté et le mélange liquide a été agité pendant 20 minutes. La solution de sel CaCI2 a été ensuite ajoutée au mélange liquide et le mélange s'est poursuivi jusqu'au terme apparent de la coagulation. Des échantillons ont été séchés dans un four avant l'analyse TGA.
[0177] Cycle 1 - Composite cible de caoutchouc-silice à 65 phr en utilisant 25 % en poids de bouillie de silice.
Conditions (pour environ 1,9 kg de matière sèche) : 3,0 kg de 25 % en poids de bouillie de silice 3,8 kg de concentré de latex 0,06 kg de sel en solution.
[0178] Observations : Après l'ajout de sel, de très gros morceaux de coagulum de caoutchouc s'étaient formés autour de la lame de l'agitateur. Après la coagulation, une épaisse couche de silice s'était déposée au fond du baquet. Le morceau de caoutchouc semblait granuleux et visqueux. Des grains de silice pouvaient être touchés et observés à la surface du coagulum de caoutchouc et une observation visuelle a révélé une très mauvaise distribution de la silice dans le coagulum de caoutchouc. La charge en silice dans le coagulum déterminée par l'analyse TGA était de 25 phr.
[0179] Cycle 6 - Composite cible de caoutchouc contenant 80 phr de silice en utilisant 25 % en poids de bouillie de silice.
Conditions (pour environ 1,9 kg de matière sèche) : 3.3 kg de 25 % en poids de bouillie de silice 3.4 kg de concentré de latex 0,06 kg de sel en solution.
[0180] Observations : La charge de silice dans le caoutchouc a été déterminée à 35 phr et l'observation visuelle a révélé une très mauvaise distribution de silice dans le coagulum de caoutchouc.
[0181] Cycle 7 - Composite cible de caoutchouc contenant 110 phr de silice en utilisant 6 % en poids de bouillie de silice.
Conditions (pour environ 1,9 kg de matière sèche, en deux lots) : 1.0 kg de 25 % en poids de bouillie de silice 15.6 kg d'eau 3.0 kg de concentré de latex 0,120 kg de sel en solution.
[0182] Observations : De petites miettes de caoutchouc s'étaient formées dans le baquet et le liquide restant après coagulation était globalement transparent, avec une couche de silice au fond du baquet. Selon l'analyse TGA, la charge en silice dans le produit de caoutchouc était d'environ 30 phr. Le coagulum était élastique, avec des grains de silice à la surface. En séchant, la silice pouvait être facilement balayée de la surface et l'observation visuelle a révélé une très mauvaise distribution de silice dans le coagulum de caoutchouc.
[0183] Cycle 8 - Composite cible de caoutchouc contenant 140 phr de silice en utilisant 6 % en poids de bouillie de silice.
Conditions (pour environ 1,9 kg de matière sèche, en deux lots) : 1.0 kg de 25 % en poids de bouillie de silice 15.7 kg d'eau 2,4 kg de concentré de latex 0,110 kg de sel en solution.
[0184] Observations : De petites miettes de caoutchouc s'étaient formées dans le baquet et le liquide restant après coagulation était globalement transparent, avec une couche de silice au fond du baquet. Selon l'analyse TGA, la charge en silice dans le produit de caoutchouc était d'environ 35 phr. Des particules de silice s'étaient déposées à la surface du produit de caoutchouc et pouvaient être brossées facilement en séchant ; l'observation visuelle a révélé une très mauvaise distribution de la silice dans le coagulum de caoutchouc.
[0185] Synthèse des observations. Par comparaison avec le procédé continu de fabrication de composite élastomère, comme aux exemples 4 et 6, le procédé de mélange discontinu de latex de l'exemple 7 n'a pas permis d'obtenir la qualité ou la quantité souhaitée de dispersion de silice dans le caoutchouc. Avec des bouillies de silice concassée, la charge réelle de silice observée dans les produits de caoutchouc fabriqués avec un mélange discontinu était inférieure à 55 phr. Après la coagulation, une quantité importante de silice s'était déposée au fond du baquet de mélange et était apparue à la surface du produit de caoutchouc, ce qui indique une mauvaise capture des particules de silice dans le coagulum de caoutchouc. Avec des bouillies de silice qui n'avaient pas été broyées, la charge réelle de silice dans le caoutchouc produite avec le mélange discontinu était limitée, comprise de 30 à 35 phr. Après la coagulation, une épaisse couche de silice s'était déposée au fond du baquet de mélange, la silice était apparue très mal mélangée avec le caoutchouc dans le coagulum et des grains non dispersés de silice se sentaient et se voyaient dans le coagulum. Par rapport aux procédés selon des modes de réalisation de la présente invention, les procédés de mélange discontinu ont donné lieu à de mauvaises incorporations et distributions des particules de silice dans la matrice de caoutchouc du coagulum. Dans le produit de chacun de ces cycles de mélange discontinu, on a observé que des particules de silice tombaient du coagulum séché. Lorsque le produit de caoutchouc sec a été découpé avec une paire de ciseaux, des particules de silice sont tombées de la surface de découpe. Une telle perte de particules de silice n'avait pas été observée en examinant la phase continue de caoutchouc solide ou semi-solide contenant de la silice produite par les procédés selon des modes de réalisation de la présente invention.
[0186] La présente invention comprend les aspects/modes de réalisation/attributs suivants dans tout ordre et/ou toute combinaison :
Un procédé de fabrication d'un composite élastomère-silice comprenant : (a) la fourniture d'un flux continu sous pression d'au moins un premier fluide comprenant une dispersion déstabilisée de silice particulaire et d'un flux continu d'au moins un second fluide comprenant du latex d'élastomère ; (b) la fourniture d'un débit volumétrique du premier fluide par rapport à celui du second fluide pour obtenir un composite élastomère ayant une teneur en silice allant d’environ 15 phr à environ 180 phr ; (c) la combinaison du premier flux de fluide et du second flux de fluide avec un impact suffisamment énergique pour distribuer la silice particulaire dans le latex d'élastomère afin d'obtenir un flux d'un composite élastomère-silice solide ou semi-solide comprenant une phase continue de caoutchouc avec des particules de silice dispersées.
Un procédé selon tout mode de réalisation/attribut/aspect précédent ou suivant : -dans lequel ledit flux dudit composite élastomère-silice solide ou semi-solide se forme en deux secondes ou moins après la combinaison dudit premier flux de fluide et dudit second flux de fluide, ou -dans lequel ledit flux dudit composite élastomère-silice solide ou semi-solide se forme environ 50 millisecondes à environ 1 500 millisecondes moins après la combinaison dudit premier flux de fluide et dudit second flux de fluide, ou -dans lequel ledit premier fluide à l'étape (a) comprend en outre au moins un sel, ou -dans lequel ledit premier fluide à l'étape (a) comprend en outre au moins un acide, ou -dans lequel ledit composite élastomère-silice solide ou semi-solide comprend une phase discontinue comprenant environ de 40 % en poids à environ 95 % en poids d'eau ou de fluide aqueux, ou -dans lequel ladite combinaison s'effectue dans une zone de réaction ayant un volume allant d’environ 10 cm3 à environ 500 cm3, ou -dans lequel les débits volumétriques relatifs se situent à un rapport des débits volumétriques du premier fluide par rapport au second fluide allant de 0,4:1 à 3,2:1, ou -dans lequel les débits volumétriques relatifs se situent à un rapport des débits volumétriques du premier fluide par rapport au second fluide allant de 0,2:1 à 2,8:1, ou -dans lequel les débits volumétriques relatifs se situent à un rapport des débits volumétriques du premier fluide par rapport au second fluide allant de 0,4:1 à 3,2:1, et ladite dispersion déstabilisée de la silice particulaire comprend au moins un sel, ou -dans lequel les débits volumétriques relatifs se situent à un rapport des débits volumétriques du premier fluide par rapport au second fluide allant de 0,2:1 à 2,8:1, et ladite dispersion déstabilisée de la silice particulaire comprend au moins un acide, ou -dans lequel ledit latex d'élastomère comprend une base, ladite dispersion déstabilisée de silice particulaire comprend au moins un acide et un rapport molaire d'ions hydrogène dans ledit acide dans ledit premier fluide par rapport à ladite base dans le second fluide est d'au moins 1,0, ou -dans lequel ledit latex d'élastomère comprend une base, ladite dispersion déstabilisée de silice particulaire comprend au moins un acide et un rapport molaire d'ions hydrogène dans ledit acide dans ledit premier fluide par rapport à ladite base dans le second fluide est d'au moins 1,1, ou -dans lequel ledit latex d'élastomère comprend une base, ladite dispersion déstabilisée de silice particulaire comprend au moins un acide et un rapport molaire d'ions hydrogène dans ledit acide dans ledit premier fluide par rapport à ladite base dans le second fluide est d'au moins 1,2, ou -dans lequel ledit latex d'élastomère comprend une base, ladite dispersion déstabilisée de silice particulaire comprend au moins un acide et un rapport molaire d'ions hydrogène dans ledit acide dans ledit premier fluide par rapport à ladite base dans le second fluide est compris de 1 à 4,5, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend au moins un acide et dans lequel ledit latex d'élastomère présent dans ledit second fluide a une concentration d’ammoniac comprise d’environ 0,3 % en poids à environ 0,7 % en poids sur la base du poids du latex d'élastomère, et un rapport molaire d'ions hydrogène dans ledit acide dans ledit premier fluide par rapport à l'ammoniac dans ledit second fluide est d'au moins 1,0 à 1,0, ou -dans lequel ladite teneur en silice dudit composite élastomère-silice est comprise d’environ 25 phr à environ 80 phr, ou -dans lequel ladite teneur en silice dudit composite élastomère-silice est comprise d’environ 40 phr à environ 115 phr, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend environ de 6 % en poids à environ 35 % en poids de silice, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend environ de 10 % en poids à environ 28 % en poids de silice, ou -comprenant, en outre, la récupération dudit composite élastomère-silice solide ou semi-solide à pression ambiante, ou -dans lequel ledit premier fluide comprenant ladite dispersion déstabilisée de silice particulaire a une amplitude de potentiel zêta inférieure à 30 mV, ou -dans lequel ledit premier fluide comprenant ladite dispersion déstabilisée de silice particulaire a une amplitude de potentiel zêta de 28 mV ou moins, ou -dans lequel ledit premier fluide comprenant ladite dispersion déstabilisée de silice particulaire a une amplitude de potentiel zêta comprise d’environ 29 mV à environ 5 mV, ou -dans lequel ledit premier fluide comprenant ladite dispersion déstabilisée de silice particulaire a une amplitude de potentiel zêta comprise d’environ 20 mV à environ 1 mV, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend au moins un sel, dans lequel la concentration d'ions de sel dans ladite dispersion déstabilisée est comprise d’environ 10 mM à environ 160 mM, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend au moins un sel, dans lequel ledit sel est présent dans ladite dispersion déstabilisée dans une quantité allant d’environ 0,2 % en poids à environ 2 % en poids sur la base du poids de ladite dispersion déstabilisée, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend au moins un acide, dans lequel ledit acide est présent dans ladite dispersion déstabilisée dans une quantité allant d’environ 0,8 % en poids à environ 7,5 % en poids sur la base du poids de ladite dispersion déstabilisée, ou -dans lequel ladite dispersion déstabilisée de silice particulaire comprend au moins un acide, dans lequel la concentration d’acide dans ladite dispersion déstabilisée va d’environ 200 mM à environ 1 000 mM, ou -dans lequel l'étape (c) est réalisée avec le flux continu du premier fluide à une vitesse A et le flux continu du second fluide à une vitesse B, et la vitesse A est au moins 2 fois plus rapide que la vitesse B, ou -dans lequel l'étape (c) est réalisée dans une zone de réaction semi-confinée et le premier fluide a une vitesse suffisante pour induire une cavitation dans la zone de réaction lors de la combinaison avec le second fluide, ou -dans lequel le second fluide a une vitesse suffisante pour créer un flux turbulent, ou -dans lequel ladite dispersion de silice particulaire comprend une silice particulaire modifiée en surface ayant des fragments de surface hydrophobes, ou -dans lequel ledit premier fluide est un fluide aqueux, ou -dans lequel ledit premier fluide comprend un fluide aqueux et environ de 6 % en poids à environ 35 % en poids de silice particulaire, ou -dans lequel ledit premier fluide est un fluide aqueux, comprenant en outre au moins un sel et au moins un acide, ou -dans lequel du noir de carbone est présent dans ledit composite élastomère-silice dans une quantité comprise d’environ 10 % en poids à environ 0,1 % en poids sur la base de la matière particulaire totale présente dans ledit composite élastomère-silice, ou -dans lequel du noir de carbone est présent dans ledit composite élastomère-silice dans une quantité d'environ 10 % en poids ou moins sur la base de la matière particulaire totale présente dans ledit composite élastomère-silice, ou -ledit procédé comprenant en outre la déstabilisation d'une dispersion de silice particulaire en abaissant un pH de la dispersion de silice particulaire de façon à former la dispersion déstabilisée de silice particulaire fournie à l'étape (a), ou -ledit procédé comprenant en outre la déstabilisation d'une dispersion de silice particulaire en abaissant un pH de la dispersion de silice particulaire jusqu'à un pH compris de 2 à 4 de façon à former la dispersion déstabilisée de silice particulaire fournie à l'étape (a), ou -dans lequel ladite silice particulaire a une surface hydrophile ou dans lequel ladite silice particulaire est une silice hautement dispersible (HDS), ou -dans lequel ledit acide comprend au moins un acide organique, ou -dans lequel ledit acide peut comprendre l'acide acétique, l'acide formique, l'acide citrique, l'acide phosphorique ou l'acide sulfurique ou une de leurs combinaisons, ou - dans lequel ledit acide peut comprendre un acide contenant un alkyle en C1 à C4, ou -dans lequel ledit acide a un poids moléculaire ou un poids moléculaire moyen inférieur à 200, ou -dans lequel ledit sel comprend au moins un sel métallique alcalin, ou -dans lequel ledit sel comprend un sel de calcium, un sel de magnésium ou un sel d'aluminium ou une combinaison de ceux-ci, ou -ledit procédé comprenant en outre l'étape consistant à soumettre la silice particulaire à un traitement mécanique pour obtenir une taille de particule réduite, ou -dans lequel le traitement mécanique peut comprendre le concassage, le broyage, la pulvérisation, la brisure ou le traitement à fort cisaillement ou des combinaisons de ceux-ci, ou -dans lequel la silice particulaire est de la silice précipitée ou de la silice fumée ou de la silice colloïdale, ou des combinaisons de celles-ci, ou -dans lequel ladite silice particulaire est de la silice avec une zone de surface BET allant d’environ 20 m2/g à environ 450 m2/g, ou -dans lequel ledit latex d'élastomère est du latex de caoutchouc naturel, ou -dans lequel ledit latex de caoutchouc naturel est sous la forme de latex de plantation, de concentré de latex, de latex décanté, de latex chimiquement modifié, de latex enzymatiquement modifié, ou une de leurs combinaisons, ou -dans lequel ledit latex de caoutchouc naturel est sous la forme de latex de caoutchouc naturel expoxydé, ou -dans lequel ledit latex de caoutchouc naturel est sous la forme de concentré de latex, ou -comprenant en outre le mélange du composite élastomère-silice avec un élastomère supplémentaire pour forme un mélange de composite élastomère. L’invention concerne également un procédé pour fabriquer un composé de caoutchouc comprenant : (a) l'exécution du procédé selon l'un quelconque des modes de réalisation/attributs/aspects précédents ou suivants, et (b) le mélange du composite élastomère-silice avec d'autres composants pour former le composé de caoutchouc, dans lequel lesdits autres composants comprennent au moins un antioxydant, du soufre, un polymère autre qu'un latex d'élastomère, un catalyseur, une huile de dilution, une résine, un agent de couplage, un ou plusieurs composites élastomère supplémentaires ou un agent de remplissage de renforcement, ou une de leurs combinaisons. L’invention concerne un procédé pour fabriquer un article de caoutchouc sélectionné parmi les pneumatiques, les moulages, les fixations, les revêtements, les convoyeurs, les joints ou les chemises, comprenant : (a) l'exécution du procédé selon l'un quelconque des modes de réalisation/attributs/aspects précédents ou suivants, et (b) le mélangeage du composite élastomère-silice avec d'autres composants pour former un composé, et (c) la vulcanisation du composé pour former ledit article de caoutchouc. L’invention concerne un procédé selon l'un quelconque des modes de réalisation/attributs/aspects précédents ou suivants, comprenant en outre l'exécution d'une ou plusieurs étapes post-traitement supplémentaires après la récupération du composite élastomère-silice. L’invention concerne un procédé selon l'un quelconque des modes de réalisation/attributs/aspects précédents ou suivants, dans lequel les étapes de post-traitement comprennent au moins une étape parmi : a) l'assèchement du composite élastomère-silice pour obtenir un mélange asséché ; b) le mélange ou le mélangeage du mélange asséché pour obtenir un composite élastomère-silice composé ; c) le broyage du composite élastomère-silice composé pour obtenir un composite élastomère-silice broyé ; d) la granulation ou le mélange du composite élastomère-silice broyé ; e) le pressage du composite élastomère-silice après la granulation ou le mélange pour obtenir un composite élastomère-silice pressé ; f) l'extrusion du composite élastomère-silice ; g) le calandrage du composite élastomère-silice ; et/ou h) la décomposition facultative du composite élastomère-silice pressé et le mélange avec d'autres composants. L’invention concerne un procédé selon tout mode de réalisation/attribut/aspect précédent ou suivant : -dans lequel les étapes de post-traitement comprennent au moins le laminage du composite élastomère-silice, ou -dans lequel les étapes de post-traitement comprennent la compression du composite élastomère-silice pour retirer environ 1 % en poids à environ 15% en poids de la phase discontinue de fluide aqueux, ou -dans lequel le latex d'élastomère est amené en contact avec au moins un agent de déstabilisation lorsque la dispersion déstabilisée de silice particulaire est combinée avec le latex d'élastomère, ou -comprenant en outre la mise en contact du flux de composite élastomère-silice solide ou semi-solide avec au moins un agent de déstabilisation, ou -comprenant en outre l'étape d'exécution d'une ou plusieurs des étapes suivantes avec le composite élastomère-silice solide ou semi-solide : a) le transfert du composite élastomère-silice solide ou semi-solide dans un réservoir ou un récipient de retenue ; b) le chauffage du composite élastomère-silice solide ou semi-solide pour réduire la teneur en eau ; c) l’exposition du composite élastomère-silice solide ou semi-solide à un bain acide ; d) le traitement mécanique du composite élastomère-silice solide ou semi-solide pour réduire la teneur en eau, ou -dans lequel ledit composite élastomère-silice est un composite élastomère-silice semi-solide et ledit procédé comprenant en outre la conversion dudit composite élastomère-silice semi-solide en composite élastomère-silice solide, ou -dans lequel ledit composite élastomère-silice semi-solide est converti en ledit composite élastomère-silice solide par traitement avec un fluide aqueux comprenant au moins un acide ou au moins un sel ou une combinaison d'au moins un acide et d'au moins un sel, ou -dans lequel ledit second fluide comprend un mélange de deux latex d'élastomère différents ou plus, ou -dans lequel ledit procédé comprend en outre la fourniture d'un ou plusieurs fluides supplémentaires et la combinaison du ou des fluides supplémentaires avec lesdits premier et second flux de fluide, dans lequel ledit ou lesdits fluides supplémentaires comprennent un ou plusieurs fluides de latex d'élastomère et lesdits fluides supplémentaires sont identiques ou différents dudit latex d'élastomère présent dans ledit second flux de fluide.
[0187] La présente invention peut comprendre toute combinaison de ces différents attributs ou modes de réalisation ci-dessus selon la description figurant dans les phrases et/ou les paragraphes de la présente demande. Toute combinaison des attributs décrits dans la présente demande est considérée comme une partie de la présente invention et aucune limitation n'est prévue par rapport aux attributs combinables.
[0188] Les demandeurs incorporent spécifiquement la totalité du contenu de toutes les références citées dans la présente invention. En outre, lorsqu'une quantité, une concentration ou une autre valeur ou paramètre est donnée sous forme de plage, de plage préférée ou de liste de valeurs préférables supérieures et de valeurs préférables inférieures, il faut les considérer comme décrivant spécifiquement toutes les plages formées de toute paire de toute limite de plage supérieure ou de valeur préférée et de toute limite de plage inférieure ou de valeur préférée, que les plages soient ou non décrites séparément. Lorsqu'une plage de valeurs numériques est citée dans la présente demande, sauf indication contraire, la plage est supposée inclure les extrémités de celle-ci, ainsi que tous les entiers et toutes les fractions à l'intérieur de la plage. Il n'est pas prévu que le champ d'application de l'invention soit limité aux valeurs spécifiques citées lors de la définition d'une plage.
[0189] D'autres modes de réalisation de la présente invention seront évidents aux hommes du métier en tenant compte de la présente spécification et pratique de la présente invention décrites dans la présente demande. Il est prévu que la présente spécification et les présents exemples soient considérés comme illustratifs uniquement, les véritables champs d'application et esprit de l'invention étant indiqués dans les revendications suivantes et équivalentes de celles-ci.
The present invention relates to methods of manufacturing elastomer-silica composite. More specifically, the present invention relates to an elastomeric composite reinforced with silica formed by a wet masterbatch process.
Many commercial products are formed of elastomeric compositions in which a particulate reinforcing material is dispersed indifferently among various synthetic elastomers, natural rubber or elastomer mixtures. Carbon black and silica, for example, are widely used as reinforcing agents in natural rubber and other elastomers. It is common to make a masterbatch, that is, a premix of: reinforcing material, elastomer and various optional additives, such as the diluent oil. Many commercial products are formed of such elastomeric compositions. Such products are, for example, vehicle tires in which different elastomeric compositions can be used for the tread portion, the side walls, the metal siding and the carcass. Other products are, for example, motor support rings, conveyor belts, wipers, seals, liners, wheels, bumpers and the like.
The good dispersion of particulate reinforcing agents in rubber compounds has been identified for some time as one of the main objectives for obtaining products of good quality and consistent performance, and considerable efforts have been made. dedicated to the development of processes to improve the quality of dispersion. Masterbatch and other mixing operations have a direct impact on mixing efficiency and dispersion quality. In general, for example, when carbon black is used to reinforce rubber, acceptable macrodispersions of carbon black can often be obtained in a dry blended masterbatch. On the other hand, the high quality and the uniform dispersion of the silica in the dry mixing processes pose problems and various solutions have been proposed by the industry to solve them, such as precipitated silica in the form of "highly dispersible silica" or "HDS" or in the form of granulated paste. More intensive mixing can improve the dispersion of the silica, but can also degrade the elastomer in which the filler is dispersed. This is a particularly important problem in the case of natural rubber which is very sensitive to mechanical / thermal degradation.
In addition to dry mixing techniques, it is known to feed a stirred tank of elastomeric latex or polymer solution and carbon black or silica slurry. Such "wet masterbatch" techniques can be used with natural rubber latex and emulsified synthetic elastomers, such as butadiene-styrene rubber (SBR). On the other hand, if this wet technique appeared promising when the filler is carbon black, this wet technique, when the filler is silica, poses problems in obtaining an acceptable elastomeric composite. . Specific techniques for the production of a wet masterbatch, such as those described in US Patent No. 6,048,923, the contents of which are hereby incorporated by reference, are not effective in producing elastomeric composites. using silica particles as the sole or main reinforcing agent.
Therefore, it is necessary to improve processes that incorporate silica in elastomeric composites in a wet masterbatch process, such as one that uses the combination of two fluids in impact conditions to high continuous energy, so as to obtain an acceptable elastomeric composite comprising silica particles as sole or main reinforcing agent.
SUMMARY OF THIS INVENTION
According to one of its aspects, the present invention relates to processes for producing elastomer composites using a wet masterbatch method which makes it possible to use silica and still obtain the elastomer-silica composites. research.
To achieve these and other advantages, and in accordance with the objectives of the present invention, set forth and widely described in the present application, the present invention relates to the controlled or selective placement or introduction of silica in a wet masterbatch process which forms an elastomeric composite.
The present invention relates to a method of manufacturing an elastomeric composite in a wet masterbatch process which includes, but is not limited to, the use of a fluid which comprises an elastomer latex and the use of an additional fluid which comprises a destabilized dispersion of particulate silica. Both fluids are combined under continuous flow conditions and at selected speeds. The combination is such that the silica is dispersed in the elastomer latex and, in parallel (or almost), the elastomer latex passes from a liquid elastomer composite to a solid or semi-solid elastomer composite, as in continuous phase solid or semi-solid rubber containing silica. This transformation can occur, for example, in about two seconds or less, as in a fraction of a second, due to the impact of the fluid on the other fluid with sufficient energy to cause a uniform and intimate particle distribution. of silica in the elastomer. The use of a destabilized silica dispersion in this masterbatch process allows the formation of an elastomeric composite having the desired properties.
The present invention further relates to elastomeric composites formed from one or more process (es) of the present invention. The present invention also relates to articles which are made from the one or more elastomeric composites according to the present invention or which comprise this or these.
It is understood that the above general description and the following detailed description are only illustrative and explanatory and are not intended to provide further explanation of the present invention as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this invention, illustrate various aspects of the present invention and, together with the description, serve to explain the principles of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 (a), 1 (b) and 1 (c) are diagrams illustrating illustrative mixing apparatus which can be used in the present invention and which have been used in some of the examples.
[0013] FIG. 2 is a block diagram of various steps that may be performed during the formation of the elastomeric composite according to embodiments of the present invention and in the manufacture of the rubber compounds with such elastomeric composites.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
The present invention relates to the selective and strategic introduction of silica into an elastomer latex during a continuous and rapid wet master batch process. This process can be carried out in a semi-confined reaction zone, such as a tubular mixing chamber or any other mixing chamber of an apparatus suitable for carrying out such a process under the control of volumetric flow rate and speed parameters. , giving rise to beneficial properties that would not be obtained except for this selective and strategic use of silica. As explained in more detail in the present application, by "selective", the present invention utilizes a destabilized silica dispersion. And for the "strategic" introduction, the present invention utilizes at least two separate fluids, a fluid that comprises an elastomer latex and another fluid that comprises the destabilized silica dispersion. Both fluids can be pumped or transferred to a reaction zone, such as a semi-confined reaction zone. Both fluids can be combined under continuous flow conditions and under selected volumetric flow and velocity conditions. The combination under pressure with selected differential speed conditions is sufficiently energetic that the silica can be dispensed in two seconds or less, as in milliseconds, in the elastomer lastex, and the elastomer latex passes from a liquid phase a solid phase, such as an elastomer-silica composite in the form of a continuous phase of solid or semi-solid rubber containing silica.
The present invention relates in part to a method for producing an elastomer-silica composite, comprising, consisting essentially of, or including: (a) providing a continuous stream under pressure of at least one first fluid comprising a destabilized silica dispersion and providing a continuous stream of a second fluid comprising an elastomer latex; (b) adjusting the volumetric flow rates of the first fluid and the second fluid to obtain an elastomeric composite having a silica content ranging from about 15phr to about 180 phr; and (c) combining the flow of the first fluid and the flow of the second fluid (e.g., in a semi-confined reaction zone) with sufficient impact to dispense the silica into the elastomer latex, to obtain a flow of a continuous phase of solid rubber containing silica or a continuous phase of semi-solid rubber containing silica. The process converts the elastomer latex of a liquid into a continuous phase stream of solid or semi-solid rubber containing silica. The continuous phase of silica-containing rubber can be recovered as a substantially continuous stream of the continuous phase of solid or semi-solid rubber containing silica.
[0016] Other details and / or options for the methods of the present invention are described below.
As used herein, the term "silica" refers to particulate silicon dioxide or a particle coated with silicon dioxide, and includes precipitated silica of any form, such as granules. highly dispersible (HDS), non-HDS granules, silica aggregates and silica particles; colloidal silica; fumed silica; and one of their combinations. This silicon dioxide or these silicon dioxide coated particles may have been chemically treated to include bonded (bonded (eg, chemically fixed) or adhered (eg, adsorbed)) functional groups to the silica surface. "Silica" includes any particle having a surface consisting substantially of silica or silica having functional groups attached or attached thereto.
As used herein, the term "dispersion" refers to a stable suspension of solid particles in an aqueous fluid, wherein the charge on the surface of the particles prevents agglomeration of particles and the dispersion is characterized by an amplitude of zeta potential greater than or equal to 30 mV.
The zeta potential is used to measure the stability of charged particles, such as silica particles, dispersed in a fluid. The measurement of the zeta potential can have a variance of, for example, + 1-2 mV, and, as used in this application, the amplitude of the zeta potential refers to the absolute value of the number, e.g. Zeta potential of minus 30 mV has a greater amplitude than the zeta potential value of minus 10 mV.
As used herein, the term "destabilized dispersion" refers to a suspension of solid particles in an aqueous fluid, wherein the charge on the surface of the particles has been reduced by the presence of an agent. or by the treatment of solid particles and is characterized by a zeta potential amplitude of less than 30 mV, or preferably a zeta potential of less than 28 mV or less than 25 mV. The aqueous fluid may be water, a water-miscible fluid (eg, alcohol or ether), a fluid partially miscible with water or a mixture of fluids that contains at least one miscible fluid in water or partially miscible in water.
As used herein, the term "silica slurry" refers to a dispersion of silica in an aqueous fluid, wherein the charge on the surface of the silica prevents agglomeration of particles and dispersion. is characterized by a zeta potential value of at least 30 mV. A slurry or a silica dispersion may be destabilized by treatment with one or more sufficient agents or by treatment of the silica, to reduce the silica surface charge and the resultant destabilized silica slurry (or the silica dispersion destabilized) is characterized by an amplitude of zeta potential less than 30 mV.
As used herein, the terms " uniform " and " uniformly " are meant to mean, typically for those skilled in the art, that the concentration of a component, for example, a particulate filler, in any given fraction or percentage (eg, 5%) of a volume is the same (eg, within 2%) as the concentration of that component in the total volume of the material in question, by eg, a composite or an elastomer dispersion. Those skilled in the art will be able to verify the statistical uniformity of the material, if necessary, by measuring the concentration of the component using several samples taken at different locations (for example, near the surface or deeper into the mass). ).
As used herein, the term "elastomeric-silica composite" refers to a masterbatch (a premix of reinforcing material, elastomer and various optional additives, such as dilution) of coherent rubber comprising an amount of reinforcement (e.g., about 15 phr to about 180 phr) of dispersed silica. The elastomer-silica composite may optionally contain other components, such as an acid, a salt, an antioxidant, anti-degradants, coupling agents, minor amounts (e.g., 10% by weight or less of total mass of particles) of other particles, processing aids and / or dilution oil, or any combinations thereof.
As used herein, the term "silica solid solid rubber continuous phase" refers to a composite having a continuous rubber phase and a uniformly dispersed silica phase and, for example, up to 90 %, by weight of aqueous fluid. The continuous phase of solid rubber containing silica may be in the form of a rope or a continuous worm. When compressed, these items release water. The continuous phase of solid rubber containing silica may optionally contain other components, such as acid, salt, antioxidant, antidegradants, coupling agents, minor amounts (e.g., 10% by weight or less of total mass of particles) and / or dilution oil, or any combinations thereof.
As used herein, the term "silica-containing semi-solid rubber continuous phase" refers to a composite having a pasty consistency having a continuous rubber-containing silica phase. The semi-solid product has a continuous rubber phase, the trapped silica being uniformly distributed in the rubber phase. The continuous phase of silica-containing semi-solid rubber remains coherent and expels the water, while retaining the solids content, during subsequent processing in one or more subsequent operations selected to develop the paste-like material into a continuous phase of solid rubber containing silica.
In the present application, a "coherent" material is an existing material in a substantially unitary form which has been created by adhesion of many smaller parts, such as a solid elastic rubber mass created by adhesion to each other many small rubber particles.
In the present application, a "continuous flow" is a stable or constant flow of a fluid without interruption from the power source (eg, a tank). But, it is understood that in case of temporary interruptions (eg, a second or a few minutes), the flow would nevertheless be considered as a continuous flow (eg, during a permutation of the feeding between different supply areas, such as tanks or the like, or flow interruption to adapt to downstream unit processes or maintenance of equipment).
The elastomeric composite may be produced in a continuous flow process comprising a liquid mixture of elastomer latex and a destabilized silica dispersion. Any device or apparatus or system may be used, provided that the device, apparatus or system can be operated so that a liquid mixture of elastomer latex and a destabilized silica dispersion can be combined in continuous flow conditions and under controlled conditions of volumetric flow, pressure and velocity, including, but not limited to, the apparatus shown in Figure 1 (a), (b) or (c), or any type ejecting or ejector nozzles, or any other device designed to combine a continuous flow of at least two liquid streams under controlled conditions of volumetric flow, pressure and velocity and into a reaction zone. The apparatus disclosed in US20110021664, US6048923, WO2011034589, WO2011034587, US20140316058 and WO2014110499 (each incorporated in their entirety for reference) may also be used in or adapted to the methods described herein. Similarly, ejectors and ejector nozzles or siphons, such as ejector jet nozzles or water jet siphons, may be used (eg those marketed by Schutte & Koerting, Trevose, PA).
The apparatus may comprise different feed tanks, pipes, valves, meters and pumps to control the volumetric flow, pressure and speed. Further, as indicated at the inlet (3) in Figs. 1 (a), (b) and (c), different types and sizes of nozzles or other orifice size control elements (3a) may be used to control the speed of the silica slurry. The volumetric dimension of the reaction zone (13) may be selected to provide the desired volumetric flow rates of the fluids and the elastomeric composite. The inlet (11) supplying the reaction zone with elastomer latex can be tapered to provide different volumetric flow rates and speeds. Devices may include an inlet (11) of uniform diameter without a cone at the orifice leading to the reaction zone.
In the process, a fluid which comprises an elastomer latex and an additional fluid which comprises a destabilized silica dispersion provided, for example, in a pressurized jet, are combined under continuous flow conditions and at flow rates. volumetric, pressure and speeds selected to quickly and intimately mix the two fluids. The combination, for example in a semi-confined space under pressure, is such that the silica is distributed in the elastomer latex and, at the same time, the elastomer latex is converted from a liquid phase to a solid phase or semi-solid, that is, a liquid to solid inversion or coagulation, latex occurs, capturing the distributed silica and water in the rubber and forming a continuous phase of solid or semi-solid rubber containing silica in a continuous or semi-continuous flow out of the reaction zone (e.g., through the opening in the lower part (7) in Figs. 1 (a) - (c)). At this point, the product can be considered as an elastomeric composite of a continuous rubber phase containing silica particles, a coherent rubber containing silica or an elastomer-silica composite. It is believed that the silica particles must first be dispensed into the elastomer latex to obtain the desired product, the liquid-to-solid phase inversion occurring immediately after the silica distribution. However, with the extremely fast and continuous speed of the combination of fluids (that is, in less than 2 seconds, in less than 1 second, in less than 0.5 seconds, in less than 0.25 seconds, in less than 0.1 seconds or in milliseconds), and the energetic and intimate mixing of relatively small volumes of fluids in the reaction zone (e.g., fluid volumes of the order of 10 to 500 cc) the parallel steps of silica particle distribution and liquid-to-solid phase transformation of the elastomer latex can occur almost simultaneously. The "reaction zone" used in this application represents the area where the intimate mixing occurs, as well as the coagulation of the mixture. The mixture moves in the reaction zone and to an outlet (7).
An illustrative method for preparing the elastomeric composite comprises simultaneously feeding a first fluid comprising a destabilized dispersion of silica and a second fluid comprising elastomer latex (e.g., natural rubber latex). liquid to a reaction zone. The first fluid comprising the destabilized silica dispersion can be fed at a rate based on its volume and the second fluid comprising the elastomer latex can be fed at a rate based on its volume (i.e. volumetric). The volumetric flow rates of the first fluid or second fluid or first and second fluids may be adjusted or provided to provide an elastomeric composite having a silica content of from 15 to 180 parts per 100 parts by weight of rubber (phr) ( eg, 35 to 180 phr, 20 phr to 150 phr, 25 phr to 125 phr, 25 phr to 100 phr, 35 to 115 phr or 40 phr to 115 phr or 40 phr to 90 phr and similar). The fluid that contains the destabilized silica dispersion may be called the first fluid in some embodiments of the present invention. This fluid is a fluid separated from the fluid containing the elastomer latex. Each fluid can be introduced through an inlet or an injection point or through several inputs or injection points.
The volumetric flow ratio of the first fluid (destabilized silica dispersion) on the second fluid (liquid latex) can be adjusted to allow the desired elastomeric composite to form. Examples of such volumetric flow ratios include, but are not limited to, a volumetric ratio of 0.4: 1 (first fluid to second fluid) at 3.2: 1; from 0.2: 1 to 2: 1 and the like. The volumetric flow ratio of the first fluid to the second fluid can be adjusted by any means or technique. For example, the volumetric flow rate of the first or second fluid or both fluids can be adjusted by a) increasing the volumetric flow rate, b) reducing the volumetric flow rate, and / or c) adjusting the flow rates of the fluids. one compared to the other. The pressure created by physical stresses applied to the flow of the first fluid causes the formation of a high velocity jet which allows the combination of the destabilized silica dispersion with the elastomer latex to occur rapidly, ie say in a split second.
As an example, the time during which two fluids are mixed and a liquid-to-solid phase inversion occurs may be of the order of a few milliseconds (e.g., from about 50 ms to about 1500 ms or about 100 msec. ms to about 1000 ms). For a given selection of fluids, if the speed of the first fluid is too slow for proper fluid mixing, or if the residence time is too short, a solid rubber phase and a solid product stream may not develop. . If the process time is too long, a return pressure may develop in the reaction zone and the continuous flow of materials will stop. Similarly, if the speed of the first fluid is too fast and the process time is too short, a solid rubber phase and a solid product stream may not develop.
As described above, the relative volumetric flow rates of the first fluid (destabilized silica slurry) and the second fluid (latex) can be adjusted and when at least one salt is used as a destabilizing agent, it is preferable to adjust the volumetric flow ratio of the destabilized silica slurry relative to the elastomer latex to be from 0.4: 1 to 3.2: 1. Other flow reports can be used.
When at least one acid is used as a destabilizing agent, it is preferable to adjust the volumetric flow ratio of the destabilized silica slurry on the elastomer latex so that it is 0, 2: 1 to 2: 1. Other flow reports can be used.
The elastomer latex may comprise at least one base (such as ammonia) and the destabilized silica dispersion may be obtained with the addition of at least one acid, wherein the molar ratio of the acid in the first fluid (silica) on the base (e.g., ammonia) in the second fluid (latex) is at least 1.0, or at least 1.1 or at least 1, 2, for example from 1 to 2 or from 1.5 to 4.5. The base may be present in various amounts in the elastomer latex, such as, not exclusively, from 0.3 wt% to about 0.7 wt% (based on the total weight of the elastomer latex) or other quantities lower or higher than this range.
The destabilized silica dispersion may be fed into the reaction zone, preferably in the form of a continuous high-velocity jet of injected fluid, for example from about 6 m / s to about 250 m / s, or from about 30 m / s to about 200 m / s, or about 10 m / s to about 150 m / s, or about 6 m / s to about 200 m / s, and the fluid containing the latex of The elastomer may be fed at a relatively slower rate, e.g. from about 0.4 m / s to about 11 m / s, or from about 0.4 m / s to about 5 m / s, or from about 1.9 m / s to about 11 m / s, or about 1 m / s to about 10 m / s or about 1 m / s to about 5 m / s. The fluid velocities are chosen to optimize the mixing between the fluids and the rapid coagulation of the elastomer latex. The velocity of the elastomer latex fed into the reaction zone should preferably be high enough to generate a turbulent flow to optimize mixing with the destabilized silica slurry. Nevertheless, the speed of the elastomer latex should be kept low enough that the latex does not coagulate by shearing before it is well mixed with the destabilized silica slurry. In addition, the speed of the elastomer latex should be kept low enough before it enters the reaction zone to prevent clogging of latex feed lines due to coagulation of the latex due to high shear. Likewise, there is also an optimized range of the speed of the destabilized silica dispersion. In theory, if the velocity of the destabilized silica slurry is too high, the shear rate-induced agglomeration of the silica particles could be too high to allow a uniform and adequate mixing between the silica particles and the latex particles elastomer.
The shear thickening resulting from the agglomeration and the formation of a network of silica particles could also reduce the turbulence of the destabilized silica slurry and adversely affect the mixture between the silica and the latex. On the other hand, if the velocity of the destabilized silica slurry is too low, mixing between the silica particles and the elastomer latex particles may not be sufficient. Preferably, at least one of the fluids entering the reaction zone has a turbulent flow. In general, because of the much higher viscosity of a typical destabilized silica dispersion over a typical elastomer latex, a much higher velocity of the destabilized silica dispersion is required to generate good fluid dynamics with the latex. of elastomer and rapid coagulation of the latex. Such a high velocity flow of the destabilized silica dispersion can induce cavitation in the reaction zone to improve rapid fluid mixing and distribution of silica particles in the elastomer latex. The speed of the destabilized silica dispersion can be varied using different volumetric flow rates, or a different nozzle or tip (having a wider or narrower diameter) at the inlet (3a) which introduces the first fluid comprising a destabilized silica dispersion. Using a nozzle to increase the speed of the destabilized silica dispersion, the latter can be supplied under pressure from about 30 psi to about 3000 psi, or from about 30 psi to about 200 psi, or about 200 psi at about 3000 psi, or about 500 psi to about 2000 psi or a relative pressure at least 2 times higher than the pressure applied to the fluid containing the elastomer latex or 2 to 100 times greater. The second elastomeric latex fluid may be provided, for example, at a pressure of from about 20 psi to about 30 psi. The pressure in the first fluid supply system can be up to about 500 psi.
On the basis of the production variables described in the present invention, such as the velocity of the destabilized silica slurry fluid, the velocity of the latex fluid, the relative flow rates of the destabilized silica slurry fluids and latex, the concentration destabilizing agent, such as a salt and / or an acid, the concentration of silica in the destabilized slurry, the percentage of rubber weight in the latex, the concentration of ammonia in the latex and / or the acid ratio / ammonia (if present), it is possible to control, obtain and / or predict the formation of a continuous phase of solid or semi-solid rubber containing silica over a desired silica content range. Thus, the method can be performed over an optimized range of variables. Thus, a) the velocity of one or both fluids, b) the volumetric flow ratio between the fluids, c) the destabilized nature of the silica, d) the particulate silica concentration, e.g., from 6 to 35 % by weight, of the destabilized silica dispersion, and e) the dry rubber content, e.g., 10 to 70% by weight of the latex, can allow mixing under high impact conditions to cause reversal. liquid to solid elastomer latex and uniformly dispersing the silica in the latex at a selected silica-rubber ratio, and thereby form a stream of a continuous phase of solid or semi-solid rubber containing silica. The recovery of the continuous phase flow of solid or semi-solid rubber containing silica can be obtained by any conventional technique for recovering a solid or semi-solid flow of material. The recovery may allow the solid or semi-solid stream to enter a container or reservoir or other restraining device. Such a container or holding tank may contain a solution of salt or acid or both to further coagulate the product in a more elastic state. For example, the recovery may be the transport or pumping of the solid stream to other areas or treatment devices some of whose options are described in this application. Recovery can be continuous, semi-continuous or discontinuous. The end of the outflow from the reaction zone is preferably semi-confined and open to the atmosphere and the flow of solid or semi-solid elastomeric composite is preferably recovered at ambient pressure to allow continuous operation of the process.
The flow of a continuous phase of solid rubber containing silica may be in the form of one or more "worms" of rope type or globules more or less elastic. The continuous phase of solid rubber containing silica may be capable of being stretched from 130 to 150% of its original length without breaking. In other cases, a continuous phase of silica-containing semi-solid rubber may be in the form of non-elastic viscous paste or gel material which can develop elastic properties. In each case, the outlet is a coherent solid flowing, whose consistency can be very elastic or slightly elastic and viscous. The output of the reaction zone may be a substantially constant flow concurrent with the current feed of elastomer latex fluids and destabilized silica dispersion into the reaction zone. Process steps, such as fluid preparation, can be performed in continuous, semi-continuous, or batch operations. The continuous phase of solid or semi-solid rubber containing the resulting silica may be subjected to subsequent additional processing steps, including continuous, semicontinuous or discontinuous operations.
The continuous phase of solid or semi-solid rubber containing silica created in the process contains water, or other aqueous fluid, and solutes from the original fluids, and, for example, may contain about 40% by weight to about 95% by weight water or about 40% by weight to about 90% by weight water, or about 45% by weight to about 90% by weight water, or about 50% by weight to about 85% by weight of water content, or about 60 to about 80% by weight of water, based on the total weight of the elastomer-silica composite stream. Optionally, after formation of the continuous phase of solid or semi-solid rubber containing silica comprising such a water content, this product may be subjected to dewatering and chewing steps and mixing steps for develop desired rubber properties and make rubber compounds. Further details of the process and other post-processing steps are described below and may be used in any embodiment of the present invention.
A continuous phase of semi-solid rubber containing silica can be converted into a continuous phase of solid rubber containing silica. This can be done by subjecting the continuous phase of silica-containing semi-solid rubber to mechanical steps which remove water from the composite and / or allowing the semi-solid material to stand for a certain period of time (e.g., after recovery in the reaction zone at an off-line site) for example, 10 minutes to 24 hours or more; and / or by heating the silica-containing semi-solid rubber continuous phase to remove the water content (e.g., at a temperature of about 50 ° C to about 200 ° C); and / or subjecting the semi-solid material to an additional acid or acid such as in an acid bath, or to an additional salt or salt, or to a salt bath, or to a combination of acid and salt, and the like. One or more or all of these steps may be used. In fact, one or more or all of these steps may be used for one or more additional processing steps even when a solid silica-containing solid rubber continuous phase is initially or subsequently recovered.
The degree of destabilization of the silica slurry determines, at least in part, the amount of silica that may be present in the elastomeric-silica composite (e.g., captured and evenly distributed in the composite) for a concentration of silica given in the silica slurry and a given dry rubber content of the latex. At selected lower silica-rubber target ratios (e.g. 15phr to 45 phr), the concentration of destabilizing agent may not be sufficiently high in the silica slurry and ultimately the silica / latex mixture may coagulate rapidly and form a continuous phase of solid or semi-solid rubber containing silica. In addition, the selection of appropriate concentrations of silica and rubber and appropriate relative fluid flow rates, as described herein, are aspects to be considered in forming the solid or semi-solid product. For example, at relatively low volumetric flow ratios between the destabilized slurry and the latex, the amount of destabilizing agent in the destabilized silica slurry may not be sufficient to allow rapid coagulation of the elastomeric latex in the zone. of reaction. In general, for a given elastomer latex, lower silica fillers can be obtained by increasing the destabilization of the silica slurry and / or reducing the weight percent of the silica in the destabilized slurry.
When a silica dispersion is destabilized, the silica particles tend to flocculate. When a silica dispersion is too strongly destabilized, the silica may "fall" from the solution and become unsuitable for use in the preferred embodiments.
When destabilization occurs, the surface charges on the silica are generally not completely eliminated. On the other hand, sometimes, when the silica particle, or the silica dispersion, is treated to be destabilized, the isoelectric point (IEP) may change from a negative zeta potential to a positive zeta potential value. In general, for silica, the net charge on the surface of the silica particles is reduced and the amplitude of the zeta potential is reduced during destabilization.
For higher silica-to-rubber ratios in the elastomer and silica composite, higher silica concentrations can be selected in the destabilized slurry and / or a volumetric flow ratio between the silica fluid and the latex fluid. higher. Once the silica slurry is destabilized and initially combined with the latex fluid, if the mixture does not coagulate, the volumetric flow ratio between the first fluid and the second fluid can be adjusted, for example by decreasing the volumetric flow rate of latex, which effectively achieves a higher silica-to-rubber ratio in the elastomeric composite. In the step of adjusting the amount of latex present, the amount of latex is, or becomes, an amount which does not cause excessive dilution of the destabilizing agent concentration in the overall mixture, so that the desired product can be formed during the residence time in the reaction zone. To obtain a desired silica-rubber ratio in the elastomer composition, various options are available. Optionally, the destabilization level of the silica slurry can be increased, for example by reducing the amplitude of the zeta potential of the destabilized silica slurry (e.g., by adding more salt and / or acid). Or, optionally, the concentration of silica in the destabilized silica slurry can be adjusted, for example, by reducing or increasing the concentration of silica in the destabilized silica slurry. Or, optionally, a latex having a higher rubber content may be used or a latex may be diluted to a lower rubber content, or the relative flow rate of the latex may be increased. Or, possibly, the flow rate and size of the orifice (where each can control or change the speed of the fluid or fluids), or the relative orientation of the two fluid streams can be modified to shorten or lengthen the residence time fluids combined in the reaction zone and / or modify the amount and type of turbulence at the point of impact of the first fluid on the second fluid. One, two or more of these options may be used to adjust the process parameters and achieve a target or desired silica-rubber ratio in the elastomeric composite.
The amount or level of destabilization of the silica slurry is a major factor in determining the silica-rubber ratio that can be obtained in the elastomer-silica composite. A destabilizing agent used to destabilize the silica in the slurry may play a role in accelerating the coagulation of the elastomeric latex particles as the destabilized silica slurry is mixed with the elastomeric latex in the reaction zone. In theory, the coagulation rate of the latex in the reaction zone may depend on the concentration of the destabilizing agent in the combined fluids. It has been observed that by executing the process to produce an elastomer-silica composite under different conditions, a threshold concentration of a destabilizing agent present in the combined mixture of fluids at the time of mixing which is effective to produce can be determined. a continuous phase of solid or semi-solid rubber containing silica. An example of selection and adjustment of the process conditions to obtain the threshold concentration for obtaining a continuous phase of solid or semi-solid rubber containing silica is described in the examples below. If the threshold concentration for a given selection and composition of fluids, volumetric flow rates and velocities is not attained or exceeded, a continuous phase of solid or semi-solid rubber containing silica is generally not produced.
The minimum amount of destabilization of the silica slurry is indicated by an amplitude of the zeta potential of less than 30 mV (e.g., with zeta potentials ranging from -29.9 mV to about 29.9 mV, about -28 mV to about 20 mV, about -27 mV to about 10 mV, about -27 mV to about 0 mV, about -25 mV to about 0 mV, about -20 mV to about 0 mV, from about -15 mV to about 0 mV, from about -10 mV to about 0 mV and the like). If the silica slurry has been destabilized to this zeta potential range, the silica in the destabilized slurry can be incorporated into a continuous phase of solid or semi-solid rubber containing silica when combined with the latex. elastomer.
If it may be desirable to destabilize the latex before combining it with the silica slurry, under shear conditions such as those present during continuous pumping of the latex into the reaction zone, it is difficult to destabilize the reaction mixture. latex fluid beforehand without causing premature coagulation of the latex. In contrast, the destabilizing agent used in the destabilized silica slurry may be present in a higher amount to enhance destabilization of the latex and / or mitigate dilution of the agent once the silica slurry has been destabilized and the latex combined. In another option, at particularly high silica concentrations (e.g.,> 25 wt% silica in the silica slurry), some destabilizing agent may be added separately to the destabilized silica slurry mixture. and elastomer latex in the reaction zone to enhance coagulation of the latex.
Without wishing to rally to any theory, the process for producing an elastomer-silica composite would form coherent networks interpenetrated rubber particles and silica aggregates in about two seconds or less, as in a fraction of second, when the two fluids combine and the phase inversion takes place, which produces a solid or semi-solid material comprising these networks with encapsulated water. Such rapid network formation allows the continuous production of a continuous phase of solid or semi-solid rubber containing silica. In theory, the shear-induced agglomeration of silica particles during the passage of the destabilized silica slurry into the inlet nozzle to be combined with the elastomer latex could be useful for creating a unique particle arrangement and uniform in rubber masterbatches and capture silica particles in the rubber by hetero-coagulation between the silica and rubber particles. According to another theory, in the absence of an interpenetrating network, there could be no composite of a continuous phase of solid or semi-solid rubber containing dispersed silica particles, in the form of a worm, or solid pieces, for example, which encapsulates from 40 to 95% by weight of water and retains all or most of the silica in subsequent dewatering processes, including pressing and high-energy mechanical work. .
In theory, the formation of a silica network is due, at least in part, to the agglomeration of silica particles induced by shearing when the destabilized silica slurry passes through a pressure nozzle (3a) at high speed through the first inlet (3) in the reaction zone (13), as illustrated in FIG. 1. This process is facilitated by reducing the stability of the silica in the destabilized slurry when the silica slurry has been destabilized (eg, treating the silica slurry with salt or acid or both).
In theory, the liquid-solid phase inversion of the latex may result from various factors, including shear-induced coagulation from the mixture with the high velocity jet of destabilized silica slurry, the interaction of the silica surface with the latex components, ionic or chemical coagulation due to contact with the silica slurry containing the destabilizing agent and the combination of these factors. In order to form a composite material comprising the interpenetrating silica network and the rubber network, the formation rates of each network, as well as the mixing speed, must be balanced. For example, for highly destabilized silica slurries having a high salt concentration in the slurry, agglomeration and formation of the silica particle network occurs rapidly under shear conditions. In this case, the volumetric flow rates and velocities are adjusted so that the latex has a rapid coagulation rate for the formation of interpenetrated silica / rubber networks. The formation velocities are slower with silica slurries slightly destabilized.
An exemplary method for producing an elastomer-silica composite comprises a continuous flow of a fluid that contains at least one elastomer latex (sometimes called the second fluid) through the inlet 11 (FIG. (a), (b) and / or (c)) in a reaction zone 13 at a volumetric flow rate of from about 20 l / h to about 1900 l / h. The method further comprises introducing a continuous flow of another fluid containing a destabilized silica dispersion through the inlet 3 (sometimes called the first fluid) under pressure which can be obtained by means of nozzle tips ( in FIG. 1 at 3a) at a volumetric flow rate ranging from 30 l / h to 1700 l / h. The destabilized state of the silica dispersion and the impact of the two fluid streams (introduced by the inlets 3 and 11) under high energy conditions created by the introduction of the first fluid in the form of a high-speed jet (eg, from about 6 m / s to about 250 m / s) that collides with the slower velocity latex stream (eg, from 0.4 to 2 m / s) entering the Reaction at an angle approximately perpendicular to the high velocity jet of the first fluid is effective to intimately mix the silica with the latex stream, thereby promoting uniform distribution of the silica in the continuous solid-phase stream of silica-containing solid rubber. the output of the reaction zone.
As an option, the elastomer latex introduced, for example, through the inlet 11 may be a mixture of two or more latexes, such as a mixture of two or more synthetic latexes. Optionally, the devices of Figures 1 (a), (b) and / or (c) may be modified to have one or more additional inputs so as to introduce other components into the reaction zone, such as one or more latexes. additional. For example, in Fig. 1 (c), input 14 may be used to introduce another latex in addition to use of input 11. The additional input (s) may be sequential to each other, or adjacent to each other or defined in any orientation as long as the material (eg latex) introduced by the entry (s) has sufficient time to disperse or be incorporated into the resulting stream. In WO 2011/034587, incorporated herein by reference in its entirety, FIGS. 1, 2A and 2B provide examples of additional inputs and their orientations which may be adopted for use in embodiments of the present invention. the present invention. In one particular example, an inlet can introduce a stream that comprises natural rubber latex and an additional inlet can introduce a synthetic elastomer latex and these latex streams are combined with the flow of the destabilized silica dispersion to create the flow. of a continuous solid or semi-solid continuous rubber phase containing silica. When several inputs are used for the introduction of the elastomer latex, the flow rates may be identical or different from each other.
Figure 2 depicts an example, using a block diagram of different steps that can occur for the formation of the elastomeric composite. As illustrated in FIG. 2, the destabilized dispersion of silica (first fluid) 100 is introduced into the reaction zone 103 and the fluid containing the elastomer latex (second fluid) 105 is also introduced into the reaction zone 103. optionally, a continuous phase stream of solid or semi-solid rubber containing silica exits the reaction zone 103 and may optionally enter a holding zone 116 (eg, a holding tank with or without the addition a solution of salt or acid to further enhance the coagulation of rubber and the formation of silica / rubber networks); and can optionally enter, directly or after diversion to a holding zone 116, a dewatering zone 105; may possibly enter a mixer / continuous mixing device 107; may possibly enter a mill (eg, an open mill, also called a roll mill) 109; can be subjected to an additional grinding 111 (identical or different conditions of the grinder 109) (as an identical or different energy input); may be subjected to optional mixing by a mixer 115 and / or may be granulated using a granulator 117 and may then be optionally pressed, using a press 119 and may optionally be decomposed using an additional mixer 121.
As regards silica, one or more types of silica, or any combination of silicas, may be used in any embodiment of the present invention. Silica suitable for reinforcing elastomer composites may be characterized by a surface area (BET) of from about 20 m 2 / g to about 450 m 2 / g; from about 30 m 2 / g to about 450 m 2 / g; from about 30 m 2 / g to about 400 m 2 / g; or from about 60 m 2 / g to about 250 m 2 / g; and for heavy truck tire treads, a BET surface area ranging from about 60 m 2 / g to about 250 m 2 / g or for example from about 80 m 2 / g to about 200 m 2 / g. Highly dispersible precipitated silica may be used as a filler in the present processes. Highly dispersible precipitated silica (HDS) is any silica having a large capacity to disagglomerate and disperse in an elastomeric matrix. Such determinations can be observed in a known manner by electron or optical microscopy on thin sections of elastomeric composite. Examples of commercial grade HDS include: WR Grace's Perkasil® GT 3000GRAN Thanksgiving & Co, Ultrasil® 7000 Silica
Evonik Industries, Zeosil® 1165 MP and 1115 MP silica from Solvay SA, Hi-Sil® EZ 160G silica from PPG Industries, Inc. and Zeopol® 8741 or 8745 silica from JM Huber Corporation. A conventional non-H DS precipitated silica may also be used. Examples of commercial grade conventional precipitated silica include: Perkasil® KS 408 silica from WR Grace & Co, Zeosil® 175GR silica from Solvay SA, Ultrasil® VN3 silica from Evonik Industries, Hi-Sil® 243 silica from PPG Industries, Inc. and Hubersil® 161 silica from JM Huber Corporation. Hydrophobic precipitated silica with silane coupling agents attached to the surface can also be used. Examples of commercial grade hydrophobic precipitated silica include: Agilon® 400, 454 or 458 silica from PPG Industries, Inc. and Coupsil silicas from Evonik Industries, eg Coupsil 6109 silica.
In general, the silica (eg, silica particles) has a silica content of at least 20% by weight, at least 25% by weight, of at least 30% by weight, at least 35% by weight, at least 40% by weight, at least 50% by weight, at least 60% by weight, at least 70% by weight, at least 80% by weight % by weight, at least 90% by weight or almost 100% by weight or 100% by weight, or from about 20% by weight to about 100% by weight, all percentages being based on the total weight of the particle. Any of these silicas may be chemically functionalized to have attached or adsorbed chemical groups, such as attached or adsorbed organic groups. Any combination of silica (s) can be used. The silica that forms the silica slurry and / or the destabilized silica slurry may be partly or wholly silica having a hydrophobic surface, which may be a silica that is hydrophobic or a silica that becomes hydrophobic by rendering the surface of the silica hydrophobic by treatment (eg, chemical treatment). The hydrophobic surface can be obtained by chemically modifying the silica particle with hydrophobicizing silanes without ionic groups, eg, bis-triethoxysilylpropyltetrasulfide. Such a surface reaction on the silica may be carried out in a separate process step prior to dispersion or carried out in situ in a silica dispersion. The surface reaction reduces the silanol density on the surface of the silica, thereby reducing the ionic charge density of the silica particle in the slurry. Silica particles having a hydrophobic surface treatment that can be used in dispersions can be obtained from commercial sources, such as Agilon® 454 silica and Agilon® 400 silica from PPG Industries. Silica dispersions and destabilized silica dispersions can be made using silica particles having low surface silanol density. Such silica can be obtained by dehydroxylation at temperatures above 150 ° C through, for example, a calcination process.
In addition, the silica slurry and / or the destabilized silica slurry may optionally contain a minor amount (10% by weight or less, based on the total weight of the particulate material) of any particle without silica, such as carbon black or zinc oxide or calcium carbonate, or other particulate materials useful in rubber compositions (e.g., 95% by weight precipitated silica and 5% by weight black). carbon). Any grade of reinforcing or non-reinforcing carbon black may be selected to achieve the desired property in the final rubber composition.
The silica may be dispersed in an aqueous fluid according to any technique known to those skilled in the art. A particulate silica dispersion may be mechanically treated, for example, to reduce particle size. This operation may be carried out before or during or after the destabilization of the dispersion and may contribute in a minor or major way to the destabilization of the dispersion. The mechanical treatment may include or include crushing, grinding, spraying, breaking or high shear treatment or a combination thereof.
For example, a silica slurry can be made by dispersing silica in a fluid by means of a crushing process. Such a crushing process reduces the size of most silica agglomerates (e.g., more than 80% by volume) in the fluid to less than 10 microns, and preferably less than 1 micron, which is the range. typical size of colloidal particles. The fluid may be water, an aqueous fluid or a non-aqueous polar fluid. The slurry, for example, may comprise from about 6% to about 35% by weight of silica-containing particles, based on the weight of the slurry. The size of the silica particles can be determined using a light scattering technique. Such a slurry, when made in water using silica particles having a low residual salt content at a pH of from 6 to 8, generally has a zeta potential amplitude greater than or equal to 30 mV and exhibits good stability against aggregation, gelation and sedimentation in a storage tank with low agitation (eg, agitation speed below 60 rpm). Since well-crushed silica particles are generally stable in water at a pH of about 7 because of the high negative charges on the silica, very high shear is generally required to overcome the repulsive energy barrier between particles to induce the agglomeration of particles.
In an illustrative method using silica, such as HDS granules, the silica may be combined with water and the resulting mixture passed through a colloid mill, a pipe crusher or the like to form a dispersion fluid. This fluid then passes into a homogenizer which more finely disperses the filler in the carrier liquid to form the slurry. Illustrative homogenizers include, but are not limited to, the Microfluidizer® system marketed by Microfluidics International Corporation (Newton, Mass., USA). Homogenizers such as models MS18, MS45 and MC120, and serial homogenizers marketed by APV Homogenizer Division of APV Gaulin, Inc. (Wilmington, Mass., USA) are also suitable. Other suitable homogenizers are commercially available and will be recognized by those skilled in the art based on the advantages of the present invention. The optimum operating pressure in a homogenizer depends on the device itself, the type of silica and / or the silica content. For example, a homogenizer may be used at a pressure of from about 10 psi to about 5000 psi or more, for example, from about 10 psi to about 1000 psi, from about 1000 psi to about 1700 psi from about 1,700 psi to about 2,200 psi, from about 2,200 psi to about 2,700 psi, from about 2,700 psi to about 3,300 psi, from about 3,300 psi to about 3,800 psi, about 3,800 psi at about 4300 psi, or about 4,300 psi at about 5,000 psi. As indicated above, the dispersion of particulate silica is destabilized before the masterbatch process is carried out and the dispersion can be destabilized by one of the techniques mentioned in the present invention, before, during or after any crushing process or similar mechanics.
According to the wet masterbatch method used, a high concentration of silica in the slurry can be used to reduce the step of removing excess water or other carrier. For the destabilized dispersion of the silica particles, the liquid used may be water or an aqueous fluid or other fluid. For the destabilized dispersion, about 6% by weight to about 35% by weight of filler may be used, for example, about 6% by weight to 9% by weight, about 9% by weight to about 12% by weight about 12% by weight to about 16% by weight, about 10% by weight to about 28% by weight, about 16% by weight to about 20% by weight, about 20% by weight to about 24% by weight, about From about 24% by weight to about 28% by weight, or about 28% by weight to about 30% by weight, based on the weight of the destabilized dispersion. For the destabilized dispersion, a higher silica concentration may have advantages. For example, a silica concentration in the destabilized slurry can be at least 10% by weight or at least 15% by weight based on the weight of the slurry (e.g., about 12% by weight to about 35% by weight or about 15.1% by weight to about 35% by weight or about 20% by weight to about 35% by weight), which may have advantages such as, for example, reducing wastewater, increasing production rates and / or reducing the size of the equipment needed for the process. Those skilled in the art will recognize, based on the advantages of the present invention, that the silica concentration (percent by weight) of the silica slurry (and the destabilized silica slurry) should be coordinated with other variables. process during the wet process to obtain a desired silica-to-rubber ratio (in phr) in the final product.
The details of a silica dispersion are described below. In general, a dispersion may be a material comprising a plurality of phases in which at least one of the phases contains or comprises or consists of finely divided phase domains, optionally in the colloidal size range, dispersed in a continuous phase. A silica dispersion or slurry or a silica dispersion can be prepared as a stable suspension of silica particles in an aqueous fluid, wherein the charge on the particle surface prevents agglomeration of particles and the dispersion is characterized by an amplitude of zeta potential greater than or equal to 30 mV. In such dispersions, the silica particles remain in a dispersion and / or suspension stable with respect to aggregation and coalescence, for example, for at least 8 hours. A stable dispersion can be a dispersion in which the constant size of the particles is preserved, and in which the particles do not settle or gell or take a long time to deposit significantly in the presence of slow or periodic agitation, for example, do not settle significantly after 8 hours, or 12 hours or 24 hours or 48 hours. For example, for colloidal silica particles well dispersed in an aqueous fluid, the stability can generally be observed at a pH of 8 to 10. In addition, with the slow stirring of the dispersion, the silica particles remain suspended in the fluid by means of particle surface charge, particle surface polarity, pH, selected particle concentration, particle surface treatment and a combination thereof. The fluid may be or include water, an aqueous mixture, or a miscible or partially water-miscible fluid, such as various alcohols, ethers, and other miscible water-soluble solvents of low molecular weight, preferably having organic groups. C1-C5 (e.g., ethanol, methanol, propanol, ethyl ether, acetone and the like). As indicated above, the dispersion, for example, may comprise from about 6% by weight to about 35% by weight, from about 10% by weight to about 28% by weight, from about 12% by weight to about 10% by weight. about 25% by weight, or about 15% by weight to about 30% by weight of silica-containing particles, based on the weight of the dispersion.
A stable dispersion may be a colloidal dispersion. In general, a colloidal dispersion or a colloid may be a substance in which dispersed particles are suspended in another substance. The dispersed phase particles have a diameter of from about 1 nanometer to about 1000 nanometers and generally from about 100 nanometers to about 500 nanometers. In a stable colloidal dispersion, particle size, density, and concentration are such that gravity easily does not sediment particles out of the dispersion. Colloids with a zeta potential amplitude of 30 mV or greater are generally considered stable colloidal systems. The reduction of particle stability (eg, silica) in a colloid or dispersion due to charge stabilization can be measured by reducing the zeta potential amplitude. The particle size can be measured by a light scattering method.
A destabilized silica dispersion can be understood as a silica dispersion in which weakened repulsive forces between particles allow the particles to be grouped together and the formation of a network or gel of silica particles once the dispersion has been destabilized. subjected to an effective amount of shear. In some cases, mechanical shear can cause destabilization of silica dispersions and consolidation of silica particles. The greater the degree of destabilization of the silica slurry, the higher the shear required for aggregation of the particles and the higher the rate of aggregation of the particles. For destabilized dispersion, the dispersion may comprise from about 6% by weight to about 35% by weight of particulate silica (based on the weight of the dispersion), e.g. from about 8% by weight to about 35% by weight, from about 10% by weight to about 28% by weight, from about 12% by weight to about 25% by weight, from about 15% by weight to about about 30% by weight. The aqueous fluid in the destabilized dispersion of silica particles may be or include water, an aqueous mixture or a miscible or partially water-miscible fluid, such as various alcohols, ethers and other miscible solvents in low water. molecular weight, preferably having C1-C5 organic groups (e.g., ethanol, methanol, propanol, ethyl ether, acetone and the like). To form elastomer-silica composites, the stability of the silica particles in a slurry or dispersion is reduced (i.e., destabilized) by lowering the electrostatic energy barrier between particles using an effective amount of a destabilizing agent, such as an acid or a salt or both, before the slurry is mixed with the latex. A destabilizing agent may be selected for its ability to reduce the interaction of repulsive charges among particle surfaces that prevent agglomeration of particles in the fluid.
A destabilized silica dispersion can be obtained by lowering the pH of the silica dispersion to close the isoelectric point of the silica (around pH 2 for typical hydrophilic silicas). For example, destabilized silica can be obtained by adding acid to lower a pH of the particulate silica dispersion from 2 to 4, thereby reducing the zeta potential amplitude of the dispersion to less than 30 mV, such as about less than 28 mV (e.g., zeta potentials of about 18 mV to about 6 mV for formic acid as a destabilizing agent). The addition of acid and / or salt to the silica slurry can effectively reduce the stability of the silica particles dispersed in the water. The molar concentration of acid or salt is generally the dominant factor that determines the zeta potential of the destabilized silica slurry. In general, a sufficient amount of acid or salt or both can be used to reduce the zeta potential amplitude of the silica slurry to less than 30 mV, such as 28 mV or less, preferably 25 mV or less. least, to produce a continuous phase of semi-solid or solid rubber containing silica.
The amount of acid used to destabilize the silica dispersion may be an amount to obtain a zeta potential amplitude in the destabilized dispersion of less than 30 mV, e.g. 28 mV or less, or 25 mV or less. The acid can be at least one organic or inorganic acid. The acid may be or include acetic acid, formic acid, citric acid, phosphoric acid or sulfuric acid or any combinations thereof. The acid may be or include a C1 to C4 alkyl-containing acid. The acid can be or include an acid having a molecular weight or a mass average molecular weight (MW) of less than 200, for example less than 100 MW, or less than 75 MW or ranging from about 25 MW to about 100 MW . The amount of acid may vary and depend on the silica dispersion to be destabilized. The amount of acid may range, for example, from about 0.8% by weight to about 7.5% by weight, for example from about 1.5% by weight to about 7.5% by weight or more (based on the total weight of the fluid comprising the silica dispersion). If an acid is the sole destabilizing agent used, the amount of acid may be an amount that lowers the pH of the silica dispersion by at least 2 pH units or at least a pH of 5 or less, or the range of pKa of the acid or acids used, so as to reduce charge interactions among the particles.
[0067] A destabilized dispersion can be obtained by treating a silica dispersion with a destabilizing agent comprising one or more salts to modify the zeta potential of the slurry to the range described above. The salt may be or include at least one metal salt (e.g., Group 1, 2 or 13 metals). The salt may be or include a calcium salt, a magnesium salt or an aluminum salt. Illustrative counterions include nitrate, acetate, sulfate, halogen ions, such as chloride, bromide, iodine and the like. The amount of salt may range, for example, from about 0.2% by weight to about 2% by weight or more, for example, from about 0.5% or 1% by weight to about 1.6% by weight. weight (based on the weight of the fluid comprising the destabilized silica dispersion).
A combination of at least one salt and / or an acid may be used to destabilize the silica dispersion.
When the destabilized silica dispersion is obtained with the addition of at least one salt, the salt concentration in the destabilized silica dispersion can be from about 10 mM to about 160 mM, or other higher amounts. or below this range.
When the destabilized silica dispersion is obtained with the addition of at least one acid, the concentration of acid in the destabilized dispersion can be from about 200 mM to about 1000 mM, for example, from about 340 mM to about 1000 mM, or other amounts greater or less than this range.
A destabilized silica dispersion can be obtained by using treated silica particles to comprise an appropriate amount of surface functional groups bearing positive charges so that the net charges on the silica surface are sufficiently reduced to decrease the zeta potential amplitude of the dispersion at a level below 30 mV. The net charge on the surface of the silica may be positive, instead of being negative, because of such a surface treatment. The positively charged functional group can be introduced to the surface of the silica by chemical fixation or physical adsorption. For example, the silica surface may be treated with N-trimethoxylsilylpropyl-N, N, N-trimethylammonium chloride either before or after preparation of the silica dispersion. It is also possible to adsorb cationic coating agents, such as amine-containing molecules and basic amino acids on the surface of the silica. In theory, a net positive charge on the surface of the silica particles can enhance the coagulation of the latex, which comprises negatively charged rubber particles, by means of hetero-coagulation.
As regards the "second fluid", which contains at least one elastomer latex, this fluid may contain one or more elastomer latexes. An elastomer latex may be considered a stable colloidal rubber dispersion and may contain, for example, from about 10% by weight to about 70% by weight of rubber based on the total weight of latex. The rubber may be dispersed in a fluid, such as water or other aqueous fluid, for example. The aqueous content of this fluid (or the water content) may be 40% by weight or more, for example 50% by weight or more, or 60% by weight or more or 70% by weight or more, for example from about 40% by weight to about 90% by weight based on the weight of the fluid comprising the at least one elastomer latex. Suitable elastomer latexes are natural and synthetic elastomer latexes and latex blends. For example, the elastomer latex may be made synthetically by polymerizing a monomer such as styrene which has been emulsified with surfactants. The latex must be suitable for the selected wet masterbatch process and the intended purpose or application of the final rubber product. It is within the ability of those skilled in the art to select a suitable elastomer latex or elastomer latex blend suitable for use in the methods and apparatus described in this application, based on the advantages of the present invention.
The elastomer latex may be or include natural rubber, such as a natural rubber emulsion. Illustrative natural elastomer latices include, but are not limited to, planting latex, latex concentrate (produced, for example, by evaporation, centrifugation or skimming), skim latex (e.g., the supernatant remaining after the production of latex concentrate by centrifugation) and mixtures of any two or more thereof in any proportion. The natural rubber latex is generally treated with ammonia to preserve it and the pH of the treated latex generally ranges from 9 to 11. The ammonia content of the natural rubber latex can be adjusted and can be reduced, for example by bubbling. to nitrogen in or through the latex. In general, latex suppliers decant the latex by adding diammonium phosphate. They can also stabilize the latex by adding ammonium laurate. The natural rubber latex can be diluted to the desired dry rubber content (DRC). Thus, the latex that can be used herein can be a decanted latex. A secondary preservative, a mixture of tetramethylthiuram disulfide and zinc oxide (TS solution) can also be included. The latex must be suitable for the selected wet masterbatch process and the intended purpose or application of the final rubber product. The latex is generally provided in an aqueous carrier liquid (e.g., water). The amount of aqueous carrier liquid may vary, for example, from about 30% by weight to about 90% by weight based on the weight of the fluid. In other words, such natural rubber latices may contain, or may be adjusted to contain, e.g., from about 10% by weight to about 70% by weight of rubber. Selection of a suitable latex or latex blend is within the skill of those skilled in the art based on the advantages of the present invention and knowledge of selection criteria generally well recognized in the industry.
The natural rubber latex may also be chemically modified in any manner. For example, it can be processed to chemically or enzymatically modify or reduce different non-rubbery components or the rubber molecules themselves can be modified with different monomers or other chemical groups such as chlorine. The epoxidized natural rubber latex may be particularly beneficial because the epoxidized rubber is expected to interact with the silica surface (Martin, et al., Rubber Chemistry and Technology, May 2015, 10.5254 / rct15.85940). Illustrative methods of chemical modification of natural latex are described in European Patent Nos. 1489102, 1816144 and 1834980, Japanese Patent Nos. 2006152211, 2006152212, 2006169483, 2006183036, 2006213878, 2006213879, 2007154089 and 2007154095 and British Pat. GB2113692, U.S. Patent Nos. 6,841,606 and 7,312,271, and U.S. Patent No. 2005-0148723. Other methods known to those skilled in the art can also be used.
[0075] Other illustrative elastomers include, but are not limited to, rubbers, polymers (eg, homopolymers, copolymers and / or terpolymers) of 1,3-butadiene, styrene, isoprene, isobutylene, 2,3 -dialkyl-1,3-butadiene, wherein the alkyl may be methyl, ethyl, propyl, etc., acrylonitrile, ethylene, propylene and the like. The elastomer may have a glass transition temperature (Tg) measured by differential scanning calorimetry (DSC) ranging from about -120 ° C to about 0 ° C. Examples include, but are not limited to, styrene-butadiene rubber (SBR), natural rubber and its derivatives, such as chlorinated rubber, polybutadiene, polyisoprene, poly (styrene-co-butadiene) and derivatives extended to a of their oils. Mixtures of any of the foregoing may also be used. The latex may be in an aqueous carrier liquid. Suitable specific rubbers include: copolymers of styrene and butadiene comprising from about 10% by weight to about 70% by weight of styrene and from about 90% to about 30% by weight of butadiene, such as a copolymer of 19 parts of styrene and 81 parts of butadiene, a copolymer of 30 parts of styrene and 70 parts of butadiene, a copolymer of 43 parts of styrene and 57 parts of butadiene and a copolymer of 50 parts of styrene and 50 parts of butadiene; polymers and copolymers of conjugated dienes, such as polybutadiene, polyisoprene, polychloroprene and the like, and copolymers of such dienes conjugated with a monomer containing an ethylenic group copolymerizable therewith, such as styrene, methylstyrene, chlorostyrene, acrylonitrile, 2-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2-vinylpyridine, 2-methyl-5-vinylpyridine, substituted allyl acrylates, ketone vinylic acid, methylisopropenyl ketone, methyl vinyl ether, alpha-methylenic carboxylic acids and esters and amides thereof, such as acrylic acid and dialkylacrylic acid amide. Also useful in the present invention are copolymers of ethylene and other high molecular weight alpha olefins, such as propylene, 1-butene and 1-pentene. Mixtures of two or more types of elastomer latex, including mixtures of synthetic and natural rubber latex or with two or more types of synthetic or natural rubber, may also be used.
The rubber compositions may contain, in addition to the elastomer, the filler and the coupling agent, various processing aids, such as dilution oils, anti-degradants, antioxidants and / or other additives.
The amount of silica (in parts per hundred parts by weight of rubber or phr) present in the elastomeric composite can range from about 15 phr to about 180 phr, from about 20 phr to about 150 phr, about 25 phr to about 80 phr, from about 35 phr to about 115 phr, from about 35 phr to about 100 phr, from about 40 phr to about 100 phr, from about 40 phr to about 90 phr, about 40 phr to about 80 phr, about 29 phr to about 175 phr, about 40 phr to about 110 phr, about 50 phr to about 175 phr, about 60 phr to about 175 phr, and the like. The silica-reinforced elastomeric composite may optionally include a small amount of carbon black for stability of color, conductivity and / or UV and / or other purposes. Small amounts of carbon black contained in the elastomeric composite may be, for example, from about 0.1% by weight to about 10% by weight, based on the total weight of the particles present in the elastomeric composite. Any grade or type of carbon black may be used, such as air-strengthened or semi-reinforcing carbon blacks of pneumatic quality and the like.
In any process for producing an elastomeric composite, the method may further comprise one or more of the following steps, after the formation of the continuous phase of solid or semi-solid rubber containing silica: one or more containment steps or other steps of solidification or coagulation to enhance the development of elasticity; one or more dewatering steps may be used to dry the composite and obtain a dried composite; one or more extrusion steps; one or more calendering steps; one or more grinding steps to obtain a crushed composite; one or more granulation steps; one or more pressing steps to obtain a product or a pressed mixture; the mixture or the pressed product can be decomposed to form a granulated mixture; one or more mixing or mixing steps to obtain a mixed composite.
By way of further example, the following sequence of steps can be performed and each step can be repeated any number of times (with identical or different settings) after the formation of the solid or semi-solid rubber phase. -Solid containing silica: - one or more retaining steps or other coagulation steps to enhance the development of elasticity; dewatering the composite (e.g., the elastomeric composite exiting the reaction zone) to obtain a dried composite; mixing or mixing the dried composite to obtain a mixture of compounds; grinding the mixture of compounds to obtain a ground mixture (eg, rolling); - granulation or mixing of the ground mixture; optional pressing of the mixture after granulation or mixing to obtain a pressed mixture; optional decomposition of the pressed mixture and mixing.
According to one embodiment, a coupling agent may be introduced in any one of the steps (or in several steps or locations) insofar as the coupling agent has the possibility of dispersing in the elastomer composite. .
As an example, the continuous phase of solid or semi-solid rubber containing silica exiting the reaction zone can be transferred to a suitable apparatus, (eg a conveyor belt or a conveyor) to an extruder. drying. Suitable dewatering extruders are well known and marketed by, for example, the French Oil Mill Machinery Co. (Piqua, Ohio, USA). Alternatively or additionally, the continuous phase of solid or semi-solid rubber containing silica may be compressed, for example, between metal plates, to expel at least a portion of the aqueous fluid phase, e.g., to expel the aqueous fluid until the water content of such a material is less than 40% by weight.
In general, the post-treatment steps may comprise compressing the elastomeric composite to remove about 1% by weight to about 15% by weight, or more, of an aqueous liquid phase, based on the total weight of the composite. elastomer. The dewatering extruder can bring the elastomeric-silica composite eg from about 40% to about 95% water content and from about 5% to about 60% water content (e.g. about 5% to about 10% water content, about 10% to about 20% water content, about 15% to about 30% water content, or about 30% to about 50% water content. water content), all percentages by weight being based on the total weight of the composite. The dewatering extruder can be used to reduce the water content of the elastomeric-silica composite to about 35% by weight or other amounts. The optimum water content may vary depending on the elastomer used, the amount and / or type of filler and devices used for chewing the dried product. The elastomeric composite can be dried to a desired water content, after which the resulting dried product can be further chewed while being dried to a desired moisture level (e.g., about 0.5% at about 10% for example, from about 0.5% to about 1%, from about 1% to about 3%, from about 3% to about 5% or from about 5% to about 10%, preferably less than 1% by weight based on the total weight of the product). The mechanical energy imparted to the material can improve the properties of the rubber. For example, the dried product can be mechanically worked with one or more continuous mixers, an internal mixer, a twin screw extruder, a single screw extruder or a roller mill. This optional mixing step may have the ability to chew the mixture and / or generate a surface or expose a surface that may allow the removal of water (at least a portion thereof) possibly present in the mixture. Suitable chewing devices are well known and commercially available, including, for example, a Unimix continuous mixer and an MVX machine (mixing, degassing, extruding) from Farrel Corporation of Ansonia, CT, USA, a continuous long mixer from Pomini, Inc., a Pomini continuous mixer, co-rotating two-rotor cross-fed extruders, two-rotor counter-rotating non-intercrossed extruders, Banbury mixers, Brabender mixers, intercross-type internal mixers, internal mixers, extruders continuous mixing, the biaxial milling extruder produced by Kobe Steel, Ltd. and a Kobe continuous mixer. An alternative chewing apparatus will be familiar to those skilled in the art and may be used.
As the dried product is processed in a desired apparatus, the apparatus imparts energy to the material. Without being bound to a particular theory, it is believed that the friction generated during mechanical chewing heat the dried product. Some of this heat is dissipated by heating and vaporizing the moisture in the dried product. Some of the water can also be removed by pressing the material parallel to the heating. The temperature must be high enough to rapidly vaporize the water with vapor that is released into the atmosphere and / or is removed from the apparatus, but not too high so as not to burn the rubber. The dried product can reach a temperature of from about 130 ° C to about 180 ° C, for example from about 140 ° C to about 160 ° C, particularly when the coupling agent is added before or during mastication. The coupling agent may comprise a small amount of sulfur and the temperature must be kept low enough to prevent the rubber from curing during chewing.
Optionally, additives may be combined with the dried product in a mechanical mixer. Specifically, additives such as a filler (which may be the same or different from the filler used in the blender; illustrative fillers include silica, carbon black and / or zinc oxide) , other elastomers, another masterbatch or additional masterbatch, antioxidants, coupling agents, plasticizers, processing aids (eg, stearic acid which may also be used as a hardening agent , liquid polymers, oils, waxes and the like), resins, flame retardants, dilution oils and / or lubricants and a mixture of any of these may be added in a mechanical mixer. Additional elastomers can be combined with the dried product to produce elastomer blends. Suitable elastomers include any of the elastomers used in latex form in the mixing process described above and elastomers, such as EPDM, which are not available in latex form and may be the same or different from the elastomer in the elastomeric composite containing silica. Illustrative elastomers include, but are not limited to, rubbers, polymers (e.g., homopolymers, copolymers and / or terpolymers) of 1,3-butadiene, styrene, isoprene, isobutylene, 2,3-dialkyl-1, 3-butadiene, wherein the alkyl may be methyl, ethyl, propyl, etc., acrylonitrile, ethylene, propylene and the like. Methods of producing masterbatches are described in US Patent Co-Ownership Nos. 7,105,595, 6,365,663 and 6,075,084 and PCT Publication WO2014 / 189826. The antioxidant (an example of a degradation inhibitor) may be an amine antioxidant, a phenol antioxidant, an imidazole antioxidant, a carbamate metal salt, one or more para-phenylene diamines and / or dihydrotrimethylquinolines, a polymerized quinine antioxidant and / or wax and / or other antioxidants used in elastomeric formulations. Specific examples include, but are not limited to, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine (6-PPD, e.g., ANTIGEN 6C, available from Sumitomo Chemical Co., Ltd. and NOCLAC. 6C, sold by Ouchi Shinko Chemical Industrial Co., Ltd.), "Ozonon" 6C from Seiko Chemical Co., Ltd., polymerized 1,2-dihydro-2,2,4-trimethyl quinoline (TMQ, e.g. Agerite Resin D, commercially available from RT Vanderbilt), 2,6-di-t-butyl-4-methylphenol (available under the brand name Vanox PC from Vanderbilt Chemicals LLC), butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), and the like. Other representative antioxidants may be, for example, diphenyl-p-phenylenediamine and others, such as, for example, those described in The Vanderbilt Rubber Handbook (1978), pages 344-346.
The coupling agent may be or include one or more silane coupling agents, one or more zirconate coupling agents, one or more titanate coupling agents, one or more nitrogen coupling agents, or a combination thereof. The coupling agent may be or include bis (3-triethoxysilylpropyl) tetrasulfane (eg, Si 69 from Evonik Industries, Struktol SCA98 from Struktol Company), bis (3-triethoxysilylpropyl) disulfane (e.g. and Si 266 from Evonik Industries, Struktol SCA985 from Struktol Company), 3-thiocyanatopropyl-triethoxy silane (e.g., Si 264 from Evonik Industries), gamma-mercaptopropyl-trimethoxy silane (eg, Evonik VP Si 163). Struktol Company Struktol SCA989), gamma-mercaptopropyl-triethoxy silane (eg, VP Si 263 from Evonik Industries), zirconium dineoalkanolatodi (3-mercapto) propionato-O, N, N'-bis (2 1-methyl-2-nitropropyl) -1,6-diaminohexane, S- (3- (triethoxysilyl) propyl) octanethioate (e.g., Momentive NXT coupling agent, Friendly, WV) and / or coupling that are chemically similar or have one or more identical chemical groups. Additional specific examples of coupling agents, by their brand names, include, but are not limited to, VP Si 363 from Evonik Industries. It is recognized that any combination of elastomers, additives and additional masterbatches may be added to the dried product, for example in a mixing device.
[0086] Optionally, the dried product may be chewed using an internal mixer, such as a Banbury or Brabender mixer. The dried product may first be brought to a moisture content of from about 3% by weight to about 40% by weight, for example from about 5% by weight to about 20% by weight, or about 20% by weight. % by weight to about 30% by weight. Moisture content can be achieved by drying to the desired level or by drying the dried product crumbs to an intermediate moisture content in the first step, then further reducing the moisture content by heating the dried product. resulting or allowing the water to evaporate from the dried product at room temperature or by other methods familiar to those skilled in the art. The dried product can then be dried in an internal mixer to a desired moisture level or a mechanical energy input is obtained. The dried product may be chewed until it reaches a predetermined temperature, allowed to cool, and then returned to the internal mixer one or more times to impart additional energy to the material. Examples of temperature include about 140 ° C to about 180 ° C, for example about 145 ° C to about 160 ° C or about 150 ° C to about 155 ° C. The dried product can be pulled into sheets in a roller mill after each chewing in the internal mixer. Alternatively or in addition, the dried product which has been masticated in a Banbury or Brabender mixer may be further masticated in an open mill.
As an option, the masticated product can be further processed in an open mill. The chewed product can be discharged from the continuous mixing device as an extrudate length and can be cut into shorter lengths before being introduced into the open mill. The chewed product may optionally be introduced into the open mill via a conveyor. The conveyor may be a conveyor belt, a pipe, a pipe or any other suitable means for transporting the masticated product, from a continuous mixing device to an open mill. The open mill may comprise a pair of rolls which may optionally be heated or cooled to improve the operation of the open mill. Other functional parameters of the open mill may include the spacing distance between the rolls, the bench height, i.e., the material reservoir in the space between the rolls and above them , and the speed of each roll. The speed of each roll and the temperature of the fluid used to cool each roll can be independently controlled for each roll. The spacing distance may be from about 3 mm to about 10 mm or from about 6 mm to about 8 mm. The roller speed can be from about 15 rpm to about 70 rpm and the rollers can roll towards each other with respect to the input side of the mill. The friction ratio, the ratio of the speed of the pickup roller, e.g., the roll on which the masticated product is collected, and that of the return roll, may be from about 0.9 to about 1.1. The fluid used to cool the rolls may be at a temperature of from about 35 ° C to about 90 ° C, for example from about 45 ° C to about 60 ° C, from about 55 ° C to about 75 ° C or from about 70 ° C to about 80 ° C. In addition to controlling the operation of the open mill to provide a desired level of chewing and desiccation to the chewed product, it is also desirable that the output of the open mill collect on the pickup roll as a smooth sheet. Without being bound by any particular theory, it is believed that cooler roll temperatures facilitate this purpose. The open mill can reduce the temperature of the masticated product to a temperature of approximately 110 ° C to 140 ° C. The residence time of the masticated product in the mill may be determined in part by the speed of the roll, the spacing distance and the desired amount of mastication and drying and may be from about 10 to 20 minutes for a material which has already masticated, for example, in a continuous mixer with two rotors.
Those skilled in the art will consider that different combinations of devices can be used to provide mastication and desiccation to a continuous phase of solid rubber containing silica produced according to the different embodiments. Depending on the devices used, it may be desirable to use them in conditions different from those described above to provide varying amounts of work and desiccation to the material. In addition, it may be desirable to use more than one particular type of device, e.g., an open mill or an internal mixer, in series or to pass the masticated product in a given device more than once. For example, the masticated product may be passed through an open mill two or three times or more or passed through two or more open mills in series. In the latter case, it may be desirable to operate each open mill in different operating conditions, eg, speed, temperature, different energy inputs (eg, higher), etc. The chewed product can be passed into one, two or three open mills after being chewed in an internal mixer.
The elastomeric composite may be used to produce an elastomer or rubber-containing product. Optionally, the elastomeric composite may be used in different parts of a tire or produced for use in these different parts, for example, tires, treads, sidewalls, tire metal siding and contact rubber. for escaped tires. Alternatively or additionally, the elastomer composite may be used for track, tracked equipment pads, bulldozers, etc., engine mounts, earthquake stabilizers, mine equipment such as sieves , mining equipment coatings, conveyor belts, chute coatings, slurry coatings, slurry pump components, such as turbines, valve seats, valve bodies, piston hubs , piston rods, plungers, turbines for various applications, such as slurry mixing turbines and pump turbines, grinder mill coatings, cyclones and hydrocyclones, expansion joints, marine equipment, such as pump coatings (eg, dredge pumps or outboard motor pumps), hoses (eg, dredging and outboard motor hoses) and other marine equipment, shaft seals for marine, petroleum, aerospace and other applications, propeller shafts, pipeline liners for transporting, eg oil sands, and and / or tar sands, and other applications in which abrasion resistance is desired. The vulcanized elastomeric composite can be used in rollers, cams, shafts, pipes, tread rings for vehicles, or other applications in which abrasion resistance is desired.
[0090] Traditional formulation techniques can be used to combine vulcanizing agents and other additives known in the art, including additives presented above in connection with the dried product, with the dried elastomeric composite, according to the invention. desired use.
The present invention further relates to an elastomeric composite formed by one or more of the methods described in the present application of the present invention.
Unless indicated otherwise, all the proportions of material indicated in percentage in the present application are in percentage by weight.
The present invention will be further clarified by the following examples which are given for illustrative purposes only.
EXAMPLES
In these examples, the "plantation latex" was planting latex (Muhibbah Lateks Sdn Bhd, Malaysia) having a dry rubber content of about 30% by weight. The "concentrated latex" was a concentrated latex (high ammonia content of Muhibbah Lateks Sdn Bhd, Malaysia or Chemionics Corporation, Tallmadge, Ohio) diluted, unless indicated otherwise, to about 50% for a dry rubber content of about 30%. % by weight using either pure water or water containing from 0.6% by weight to 0.7% by weight of ammonia. Unless otherwise indicated, "silica" was ZEOSIL® Z1165 MP precipitated silica from Solvay USA Inc., Cranbury, NJ (formerly Rhodia).
Thermogravimetric analysis. The actual silica loading levels were determined by thermogravimetric analysis (TGA) according to the ISO 6231 method.
Moisture content of the product. The test material was cut into lumps and loaded into a moisture balance (eg Model MB35 and Model MB45, Ohaus Corporation, Parsippany NJ) for measurement. The water content was measured at 130 ° C for a period of 20 to 30 minutes until the tested sample reached a uniform weight.
Zeta potential of the slurry. In these examples, the zeta potential of particulate slurries was measured using a ZetaProbe Analyzer ™ from Colloidal Dynamics, LLC, Ponte Vedra Beach, Florida USA. With a multi-frequency electroacoustic technology, ZetaProbe measures the zeta potential directly at particle concentrations of up to 60% by volume. The instrument was first calibrated using KSiW calibration fluid supplied by Colloidal Dynamics (2.5 mS / cm). A 40 g sample was then placed in a 30 ml Teflon cup (reference A80031) with a stirrer, and the cup was placed on a stirring base (reference A80051) at a stirring speed. 250tr / min. The measurement was made using an immersion probe 173 in a single point mode with a 5-point cycle at room temperature (about 25 ° C). The data was analyzed using ZP version 2.14c Polar ™ software provided by Colloidal Dynamics. The values of the zeta potential can be negative or positive depending on the charge polarity of the particles. The magnitude of the zeta potential is the absolute value (eg, a zeta potential value of -35 mV has an amplitude greater than a zeta potential value of -20 mV). The magnitude of the zeta potential reflects the degree of electrostatic repulsion between similarly charged particles in the dispersion. The higher the amplitude of the zeta potential, the more stable the particles in the dispersion. Zeta potential measurements were taken on particulate silica slurries prepared as described below.
Dry silica was weighed and combined with deionized water using a 5-gallon bucket and a high shear vertical laboratory mixer with a wrapped agitator (Silverson Model AX3, Silverson Machines, Inc., East Longmeadow, MA, operating from 5,200 to 5,400 rpm for 30 to 45 minutes). Once the silica was roughly dispersed in water and pumpable, the silica slurry was transferred by a peristaltic pump (Masterflex 7592-20 system - drive and controller, 77601-10 pumphead using tubing 1 / P 73, Cole-Palmer, Vernon Hills, IL) in a mixing loop with a high-shear rotor-stator in-line mixer (Silverson Model 150LB located after the peristaltic pump, operating at 60 Hz) in a cycle tank (tank with a 30 gallon convex lower orifice) and was crushed to further decompose the silica agglomerates and any remaining silica granules. The slurry in the cycle tank was then circulated at a rate of 2 l / min using the same peristaltic pump in the mixing loop for a time sufficient for rotation of at least 5 to 7 times the total volume. slurry (> 45 minutes) to ensure that all silica agglomerates were properly crushed and dispensed. A vertical mixer (Ika Eurostar power control visc-P7, IKA-Works, Inc., Wilmington, NC) with a low shear anchor blade rotating at about 60 rpm was used in the cycle tank to prevent gelation or sedimentation of the silica particles. An acid (formic acid or acetic acid, Sigma Aldrich reagent grade, St. Louis, MO) or a salt (calcium nitrate, calcium chloride, calcium acetate or aluminum sulfate, reagent grade from Sigma Aldrich, St. Louis, MO) was added to the slurry in the cycle tank after crushing. The amount of silica in the slurry and the type and concentration of acid or salt are indicated in the specific examples below.
A. In the places indicated in the examples below, a process was carried out using the illustrative method A. In method A, precipitated dry silica and water (filtered tap water for remove particulate matter) were measured and combined, then crushed in a rotor-stator mill to form silica slurry and the silica slurry was further crushed in a feed tank using a stirrer and another crusher with rotor-stator. The silica slurry was then transferred to a cycle tank equipped with two agitators. The silica slurry was recirculated from the cycle tank into a homogenizer and returned to the cycle tank. A solution of acid (formic acid or acetic acid, industrial grade supplied by Kong Long Huat Chemicals, Malaysia) or salt (calcium nitrate, industrial grade supplied by Mey Chem Chemicals, Malaysia) was then pumped into the cycle tank. . The slurry was maintained in dispersed form by stirring and, optionally, by means of the recirculation loop in the cycle tank. After a suitable period, the silica slurry was introduced into a confined reaction zone (13), such as that illustrated in Figure 1a, by means of a homogenizer. The concentration of silica in the slurry and the concentration of acid or salt are indicated in the specific examples below.
The latex was pumped with a peristaltic pump (at less than about 40 psig pressure) through the second inlet (11) into the reaction zone (13). The latex flow rate was adjusted from 300 to 1,600 kg of latex / hr in order to achieve the desired production rate and silica loading levels in the resulting product. The homogenized slurry containing the acid or salt or a combination of acid and salt was pumped under pressure from the homogenizer to a nozzle (internal diameter (ID) ranging from 0 cm (0.060 ") to 0.33 cm (0.130 ") (3a), represented by the first inlet (3) shown in Figure 1 (a), such that the slurry is introduced in a jet at high speed into the reaction zone. in the reaction zone, the stream of silica slurry flowing at a rate of 25 m / s to 120 m / sec resulted in the latex flowing from 1 m / s to 11 m / s. In embodiments of the present invention, the impact of the silica slurry on the latex caused an intimate mixing of the silica particles with the rubber particles of the latex, and the rubber coagulated, transforming the silica slurry and the slurry. latex of a material comprising a continuous phase of solid or semi-solid rubber containing silica containing from 40 to 95% by weight of water, based on the total weight of the material trapped in the material. Adjustments were made to the silica slurry flow rate (500-1,800 kg / h) or latex flow rate (300-1,800 kg / h), or both, to modify the silica-rubber ratios (e.g. 15-180 phr of silica) in the final product and to obtain the desired production rate. Production rates (dry matter basis) ranged from 200 to 800 kg / h. Specific silica contents (by TGA analysis) in the rubber after dewatering and drying of the material are listed in the examples below.
[0101] Method A Drying. The material was discharged from the reaction zone at atmospheric pressure at a rate of 200 to 800 kg / h (dry weight) into a dewatering extruder (The French Oil Machinery Company, Piqua, OH). The 21.59 cm (8.5 inch) extruder (Dl) was equipped with a die having different punch button configurations and operated at a typical rotor speed of 90 to 123 rpm matrix ranging from 400 to 1300 psig and a power ranging from 80 to 125 kW. In the extruder, the silica-containing rubber was compressed and the water extracted from the silica-containing rubber was ejected from the extruder through a slotted drum. A dried product typically containing from 15 to 60% by weight of water was obtained at the exit of the extruder.
[0102] Method A Drying and cooling. The dried product was deposited in a continuous mixing device (Farrel Continuous Mixer (FCM), Farrel Corporation, Ansonia, CT, with 7 and 15 rotors) where it was dried, chewed and mixed with 1 to 2 phr of antioxidant (eg, Flexasys 6PPD, St. Louis, MO) and optionally a silane coupling agent (eg, NXT silane, supplied by Momentive Performance Materials, Inc., Waterford, NY, 8% by weight of silane on the basis of the weight of silica). The temperature of the FCM water jacket was set at 100 ° C and the temperature of the FCM at the outlet was 140-180 ° C. The moisture content of the chewed and dried elastomeric composite exiting the FCM ranged from 1 wt% to 5 wt%. The product was further chewed and cooled in an open mill. A rubber sheet of the elastomeric composite was cut directly from the open mill, rolled and cooled in air.
In the places indicated in the examples below, an illustrative method was carried out using the illustrative method B. In method B, dry silica was weighed and combined with deionized water using a 19-liter (5-gallon) tub and a high shear vertical laboratory mixer with wrapped stirrer (Silverson Model AX3, Silverson Machines, Inc., East Longmeadow, MA) operating from 5,200 to 5,400 rpm for 30 to 45 minutes). Once the silica was roughly dispersed in water and pumpable, the silica slurry was transferred by a peristaltic pump (Masterflex 7592-20 system - drive and controller, 77601-10 pumphead using tubing 1 / P 73, Cole-Palmer, Vernon Hills, IL) in a mixing loop with a high-shear rotor-stator in-line mixer (Silverson Model 150LB located after the peristaltic pump, operating at 60 Hz) in a cycle tank (tank with a 30 gallon convex lower orifice) and was crushed to further decompose the silica agglomerates and any remaining granules. The slurry in the cycle tank was then recirculated at a rate of 2 l / min in the mixing loop for a time sufficient for rotation of at least 5 to 7 times the total slurry volume (> 45 minutes ) so that all the silica agglomerates are properly crushed and dispersed. A vertical mixer (Ika Eurostar power control visc-P7, IKA-Works, Inc., Wilmington, NC) with a low shear anchor blade rotating at about 60 rpm was used in the cycle tank to prevent gelation or sedimentation of the silica particles. An acid (formic acid or acetic acid, reagent grade from Sigma Aldrich, St. Louis, MO) or a salt (calcium nitrate, calcium chloride, calcium acetate or aluminum sulfate salt, reagent grade from Sigma Aldrich, St. Louis, MO) was added to the slurry in the cycle tank after crushing. The amount of silica in the slurry and the type and concentration of acid or salt are shown in Table 4 for the specific examples below.
The latex was pumped using a peristaltic pump (Masterflex 7592-20 system - drive and controller, 77601-10 pumphead using l / P 73 tubing, Cole-Palmer, Vernon Hills, IL) by a second inlet (11) and in the reaction zone (13) configured similarly to that illustrated in Fig. 1 (b). The latex flow rate was adjusted from about 25 kg / h to about 250 kg / h in order to modify the silica-rubber ratios of the elastomeric composites.
Once the silica was well dispersed in water, the slurry was pumped from the cycle tank into a diaphragm metering pump (LEWA-Nikkiso America, Inc., Holliston, MA) by a pulsation damper (for reduce the pressure swing due to the action of the diaphragm) in the reaction zone or the cycle tank via a T-recirculation connector. The direction of the slurry was controlled by pneumatic ball valves, one directing the slurry to the reaction zone and the other directing it to the cycle tank. Once the silica slurry is ready to be mixed with the latex, the line feeding the first inlet (3) to the reaction zone has been pressurized to 100 to 150 psig by closing the two valves. The ball valve directing the slurry to the reaction zone was then opened and the pressurized slurry was fed to a nozzle (ID ranging from 0.05 cm (0.020 ') to 0.17 cm (0.070 ")) illustrated. in FIG. 1 (b) at an initial pressure of from 100 psig to 150 psig, such that the slurry was jet fed at a high velocity into the reaction zone. In contact with the latex in the reaction zone, the stream of silica slurry flowing at a rate of 15 m / s to 80 m / sec resulted in the latex flowing from 0.4 m / s to 5 m / s. In examples according to embodiments of the present invention, the impact of the silica slurry on the latex caused an intimate mixing of the silica particles with the rubber particles of the latex, and the rubber coagulated, transforming the slurry of silica and the latex of an elastomeric composite comprising silica particles and 40 to 95% by weight of water entrapped in a continuous phase of solid or semi-solid rubber containing silica. Adjustments were made to the silica slurry flow rate (40 to 80 kg / h) or latex flow rate (25 to 300 kg latex / h), or both, to modify the silica-rubber ratios (by from 15 to 180 phr of silica) in the final product and to obtain the desired production rates (from 30 kg / h to 200 kg / h based on dry matter). The specific contents of the silica-rubber (phr) ratio after drying and drying are listed in the examples below.
[0106] Process B Dewatering.
The material discharged from the reaction zone was covered and interposed between two aluminum plates inside a tray. The "sandwich" was then inserted between two plates of a hydraulic press. With 2,500 psig pressure exerted on the aluminum plates, water trapped inside the rubber product was removed. If necessary, the pressed material was folded into a smaller piece and the pressing process was repeated using the hydraulic press until the water content of the rubber product was less than 40% by weight.
[0108] Method B Drying and cooling. The dried product was placed in a Brabender mixer (300 cc) for drying and chewing to form a dried and masticated elastomeric composite. Sufficient dried material was loaded into the mixer to cover the rotors. The initial temperature of the mixer was set at 100 ° C and the rotor speed was generally 60 rpm. The water remaining in the dried product was converted to steam and evaporated out of the mixer during the mixing process. As the material in the mixer expanded due to evaporation, the overflow of material was removed as needed. A silane coupling agent (NXT silane supplied by Momentive Performance Materials, Inc., Waterford, NY, 8 wt% silane based on silica weight) and / or an antioxidant (6-PPD, N- (1, 3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, Flexsys, St. Louis, MO) was optionally added to the mixer at a temperature above 140 ° C. When the mixer temperature reached 160 ° C, the material inside the mixer was maintained at 160 ° C to 170 ° C by varying the rotor speed for 2 minutes before discharging the material. The masticated and dried elastomeric composite was then processed in an open mill. The moisture content of the material removed from the mill was generally less than 2% by weight.
[0109] Preparation of rubber compounds
The elastomeric composite obtained by process A or process B was composed according to the formulation of Table A and the procedure described in Table B. For elastomer-silica composites in which silane or antioxidant was added during drying, the final compound composition is that shown in Table A. The amount of the silane coupling agent and / or antioxidant during formulation was adjusted accordingly.
Table A
N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine (Flexsys, St. Louis, MO) main active ingredient: S- (3- (triethoxysilyl) propyl) octanethioate (Momentive, Friendly, WV) * "DiphenylGuanidine (Akrochem, Akron, OH)""N-tert-Butylbenzothiazole-2-sulphenamide (Emerald Performance Materials, Cuyahoga Falls, OH) NR = natural rubber S = as indicated
Table B
The vulcanization was carried out in a heated press set at 150DC for a time determined by a traditional rubber rheometer (ie, T90 + 10% T90, where T90 is the time to obtain 90% vulcanization).
Properties of the rubber / silica compounds.
The tensile properties of the vulcanized samples (T300 and T100, elongation of rupture, tensile strength) were measured according to the ASTM D-412 standard. The delta tangent 60 ° was determined using a dynamic strain sweep of 0.01% to 60% at 10 Hz and 60 ° C. The tangent Umax has been taken as the maximum value of the tangent DD in this constraint range.
Example 1
A silica slurry with 27.8 wt% Zeosil® 1165 silica was prepared as described above for the zeta potential test method of the slurry. The slurry was then diluted using either deionized water, followed by a supernatant obtained by ultracentrifugation of the 27.8% by weight slurry to make a series of silica slurries at different concentrations of silica. The zeta potential of the various silica slurries was measured to show the relationship between the silica concentration in the slurry and the zeta potential of the slurry. The zeta potential of the silica slurry, as shown in Table 1, appears to depend on the concentration of silica when the silica slurry is made using deionized water. On the other hand, as shown in Table 2, when the slurry was diluted using the supernatant obtained by ultracentrifugation of the 27.8% by weight liquid slurry, the zeta potential remains broadly the same at the different silica concentrations.
Table 1
Zeta potential of silica slurry made using deionized water
Table 2
Zeta potential of the silica slurry obtained by the dilution of 27.8% by weight of silica slurry using the supernatant of 27.8% by weight of silica slurry.
This result shows that an increase in the amplitude of the zeta potential when such silica slurries are diluted with deionized water is mainly due to the reduction of the ionic strength of the slurry. The ions of the silica slurry are supposed to come from the residual salts present in the silica resulting from the manufacturing process of the silica particles. The high zeta potential of the silica slurries (always greater than 30 mV) indicates that the silica has high electromagnetic stability in the slurry.
Example 2
The effect of the addition of salt or acid at different concentrations to silica slurries on the zeta potential of these slurries is described in Table 3. The slurries were prepared in deionized water by the Slurry Zeta Potential test method described above. The data summarized in Table 3 describe the zeta potential dependence of liquid silica slurries and destabilized liquid silica slurries on silica concentration, salt concentration and acid concentration. Adding salt or acid to the silica slurry reduces the magnitude of the zeta potential and thus the stability of the silica slurry. As shown in Table 3, the zeta potential depends primarily on the concentration of salt or acid in the destabilized slurry or slurry and not on the silica concentration.
Table 3
Zeta potential of the destabilized silica slurry at different slurry concentrations, salt concentrations, and acid concentrations.
ND = not determined.
The results shown in Table 3 describe the dependence of the zeta potential of silica slurries and destabilized silica slurries on the concentration of acetic acid and the concentration of silica. The data show that zeta potential values are more dependent on acid concentration than silica concentration. A similar relationship between zeta potential and acid concentration and silica concentration is observed with formic acid. At a given concentration, formic acid reduces the magnitude of the zeta potential more than acetic acid. As shown in Table 3, a combination of formic acid and calcium chloride was effective in reducing the amplitude of the zeta potential.
The results shown in Table 3 show that the stability of the silica particles in the slurry can be effectively reduced by the addition of destabilizing agents, such as an acid or a salt or a combination of acid and salt. Similar results were obtained with calcium nitrate and calcium acetate.
Example 3
In this example, the importance of the destabilization of the dispersion of the silica particles before contacting the silica dispersion with the elastomer latex has been established. Specifically, four experiments were performed using the mixing apparatus (c) of Figure 1 with three inlets (3, 11, 14) for introducing up to three fluids into a confined reaction zone (13), so that a fluid hits the other fluids at a 90 degree angle by a high speed jet at a speed of 15 to 80 m / s (see Figure 1 (c)). In three of the four experiments, the silica was crushed as described above in Method B and acetic acid was optionally added as described in Examples 3-A to 3-D below. The destabilized slurry or slurry was then pressurized to 100 to 150 psig and introduced into the reaction zone confined by the inlet (3) at a volumetric flow rate of 60 liters per hour (l / h) so that the destabilized slurry or slurry is introduced as a high speed jet at 80 m / s into the reaction zone. Simultaneously, a concentrate of natural rubber latex (60CX12021 latex, dry rubber content 31% by weight, from Chemionics Corporation, fallmadge, Ohio, diluted in deionized water) was introduced through the second inlet (11) by a peristaltic pump with a volumetric flow rate of 106 l / h and a speed of 1.8 m / s. These flow rates were selected and the fluxes were adjusted to obtain an elastomeric composite product comprising 50 phr (parts per hundred parts by weight of dry rubber) of silica. The silica slurry or destabilized silica slurry and the latex were mixed by combining the low velocity latex flow and the high velocity jet of silica slurry or destabilized silica slurry resulting in the flow of latex into the slurry jet. boiled or destabilized silica slurry at the point of impact. The production rate (on a dry matter basis) was set at 50 kg / h. The specific silica-rubber specific ratios in the rubber composites obtained with the process are listed in the examples below. TGA analysis was carried out after drying according to the process of Method B.
Example 3-A: [0123] First fluid: A destabilized aqueous dispersion of 25% by weight of silica with 6.2% by weight (or M) of acetic acid was prepared as described in process B ci -above. The zeta potential of the destabilized slurry was -14 mV, indicating that the slurry was significantly destabilized by the acid. The destabilized silica slurry was pumped continuously under pressure into the first inlet (3).
Second fluid: Elastomer latex was introduced into the reaction zone by the second inlet (11).
The first fluid has struck the second fluid in the reaction zone.
Results: A liquid-solid phase inversion occurred in the reaction zone when the destabilized silica slurry and latex were intimately mixed by driving the slow-speed latex flow into the large jet. slurry velocity destabilized silica. During the training process, the silica was intimately distributed in the latex and the mixture coagulated to a solid phase which contained 70% by weight to 85% by weight of water. As a result, a flow of a continuous solid rubber phase containing worm or rope-shaped silica was obtained at the exit of the reaction zone (15). The composite was elastic and could be stretched up to 130% of the initial length without breaking. TGA analysis on the dried product showed that the elastomeric composite contained 58 phr of silica.
Example 3-B: [0128] First fluid: A destabilized aqueous dispersion of 25% by weight of silica with 6.2% by weight of acetic acid was prepared according to method B described above. The zeta potential of the slurry was -14 mV, indicating that the slurry was significantly destabilized by the acid. The destabilized silica slurry was pumped continuously under pressure into the first inlet (3).
Second fluid: Elastomer latex was introduced into the reaction zone by the second inlet (11).
Third fluid: Deionized water was also injected into the reaction zone through the third inlet (14) at a volumetric flow rate of 60 l / h and a speed of 1.0 m / s.
The three fluids came into contact and fell into the reaction zone.
Results: A liquid-solid phase inversion occurred in the reaction zone and a continuous phase of solid or semi-solid rubber containing rope or worm-shaped silica was obtained by the exit of the reaction zone. A significant amount of turbid liquid containing silica and / or latex has flowed through the outlet (7) with the continuous phase of solid or semi-solid rubber containing silica. The continuous phase of silica-containing rubber contained about 70% by weight to about 75% by weight of water based on the weight of the composite. TGA analysis on the dried product showed that the elastomeric composite contained 44 phr of silica. Thus, the addition of water through the third inlet had a negative impact on the process, giving rise to a product having a lower silica content (44 phr vs. 58 phr in Example 3-A) and significant waste.
Example 3-C: [0134] First fluid: An aqueous solution of acetic acid at 10% by weight without silica was prepared. A continuous feed of acidic fluid was pumped with a peristaltic pump at a volumetric flow rate of 60 l / h through the third inlet (14) into the reaction zone at a speed of 1.0 m / s at the time of entry in the reaction zone.
Second fluid: Elastomer latex was introduced into the reaction zone by the second inlet (11) with a peristaltic pump at a speed of 1.8 m / s and a volumetric flow rate of 106 l / h .
The two fluids came into contact and fell into the reaction zone.
Results: A sticky phase of solid rubber shaped worm was formed. TGA analysis on the dried product showed that the solid rubber phase did not contain silica.
Example 3-D: [0139] First Fluid: A destabilized aqueous dispersion of 25% by weight of silica without acetic acid was prepared according to method B described above. The silica slurry was pumped under continuous pressure and introduced through the first inlet (3) at a volumetric flow rate of 60 l / h and at a rate of 80 m / s at the point of entry into the reaction zone. The zeta potential of the slurry was -32 mV, indicating that the silica was stably dispersed in the slurry. Thus, in this 3-D example, the silica slurry was not destabilized by the addition of acid to the slurry prior to impact with the latex fluid.
Second fluid: Elastomer latex was introduced into the reaction zone by the second inlet (11) with a peristaltic pump at a speed of 1.8 m / s and a volumetric flow rate of 106 l / h .
Third fluid: After an initial period of continuous flow of the first and second fluids, an aqueous solution of acetic acid at 10% by weight was injected by the third inlet (14) into the reaction zone at a volumetric flow rate from 0 to 60 l / h and at a speed from 0 to 1.0 m / s. The three fluids collided and were mixed in the reaction zone.
Results: Initially, before the acid injection, no continuous phase of silica-containing rubber had formed and only a cloudy liquid was observed by the outlet (15) of the reaction zone. Upon injection of acid into the reaction zone (13), a continuous phase of silica-containing semi-solid rubber began to form as the acetic acid flux increased through the third inlet. from 0 to 60 l / h. Materials flowing through the outlet still contained a significant amount of cloudy liquid, indicating a significant amount of waste. TGA analysis of the dry product showed that the continuous phase of silica-containing rubber formed in this experimental cycle contained only 25 phr of silica. Given the selected production conditions and the amount of silica used, if the silica had been substantially incorporated into the silica-containing rubber phase, as in Example 3-A, the silica would have given rise to silica-containing rubber phase comprising an excess of 50 phr of silica.
These experiments show that the silica slurry must be destabilized before the initial impact with the elastomer latex in order to obtain the continuous phase of rubber containing the desired silica. Example 3-A made it possible to obtain what can be considered as an effective capture of the silica in the continuous phase of solid rubber containing silica, while the example 3-D illustrates a comparative method using a silica slurry initially stable and having an efficiency less than half the efficiency of Example 3-A using an initially destabilized silica slurry. Observation of a turbid liquid leaving the exit point of the reaction zone indicates insufficient mixing of the silica with the latex and a lower proportion of silica captured in the continuous rubber phase. In theory, in Comparative Methods 3B and 3D, destabilization of fluids was insufficient during mixing. The results further indicate that insufficient silica uptake occurred when an additional fluid was added while the first fluid and the second fluid were in the process of mixing; such process conditions generate undesirable amounts of waste. 0144] Example 4.
In these examples, the method according to various embodiments of the invention has been executed in the apparatus illustrated in FIG. 1 ((a) or (b)) under different conditions as described in Table 4, in using method A or method B described above. The operating conditions were selected to obtain a continuous phase of solid or semi-solid rubber containing silica with the silica-rubber ratios shown in Table 4 ("plant" = planting).
Table 4
S / 0 = not applicable a. Examples 4-6 and 4-22 used Agilon 454 silica (precipitated silica treated with silane coupling agents, provided by PPG Industries Inc.). Examples 4-24 and 4-32 used Zeosil® 175GR silica (conventional silica precipitated from Solvay SA). Examples 4-25 and 4-33 used Zeosil® Premium 200MP silica (HDS with a large contact area of 200 m 2 / g, supplied by Solvay SA). Example 4-41 used Hi-Sil® 243LD silica (supplied by PPG Industries Inc, and Example 4-42 used Agilon 400 silica (supplied by PPG Industries Inc.) In all other examples ZEOSIL® Z1165 MP precipitated silica was used Example 4-38 comprised 1.5% by weight (based on total slurry weight) of N134 carbon black (Cabot Corporation) in The values of the zeta potential were estimated by interpolation of the experimentally determined zeta potential dependence curves on salt or acid concentration of slurries of the same silica grade.
Table 4
(after)
ND = not determined, N / A = not applicable. c. The speed of the inlet nozzle corresponds to the speed of the silica slurry which passes through a nozzle (3a) at the first inlet (3) to the reaction zone (13) before coming into contact with the latex. d. The slurry and latex rates correspond to the volumetric flow rates in 1 / hour of the silica slurry and the liquid latex, respectively, as they are introduced into the reaction zone.
In all the examples, with the exception of Examples 4-13 and 4-14, the selected operating conditions made it possible to obtain a solid rubber continuous phase containing silica in a coarse cylindrical form. The product contained a significant amount of water, was elastic and compressible, and expelled water and retained solids after manual compression. The solid material could be stretched, for example, the material of Example 4-17 could be stretched or elongated from 130 to 150% of its original length without breaking. The silica particles were uniformly distributed in a continuous rubber phase and this product was substantially free of free silica particles and larger silica grains on the outer and inner surfaces. In some of the Examples (4-13 and 4-14), the selected operating conditions resulted in a semi-solid product having a paste consistency comprising a continuous phase of silica-containing semi-solid rubber. Upon visual examination, silica particles trapped within the product but uniformly distributed in the rubber phase were observed. The semi-solid material expelled the water and the solids content retained during subsequent processing in one or more subsequent operations selected to develop the paste-like material in a continuous phase of solid rubber containing silica. For the continuous phase of solid or semi-solid rubber containing silica, not only must the silica be destabilized (eg by prior treatment with acids and / or salts), but the volumetric flow rates of the The silica versus latex must be adjusted not only to obtain a desired silica-rubber ratio (phr) in the elastomeric composite, but also to balance the degree of destabilization of the slurry with the mixing rate of the slurry and latex and the coagulation rate of latex rubber particles. Thanks to these adjustments, since the silica slurry entrained the latex, intimately distributing the silica particles in the rubber, the rubber in the latex became a solid or semi-solid continuous phase in a fraction of a second after combining the fluids into the rubber. confined volume of the reaction zone. Thus, the process has formed single elastomer-silica composites by means of a step of continuously impacting the fluids at a sufficient rate, selected concentrations and liquid / solids volumes and liquid flow rates adjusted to uniformly and intimately distribute the fine particulate silica in the latex and, in parallel, during the performance of such a distribution, to give rise to a liquid-solid phase inversion of the rubber.
Example 5.
In these comparative examples, the same basic steps and the same apparatus as those of Example 4 were used (Method A, Fig. 1 (a)), but the combination of the process conditions selected for each of the comparative examples of Table 5 did not allow to create a continuous phase of solid or semi-solid rubber and a silica-elastomer composite could not be obtained. Table 5 below shows the concentration of silica in the slurry and the concentration of acetic acid or calcium nitrate, as well as other details of these examples.
Table 5
Table 5 (continued)
S / 0 = not applicable a. The zeta potential values were estimated by interpolation of the experimentally determined zeta potential dependence curves on salt or acid concentration of slurries of the same silica grade. b. The speed of the inlet nozzle is the velocity of the silica slurry passing through a nozzle (3a) at the first inlet (3) to the reaction zone before contacting the latex. c. The slurry and latex rates correspond to the volumetric flow rates in 1 / hour of the silica slurry and the liquid latex, respectively, as they are introduced into the reaction zone. d. Examples 5-11 and 5-12 used Agilon® 454 silica.
Examples 5-8, 5-9 and 5-10 show that without pre-destabilization of the silica in the slurry, the continuous phase of rubber containing silica was produced, even when the use of the steps of The remaining processes were used according to the embodiments of the present invention. Comparative Examples 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 and 5-7 show that even with prior destabilization in the slurry (zeta potential of silica less than 25 mV ), a continuous phase of rubber containing silica could not be obtained with the combination of relative volumetric flow rates and the degree of dilution of the destabilizing agent (eg, Ca (N03) 2 or acetic acid) in the reaction zone when the fluids have been mixed. Without being bound by any theory, it can be argued that such a low concentration of the destabilizing agent in the slurry and latex mixture in the reaction zone can reduce the coagulation rate of the latex rubber particles so that a continuous rubber phase could not be formed in the short residence time in the reaction zone. In Comparative Example 5-1 with 18.5% by weight of destabilized silica slurry and 30.6% by weight of DRC latex concentrate, a ratio of the relative flow rates of the destabilized slurry and latex was set to 0. , 73 (V / V) to provide a 50 phr silica-rubber ratio in the reaction zone. In theory, the latex rubber particles did not coagulate in the residence time of 0.48 seconds of the mixture in the reaction zone at a relatively low volumetric flow ratio of the destabilized slurry relative to the latex, whereby the original Ca (NO 3) 2 concentration of 14.8 mM in the destabilized silica slurry was diluted 58% to 6.2 mM in the reaction zone. Thus, it was not possible under these conditions to produce a continuous phase of solid or semi-solid rubber containing silica comprising 50 phr of silica. On the other hand, when a high concentration of salt (eg 0.5% by weight for the example of the invention 4-8 against 0.22% by weight for Comparative Example 5-1) has been used (zeta potential of -17.1 mV vs -22 mV) and that the volumetric flow ratio of the slurry relative to the latex was set at 0.73 to obtain a suitable rubber product containing 50 phr of silica, a adequate product was obtained. Comparative Example 5-3 shows that a continuous phase of silica-containing solid rubber could not be obtained at 40 phr silica settings and a ratio of 0.57 volume boiling-latex plant flow rates. (V / V), while such products were obtained when the flow ratio was 0.93 and 1.50, thus forming an elastomeric composite with 45.4 phr and 76.9 phr of silica, respectively ( examples of the invention 4-10 and 4-11). Higher boiling-latex volumetric flow ratios in Examples 4-10 and 4-11 resulted in less dilution of the salt in the reaction zone than in Comparative Example 5-3, thus producing a continuous phase of solid rubber containing silica.
The salt concentration in the 18.5% destabilized silica slurry of Comparative Example 5-2 was 0.48% with a zeta potential of -17 mV, indicating a degree of destabilization to that of the examples. of the invention 4-4 (-14.1 mV) and 4-5 (-18.4 mV), but no continuous phase of silica-containing solid rubber has been formed at a production control setting of 30 phr silica with the latex concentrate at a relatively low flow rate selected for Comparative Example 5-2. Without wishing to be bound by any theory, it is believed that too much dilution of the salt and / or silica slurry destabilized by latex concentrate in the reaction zone in Comparative Example 5-2 reduced the rate. coagulating the rubber latex particles in the reaction zone to such an extent that a coherent continuous rubber phase would not form in the residence time of 0.36 seconds in the reaction zone.
When mixing the planting latex with 10% by weight of silica slurry destabilized with Ca (NO 3) 2 at 0.65% (zeta potential at -15.4 mV), the comparative example 5-5 did not produce a solid rubber continuous phase containing silica at a 60 phr silica-to-rubber ratio and a slurry-to-latex volumetric flow ratio of 0.57. These conditions did not provide enough salt and / or destabilized slurry in the reaction zone for rapid coagulation of the rubber latex particles in the reaction zone. In general, either the degree of destabilization of the silica slurry and / or the adequate slurry-latex flow ratio for coagulating the latex concentrate is not sufficient to coagulate the planting latex.
Results were obtained when acid was used to destabilize the slurry of Comparative Examples 5-6 and 5-7 and Example 4-17, respectively. When acid has been used as the sole agent to destabilize the slurry, a preferred threshold of the acid-ammonia molar ratio in the mixture of slurry and latex in the reaction zone, below which the continuous phase of solid rubber or semi-solid containing silica can not be formed in the reaction zone, has been defined. In these experiments, the threshold of the desired acid-ammonia molar ratio was always greater than 1.0, which meant that the pH of the product leaving the reaction zone was acidic. In the case of Comparative Examples 5-6 and 5-7, the silica-rubber ratio production settings of 20 phr and 25 phr respectively, the relatively low boiled-latex volumetric flow ratios of 0.28 and 0.36 were used, respectively. At these low flow ratios, the acidic slurry was not sufficiently acidic to neutralize the ammonia in the latex. The acid-ammonia molar ratios for Comparative Examples 5-6 and 5-7 were 0.66 and 0.98, respectively. In both cases, only a cloudy liquid was sprayed out of the reaction zone. In contrast, for the example of the invention 4-17, a higher boiled-to-latex volumetric flow ratio of 1.14 was used to obtain a silica filler of 54.8 phr by adding a sufficient amount of acid from the slurry in the reaction zone, to neutralize the ammonia of the latex. The acid-ammonia molar ratio in the reaction zone for the examples of the invention 4-17 was 3.14 and a continuous phase of silica-containing solid rubber was produced as worm-like elastic material leaving the reaction zone. This material could be stretched from 130 to 150% of its original length without breaking.
Example 6.
To explore the process variables that allow the formation of a continuous phase of solid or semi-solid rubber containing silica, a series of experiments has been performed under different combinations of process variables, including, but not limited to, the concentration of silica in the destabilized slurry, the concentration of acid or salts in the destabilized slurry, the types of latex (eg, planting latex and latex concentrate), the concentration of ammonia in the latex, latex lots, destabilized slurry and latex flow rates, destabilized slurry and latex rates in the reaction zone, and acid and salt concentrations in the reaction zone. This series of experiments was carried out according to method A and calcium nitrate was used as salt. Fluid solids contents and inlet nozzle rates for the experiments are listed in Tables 6 and 7 for a latex concentrate and a planting latex, respectively. At a low boiling-latex volumetric flow ratio (i.e., a low silica-to-rubber ratio in the reaction zone), the destabilized slurry and salt were diluted by the latex and no solid rubber continuous phase or semi-solid containing silica was formed. The setting for the silica-rubber ratio was then gradually increased by increasing the boiled-slurry volumetric flow ratio until a continuous phase of solid or semi-solid rubber containing silica was observed at the exit of the reaction zone. In Tables 6 and 7, the "Silica Loading Delivered to Reaction Zone" message indicates the lowest silica-to-rubber ratio at which the continuous phase of solid or semi-solid rubber has been produced. The minimum concentration of salt in the reaction zone (including destabilized silica slurry and latex) for the formation of a continuous phase of solid or semi-solid rubber containing silica was calculated for each set of experimental conditions ( eg, the concentration of silica in the slurry, the concentration of salt in the slurry, the speed of the slurry). For the first six examples listed in Table 6, the silica concentration in the destabilized slurry was the same, ie 18.5% by weight but the salt concentration in the destabilized slurry varied and the lower loading threshold of Silica for the formation of a continuous phase of solid or semi-solid rubber containing silica was determined in each example by increasing the volumetric flow rate of latex until formation of a coagulum. The results of Table 6 show that when the salt concentration in the destabilized silica slurry had increased from 0.22 wt.% To 0.75 wt.%, It was possible to reduce the boiled-latex volumetric flow ratio, to obtain a continuous phase of solid or semi-solid rubber containing silica having a lower silica-to-rubber ratio. For example, by increasing the salt concentration from 0.22% by weight to 0.65% by weight of a silica slurry of 18.5% by weight, the minimum phr setting of the silica to create a rubber phase continuous solid or semi-solid silica-containing was increased from 80 phr of silica to 35 phr of silica with the increase of the relative volumetric flow rate of latex and the decrease of the volumetric flow ratio slurry-latex from 1.17 to 0, 51. Similar results were observed for other silica slurry concentrations and when acid was used to destabilize the silica slurry.
Table 6. Continuous phase formation thresholds of solid or semi-solid rubber containing silica: silica filler in phr and calcium nitrate concentration under different conditions when destabilized silica slurry was mixed with a 50% diluted latex concentrate (31% by weight dry rubber content, 0.70% by weight ammonia content except for the last example for which the ammonia content was 0.53% by weight) using method A.
Table 6
at. The speed of the inlet nozzle is the velocity of the silica slurry passing through a nozzle (3a) at the first inlet (3) to the reaction zone before contacting the latex.
Table 7. Formation thresholds for the continuous phase of solid or semi-solid rubber containing silica: silica filler and calcium nitrate concentration under different conditions when the silica slurry was mixed with latex of planting using method A.
Table 7
at. The speed of the inlet nozzle is the velocity of the silica slurry passing through a nozzle (3a) at the first inlet (3) to the reaction zone before contacting the latex.
In a batchwise coagulation experiment carried out by mixing silica slurry with latex in a tub under a relatively low shear mix, the minimum amount of salt or acid to coagulate the latex in the mixture is a constant, independent of the original concentration of salt or acid in the silica slurry before mixing. In contrast, in processes according to various embodiments of the invention, the salt threshold concentration in the reaction zone for the formation of a continuous phase of solid or semi-solid rubber containing silica increases with increasing the concentration of salt in the destabilized silica slurry prior to mixing (i.e. the degree of destabilization of the silica slurry). For example, in Table 6, it can be seen that the threshold concentration of Ca (NO 3) 2 for coagulating the latex concentrate is independent of the silica concentration in the destabilized slurry, but strongly depends on the concentration of salt of origin. in the destabilized silica slurry. When the salt concentration was increased from 14.8 mM to 69.3 mM, the threshold salt concentration increased from 7.9 mM to 23.0 mM. In comparison, a series of batch coagulation experiments were performed in a tub using low shear agitation and it was determined that the threshold concentration of Ca (NO 3) 2 for coagulating the same latex concentrate was a constant at 10.7 mM, independent of the original salt concentration in the destabilized slurry, as well as the concentration of silica in the destabilized slurry. These results highlight the importance of balancing the degree of destabilization of the silica slurry, the rate of mixing, the rate of agglomeration of the silica particles and the coagulation rate of the latex under high shear to effectively produce a phase. continuous solid or semi-solid rubber containing silica.
Likewise, the acid-ammonia threshold ratio for the formation of a continuous phase of solid or semi-solid rubber containing silica according to embodiments of the present invention is not a constant, but increases with the degree of acid destabilization of the silica slurry.
On the basis of the production variables described in the present invention, such as the speed of the destabilized silica slurry, the speed of the latex, the relative flow rates of the destabilized silica slurry fluids and latex, the degree of destabilization of the silica slurry, the concentration of silica in the destabilized slurry, the dry rubber content of the latex, and the ammonia concentration of the latex (e.g., the ammonia concentration can be reduced by nitrogen sparging in the slurry). latex or above the surface of the liquid), it has been possible to obtain and / or predict the formation of a continuous phase of solid or semi-solid rubber containing silica over a desired range of silica fillers . Thus, the method of the invention can be carried out over an optimized range of variables.
Example 7.
The following comparative experiments using a multi-step batch process were performed for comparison with a method contained according to some embodiments of the invention.
In these comparative examples, a silica slurry was combined with elastomer latex under batch mixing conditions, using either a silica slurry that was crushed (as in Method B above), or a silica slurry prepared without crushing, at two slurry concentrations: 25% by weight and 6% by weight respectively (based on the total slurry weight). The silica used in these examples was ZEOS IL® 1165 MP. The elastomer latex used in all experiments was high ammonia latex concentrate (60CX12021, from Chemionics Corporation, Tallmadge, Ohio) diluted to 50% (by weight) with deionized water.
Experiment 7-A: Discontinuous mixing with crushed silica slurry.
The silica slurry prepared above was mixed with a desired amount of deionized water in a 5 gallon bucket to obtain the target silica concentration in the slurry.
For each cycle described above, the indicated amount of silica slurry was taken from the slurry tank and mixed for fifteen minutes with the indicated amount of elastomer latex in a 19 liter bucket (5). gallons) using a low shear vertical agitator (Model No. 1750, Arrow Engineering Co., Inc., Hillside, NJ). With the exception of cycle 5, calcium chloride salt was then added to the mixture and mixing continued until complete coagulation occurred. Unless otherwise indicated, the salt was added as a 20% by weight salt solution in deionized water. The amount of salt used (dry amount) is shown below. The term "target silica in phr" refers to the amount of silica in phr believed to be present in the rubber composite based on the starting amount of silica used, assuming that all silica has been incorporated into all the rubber. Cycles 1 to 4 were dried and dried according to the methods of Method B described above.
Cycle 1 - Rubber-silica target composite at 55 phr using 25% by weight of silica slurry.
Conditions (for about 1.9 kg of dry matter): 2.7 kg of 25% by weight of silica slurry, crushed 4.0 kg of latex concentrate 0.060 kg (equivalent of the dry amount) of salt in solution.
[0166] Observations: Large pieces of wet rubber composite formed around the mixing blade after the end of coagulation. On the other hand, coagulation did not make it possible to incorporate all of the rubber and silica in the coagulum, a milky liquid remaining in the mixing tub and a layer of wet silica having settled at the bottom of the tub. The dried coagulum weighed about 0.5 kg, well below the target of 1.9 kg. A significant amount of silica appeared on the surface of the rubber product indicating poor distribution of the silica in the rubber composite. The silica appeared very poorly mixed with the rubber in the coagulum and undispersed grains of silica felt and could be seen in the coagulum. Silica particles were observed to fall from the dried coagulum. When the dry rubber product was cut with a pair of scissors, silica particles fell from the cutting surface. After drying, the TGA analysis of the rubber product showed that the silica charges averaged 44 phr.
Cycle 2 - Rubber-silica target composite at 70 phr using 25% by weight of silica slurry.
Conditions (for about 1.9 kg of dry matter): 3.1 kg of 25% by weight of silica slurry, crushed 3.6 kg of latex concentrate 0.060 kg of salt, added dry.
Observations: Large pieces of wet rubber formed around the mixing blade and the post-coagulation liquid was cloudy or milky. A layer of silica remained at the bottom of the tub. About 1 kg of dried coagulum was produced. As in cycle 1, a very poor distribution of silica particles in the rubber coagulum was observed. After drying, the TGA analysis of the rubber product showed that the silica charges averaged 53 phr.
Cycle 3 - Rubber-silica target composite at 55 phr using 6% by weight of silica slurry.
Conditions (for about 2 kg of dry matter): 2.6 kg of 25% by weight of silica slurry, crushed 8.4 kg of deionized water 4.0 kg of latex concentrate 0.090 kg of salt in solution.
Observations: After adding salt, the complete mixture of latex and slurry turned into soft gel. About 0.9 kg of dry composite was formed. As in cycle 1, a very poor distribution of silica particles in the rubber coagulum was observed. After drying, the silica load in the coagulum measured by TGA analysis was about 45 phr.
Cycle 4 - 70 phr rubber-silica target composite using 6% by weight silica slurry.
Conditions (for about 2 kg of dry matter): 3.1 kg of 25% by weight of silica slurry, crushed 9.9 kg of water 3.7 kg of latex concentrate 0.10 kg of salt in solution.
Observations: After adding salt, small crumbs formed in the milky liquid. A sieve was used to collect and compact the small crumbs. As in cycle 1, a very poor dispersion of the silica particles in the rubber coagulum was observed. About 0.7 kg of dry composite was collected with the silica filler in the crumb measured by TGA analysis at about 50 phr.
Cycle 5 - Rubber-silica target composite at 55 phr using 25% by weight of silica slurry destabilized with 1% CaCl 2.
Conditions (for approximately 1.9 kg of dry matter): 4.0 kg of 25% by weight of silica containing 1% of CaCl 2, crushed 2.7 kg of latex concentrate Observations: The latex was placed in a tub of 5 gallons (19 liters) with a vertical low shear agitator. The destabilized 25% crushed silica slurry containing 1% CaCl 2 was poured into the tub with agitation, and stirring continued until the end of coagulation. Visual and tactile observations of the rubber piece revealed large pockets (mm to cm size) of silica slurry in the rubber piece and a large amount of silica particles trapped but not distributed in the solid rubber phase. The average silica load in dried coagulum measured by TGA analysis was about 58 phr. The inter-sample variations of the silica charges were greater than 10 phr.
Experiment 7-B: Discontinuous mixing using silica slurry without crushing.
To prepare the silica slurry without crushing, the silica was added slowly to water using only a vertical stirrer (Model No. 1750, Arrow Engineering Co., Inc., Hillside, NJ). When the silica appeared to be completely dispersed, the latex was added and the liquid mixture was stirred for 20 minutes. The CaCl2 salt solution was then added to the liquid mixture and the mixture continued until the apparent end of the coagulation. Samples were dried in an oven prior to TGA analysis.
Cycle 1 - Rubber-silica target composite at 65 phr using 25% by weight of silica slurry.
Conditions (for about 1.9 kg of dry matter): 3.0 kg of 25% by weight of silica slurry 3.8 kg of latex concentrate 0.06 kg of salt in solution.
Observations: After adding salt, very large pieces of rubber coagulum had formed around the blade of the agitator. After coagulation, a thick layer of silica was deposited at the bottom of the tub. The piece of rubber seemed gritty and viscous. Silica grains could be affected and observed on the surface of the rubber coagulum and visual observation revealed a very poor distribution of the silica in the rubber coagulum. The silica filler in the coagulum determined by TGA analysis was 25 phr.
Cycle 6 - Target rubber composite containing 80 phr of silica using 25% by weight of silica slurry.
Conditions (for about 1.9 kg of dry matter): 3.3 kg of 25% by weight of silica slurry 3.4 kg of latex concentrate 0.06 kg of salt in solution.
[0180] Observations: The silica filler in the rubber was determined at 35 phr and visual observation revealed a very poor distribution of silica in the rubber coagulum.
Cycle 7 - Rubber target composite containing 110 phr of silica using 6% by weight of silica slurry.
Conditions (for about 1.9 kg dry matter, in two batches): 1.0 kg of 25% by weight of silica slurry 15.6 kg of water 3.0 kg of latex concentrate 0.120 kg of salt in solution.
Observations: Small rubber crumbs had formed in the tub and the remaining liquid after coagulation was generally transparent, with a layer of silica at the bottom of the tub. According to TGA analysis, the silica filler in the rubber product was about 30 phr. The coagulum was elastic, with silica grains on the surface. While drying, the silica could be easily swept from the surface and visual observation revealed a very poor distribution of silica in the rubber coagulum.
Cycle 8 - Target rubber composite containing 140 phr of silica using 6% by weight of silica slurry.
Conditions (for about 1.9 kg of dry matter, in two lots): 1.0 kg of 25% by weight of silica slurry 15.7 kg of water 2.4 kg of latex concentrate 0.110 kg of salt in solution.
Observations: Small rubber crumbs had formed in the tub and the remaining liquid after coagulation was generally transparent, with a layer of silica at the bottom of the tub. According to TGA analysis, the silica filler in the rubber product was about 35 phr. Silica particles were deposited on the surface of the rubber product and could be easily brushed by drying; visual observation revealed a very poor distribution of silica in the rubber coagulum.
[0185] Synthesis of the observations. Compared with the continuous elastomeric composite manufacturing process, as in Examples 4 and 6, the discontinuous latex mixing process of Example 7 failed to obtain the desired quality or quantity of silica dispersion in the rubber. With crushed silica slurries, the actual silica load observed in rubber products made with a batch mixture was less than 55 phr. After coagulation, a large amount of silica had settled at the bottom of the mixing tub and appeared on the surface of the rubber product, indicating poor capture of the silica particles in the rubber coagulum. With silica slurries that had not been milled, the actual silica load in the rubber produced with the batch was limited to 30 to 35 phr. After coagulation, a thick layer of silica had settled at the bottom of the mixing tub, the silica had appeared very poorly mixed with the rubber in the coagulum and undispersed grains of silica felt and were seen in the coagulum. Compared with the methods according to embodiments of the present invention, batch mixing methods have resulted in poor incorporation and distribution of silica particles into the coagulum rubber matrix. In the product of each of these batch mixing cycles, silica particles were observed to fall from the dried coagulum. When the dry rubber product was cut with a pair of scissors, silica particles fell from the cutting surface. Such loss of silica particles was not observed by examining the continuous phase of silica-containing solid or semi-solid rubber produced by the methods according to embodiments of the present invention.
The present invention comprises the following aspects / embodiments / attributes in any order and / or combination:
A method of manufacturing an elastomeric-silica composite comprising: (a) providing a continuous stream under pressure of at least a first fluid comprising a destabilized dispersion of particulate silica and a continuous stream of at least one second fluid comprising elastomer latex; (b) providing a volumetric flow rate of the first fluid relative to that of the second fluid to provide an elastomeric composite having a silica content of from about 15 phr to about 180 phr; (c) combining the first fluid stream and the second fluid stream with a sufficiently energetic impact to dispense the particulate silica into the elastomer latex to obtain a flow of a solid or semi-solid elastomeric-silica composite comprising a continuous rubber phase with dispersed silica particles.
A method according to any preceding or following embodiment / attribute / aspect: wherein said flow of said solid or semi-solid elastomer-silica composite is formed in two seconds or less after the combination of said first fluid stream and said second stream of fluid, or wherein said flow of said solid or semi-solid elastomeric-silica composite is formed from about 50 milliseconds to about 1500 milliseconds minus after combining said first fluid stream and said second fluid stream, or wherein said first fluid stream fluid in step (a) further comprises at least one salt, or wherein said first fluid in step (a) further comprises at least one acid, or wherein said solid or semi-solid elastomeric-silica composite solid comprises a discontinuous phase comprising from about 40% by weight to about 95% by weight of water or aqueous fluid, or wherein said combination is carried out in a reaction zone having a volume ranging from n 10 cm 3 to about 500 cm 3, or in which the relative volumetric flow rates are at a ratio of volumetric flow rates of the first fluid relative to the second fluid ranging from 0.4: 1 to 3.2: 1, or -in which the relative volumetric flow rates are at a ratio of volumetric flow rates of the first fluid relative to the second fluid ranging from 0.2: 1 to 2.8: 1, or in which the relative volumetric flow rates are at a ratio of volumetric flow rates of the first fluid relative to the second fluid ranging from 0.4: 1 to 3.2: 1, and said destabilized dispersion of the particulate silica comprises at least one salt, or wherein the relative volumetric flow rates are at a ratio of volumetric flow rates of the first fluid relative to the second fluid ranging from 0.2: 1 to 2.8: 1, and said destabilized dispersion of the particulate silica comprises at least one acid, or wherein said elastomer latex comprises a base said dispersion is particulate silica comprises at least one acid and a molar ratio of hydrogen ions in said acid in said first fluid with respect to said base in the second fluid is at least 1.0, or wherein said latex of elastomer comprises a base, said destabilized dispersion of particulate silica comprises at least one acid and a molar ratio of hydrogen ions in said acid in said first fluid with respect to said base in the second fluid is at least 1.1, or in which said elastomer latex comprises a base, said destabilized dispersion of particulate silica comprises at least one acid and a molar ratio of hydrogen ions in said acid in said first fluid with respect to said base in the second fluid; at least 1.2, or -wherein said elastomer latex comprises a base, said destabilized dispersion of particulate silica comprises at least one acid and a molar ratio of hydrogen ions in one or more said acid in said first fluid with respect to said base in the second fluid is from 1 to 4.5, or wherein said destabilized dispersion of particulate silica comprises at least one acid and wherein said elastomer latex present in said second fluid has an ammonia concentration of from about 0.3% by weight to about 0.7% by weight based on the weight of the elastomer latex, and a molar ratio of hydrogen ions in said acid in said the first fluid relative to the ammonia in said second fluid is at least 1.0 to 1.0, or wherein said silica content of said elastomeric-silica composite is from about 25 phr to about 80 phr, or wherein said silica content of said elastomeric-silica composite is from about 40 phr to about 115 phr, or wherein said destabilized dispersion of particulate silica comprises from about 6 percent by weight to about 35 percent by weight of silica , or -in which said disp destabilized form of particulate silica comprises from about 10% by weight to about 28% by weight of silica, or -comprising, furthermore, recovering said elastomeric-solid or semi-solid silica composite at ambient pressure, or -wherein said first fluid comprising said destabilized particulate silica dispersion having a zeta potential amplitude of less than 30 mV, or wherein said first fluid comprising said destabilized particulate silica dispersion has a zeta potential amplitude of 28 mV or less, or wherein said first fluid comprising said destabilized particulate silica dispersion at a zeta potential range from about 29 mV to about 5 mV, or wherein said first fluid comprising said destabilized particulate silica dispersion has a zeta potential amplitude of about 20 mV to about 1 mV, or wherein said destabilized dispersion of particulate silica comprises at least one salt, wherein the concentration of salt ions in said destabilized dispersion is from about 10 mM to about 160 mM, or wherein said destabilized dispersion of particulate silica comprises at least one salt, wherein said salt is present in said destabilized dispersion in an amount of from about 0.2 wt.% to about 2 wt.% based on the weight of said destabilized dispersion, or -wherein said destabilized dispersion of particulate silica comprises at least one acid wherein said acid is present in said destabilized dispersion in an amount of from about 0.8 wt.% to about 7.5 wt.% based on the weight of said destabilized dispersion, or wherein said destabilized dispersion of particulate silica comprises at least one acid, wherein the concentration of acid in said destabilized dispersion is from about 200 mM to about 1000 mM, or wherein e (c) is carried out with the continuous flow of the first fluid at a speed A and the continuous flow of the second fluid at a speed B, and the speed A is at least 2 times faster than the speed B, or -wherein step (c) is carried out in a semi-confined reaction zone and the first fluid has a velocity sufficient to induce cavitation in the reaction zone when combined with the second fluid, or -wherein the second fluid has a velocity sufficient to create a turbulent flow, or wherein said particulate silica dispersion comprises a surface-modified particulate silica having hydrophobic surface moieties, or wherein said first fluid is an aqueous fluid, or wherein said first fluid comprises an aqueous fluid and about 6 wt.% to about 35 wt.% of particulate silica, or -wherein said first fluid is an aqueous fluid, further comprising at least one salt and at least one acid, or in which that carbon black is present in said elastomeric-silica composite in an amount of from about 10% by weight to about 0.1% by weight based on the total particulate matter present in said elastomer-silica composite, or wherein carbon black is present in said elastomeric-silica composite in an amount of about 10% by weight or less based on the total particulate matter present in said elastomeric-silica composite, or said process further comprising destabilizing a particulate silica dispersion by lowering a pH of the particulate silica dispersion to form the destabilized particulate silica dispersion provided in step (a), or - said method further comprising destabilizing a dispersion of particulate silica by lowering a pH of the particulate silica dispersion to a pH of from 2 to 4 to form the destabilized silica dispersion particle provided in step (a), or wherein said particulate silica has a hydrophilic surface or wherein said particulate silica is a highly dispersible silica (HDS), or wherein said acid comprises at least one organic acid, or wherein said acid may comprise acetic acid, formic acid, citric acid, phosphoric acid or sulfuric acid or a combination thereof, or wherein said acid may comprise an alkyl-containing acid C1 to C4, or wherein said acid has a molecular weight or an average molecular weight of less than 200, or wherein said salt comprises at least one alkali metal salt, or wherein said salt comprises a calcium salt, a magnesium salt or an aluminum salt or a combination thereof, or said process further comprising the step of subjecting the particulate silica to mechanical treatment to obtain a reduced particle size, or -in which mechanical treatment may include crushing, grinding, spraying, breaking or high shear treatment or combinations thereof, or wherein the particulate silica is precipitated silica or fumed silica or colloidal silica, or combinations thereof, or wherein said particulate silica is silica with a BET surface area of from about 20 m 2 / g to about 450 m 2 / g, or wherein said latex of elastomer is natural rubber latex, or wherein said natural rubber latex is in the form of planting latex, latex concentrate, decanted latex, chemically modified latex, enzymatically modified latex, or one of their combinations, or wherein said natural rubber latex is in the form of an expoxidized natural rubber latex, or wherein said natural rubber latex is in the form of latex concentrate, or comprising re mixing the elastomer-silica composite with an additional elastomer to form a blend of elastomeric composite. The invention also relates to a method for manufacturing a rubber compound comprising: (a) performing the method according to any one of the preceding or following embodiments / attributes / aspects, and (b) mixing the elastomeric composite. silica with other components to form the rubber compound, wherein said other components comprise at least one antioxidant, sulfur, a polymer other than an elastomer latex, a catalyst, a diluent oil, a resin, a coupling agent, one or more additional elastomeric composites or a reinforcing filler, or a combination thereof. The invention relates to a method for manufacturing a rubber article selected from tires, moldings, fasteners, coatings, conveyors, seals or folders, comprising: (a) performing the method according to any one of previous / succeeding embodiments / attributes / aspects, and (b) mixing the elastomer-silica composite with other components to form a compound, and (c) vulcanizing the compound to form said rubber article. The invention relates to a method according to any one of the preceding or following embodiments / attributes / aspects, further comprising performing one or more additional post-processing steps after recovering the elastomeric-silica composite. The invention relates to a method according to any one of the preceding or following embodiments / attributes / aspects, wherein the post-processing steps comprise at least one of: a) drying the elastomer-silica composite to obtain a dry mixture; b) mixing or mixing the dried mixture to obtain a composite elastomer-silica composite; c) milling the composite elastomer-silica composite to obtain a crushed elastomer-silica composite; d) granulating or mixing the elastomer-milled silica composite; e) pressing the elastomer-silica composite after granulation or mixing to obtain a pressed elastomer-silica composite; f) extruding the elastomer-silica composite; g) the calendering of the elastomer-silica composite; and / or h) optionally decomposing the pressed elastomer-silica composite and mixing with other components. The invention relates to a method according to any preceding / following embodiment / attribute / aspect: in which the post-processing steps comprise at least the rolling of the elastomer-silica composite, or in which the post-processing steps comprise compressing the elastomeric-silica composite to remove about 1 wt.% to about 15 wt.% of the discontinuous phase of aqueous fluid, or -wherein the elastomer latex is brought into contact with at least one destabilizing agent when the destabilized dispersion of particulate silica is combined with the elastomer latex, or further comprising contacting the flow of solid or semi-solid elastomeric-silica composite with at least one destabilizing agent, or further comprising step of performing one or more of the following steps with the elastomer-solid or semi-solid silica composite: a) transfer of the elastomeric-solid silica or semi-sol composite ide in a reservoir or holding container; b) heating the solid or semi-solid elastomeric-silica composite to reduce the water content; c) exposing the solid or semi-solid elastomeric-silica composite to an acid bath; d) mechanically treating the elastomer-solid or semisolid silica composite to reduce the water content, or wherein said elastomer-silica composite is an elastomer-semisolid silica composite and said method further comprising converting said composite elastomer-semi-solid silica elastomer composite-solid silica, or wherein said elastomer-semi-solid silica composite is converted into said solid elastomer-silica composite by treatment with an aqueous fluid comprising at least one acid or at least one salt or a combination of at least one acid and at least one salt, or wherein said second fluid comprises a mixture of two or more different elastomeric latexes, or wherein said method further comprises providing one or more additional fluids and the combination of the additional fluid (s) with said first and second fluid streams, wherein said additional fluid (s) comprises one or more elastomer latex fluids and said additional fluids are the same or different from said elastomer latex present in said second fluid stream.
The present invention may include any combination of these different attributes or embodiments above as described in the sentences and / or paragraphs of this application. Any combination of the attributes described in this application is considered a part of the present invention and no limitation is provided with respect to the combinable attributes.
The applicants specifically incorporate the entire contents of all the references cited in the present invention. In addition, when a quantity, concentration or other value or parameter is given as a range, preferred range or list of preferable higher values and lower preferable values, these should be considered as specifically describing all formed ranges. any pair of any upper range limit or preferred value and any lower range limit or preferred value, whether or not the ranges are described separately. When a range of numerical values is cited in this application, unless otherwise indicated, the range is assumed to include the ends thereof, as well as all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values mentioned when defining a range.
Other embodiments of the present invention will be apparent to those skilled in the art in view of the present specification and practice of the present invention described herein. It is intended that this specification and the present examples be considered illustrative only, the true fields of application and spirit of the invention being indicated in the following and equivalent claims thereof.
权利要求:
Claims (62)
[1" id="c-fr-0001]
CLAIMS:
A method of manufacturing an elastomeric-silica composite comprising: (a) providing a continuous stream under pressure of at least a first fluid comprising a destabilized silica dispersion and a continuous stream of at least one second fluid comprising elastomer latex; (b) providing a volumetric flow rate of the first fluid relative to that of the second fluid to obtain a silica content ranging from about 15 phr to about 180 phr in the elastomer-silica composite; (c) combining the flow of the first fluid and the flow of the second fluid with an impact strong enough to dispense the silica into the elastomer latex to obtain a continuous phase of solid rubber containing silica or a continuous phase of semi-solid rubber containing silica.
[2" id="c-fr-0002]
The method of claim 1, wherein said flow of said solid or semi-solid silica-containing continuous phase is formed in two seconds or less after combining said first fluid stream and said second fluid stream.
[3" id="c-fr-0003]
The method of claim 1, wherein said flow of said solid or semi-solid silica-containing continuous phase is formed from about 50 milliseconds to about 1500 milliseconds after combining said first fluid stream and said second stream of silica. fluid.
[4" id="c-fr-0004]
The method of claim 1, wherein said first fluid in step (a) further comprises at least one salt.
[5" id="c-fr-0005]
The method of claim 1, wherein said first fluid in step (a) further comprises at least one acid.
[6" id="c-fr-0006]
The method of claim 1, wherein said continuous phase of solid or semi-solid rubber containing silica comprises from about 40% by weight to about 95% by weight of water or aqueous fluid.
[7" id="c-fr-0007]
The method of claim 1, wherein said combining occurs in a reaction zone having a volume of about 10 cm3 to about 500 cm3.
[8" id="c-fr-0008]
The method of claim 1, wherein the relative volumetric flow rates are at a volume flow ratio of the first fluid to the second fluid ranging from 0.4: 1 to 3.2: 1.
[9" id="c-fr-0009]
The method of claim 1, wherein the relative volumetric flow rates are at a volumetric flow rate ratio of the first fluid to the second fluid ranging from 0.2: 1 to 2.8: 1.
[10" id="c-fr-0010]
The method of claim 1, wherein the relative volumetric flow rates are at a volume flow ratio of the first fluid to the second fluid ranging from 0.4: 1 to 3.2: 1, and said destabilized dispersion of the silica comprises at least one salt.
[11" id="c-fr-0011]
The method of claim 1, wherein the relative volumetric flow rates are at a volume flow ratio of the first fluid to the second fluid of from 0.2: 1 to 2.8: 1, and said destabilized dispersion of the silica comprises at least one acid.
[12" id="c-fr-0012]
The process according to claim 1, wherein said elastomer latex comprises a base, said destabilized silica dispersion comprises at least one acid and a molar ratio of hydrogen ions in said acid in said first fluid with respect to said base in the second fluid is from 1 to 4.5.
[13" id="c-fr-0013]
The process according to claim 1, wherein said destabilized silica dispersion comprises at least one acid and wherein said elastomer latex present in said second fluid has an ammonia concentration ranging from about 0.3% by weight to about 0.7 wt% based on the weight of the elastomer latex, and a molar ratio of hydrogen ions in said acid in said first fluid to ammonia in said second fluid is at least 1: 1.
[14" id="c-fr-0014]
The method of claim 1, wherein said silica content of said elastomeric silica composite is from about 35 phr to about 115 phr.
[15" id="c-fr-0015]
The method of claim 1, wherein said silica content of said elastomeric-silica composite is from about 40 phr to about 115 phr.
[16" id="c-fr-0016]
The process of claim 1, wherein said destabilized silica dispersion comprises from about 6 wt% to about 35 wt% silica.
[17" id="c-fr-0017]
The method of claim 1, wherein said destabilized silica dispersion comprises from about 10 wt% to about 28 wt% silica.
[18" id="c-fr-0018]
The method of claim 1 further comprising recovering said continuous phase of solid or semi-solid rubber containing silica at ambient pressure.
[19" id="c-fr-0019]
The method of claim 1, wherein said first fluid comprising said destabilized silica dispersion has a zeta potential amplitude of less than 30 mV.
[20" id="c-fr-0020]
The process of claim 1, wherein said destabilized silica dispersion comprises at least one salt, wherein the concentration of salt ions in said destabilized dispersion is from about 10 mM to about 160 mM.
[21" id="c-fr-0021]
The process of claim 1, wherein said destabilized silica dispersion comprises at least one salt, wherein said salt is present in said destabilized dispersion in an amount of from about 0.2 wt% to about 2 wt% based on the weight of said destabilized dispersion.
[22" id="c-fr-0022]
The process according to claim 1, wherein said destabilized silica dispersion comprises at least one acid, wherein said acid is present in said destabilized dispersion in an amount of from about 0.8 wt% to about 7.5 wt. by weight based on the weight of said destabilized dispersion.
[23" id="c-fr-0023]
The process of claim 1, wherein said destabilized silica dispersion comprises at least one acid, wherein the acid concentration in said destabilized dispersion is from about 200 mM to about 1000 mM.
[24" id="c-fr-0024]
24. The method of claim 1, wherein step (c) is performed with the continuous flow of the first fluid at a speed A and the continuous flow of the second fluid at a speed B, and the speed A is at least 2 times faster than speed B.
[25" id="c-fr-0025]
25. The method of claim 1 wherein step (c) is performed in a semi-confined reaction zone and the first fluid has a velocity sufficient to induce cavitation in the reaction zone when combined with the second fluid. .
[26" id="c-fr-0026]
The method of claim 25, wherein the second fluid has a velocity sufficient to create a turbulent flow.
[27" id="c-fr-0027]
The method of claim 1, wherein said silica dispersion comprises a surface-modified silica having hydrophobic surface moieties.
[28" id="c-fr-0028]
The method of claim 1, wherein said first fluid is an aqueous fluid.
[29" id="c-fr-0029]
The method of claim 1, wherein said first fluid comprises an aqueous fluid and about 6 wt.% To about 35 wt.% Silica.
[30" id="c-fr-0030]
The method of claim 1, wherein said first fluid is an aqueous fluid, further comprising at least one salt and at least one acid.
[31" id="c-fr-0031]
The method of claim 1, wherein carbon black is present in said elastomeric-silica composite in an amount of from about 10% by weight to about 0.1% by weight based on total particulate matter present in said elastomer-silica composite.
[32" id="c-fr-0032]
The method of claim 1, said method further comprising destabilizing a silica dispersion by lowering a pH of the silica dispersion to form the destabilized silica dispersion provided in step (a).
[33" id="c-fr-0033]
The method of claim 1, said method further comprising destabilizing a silica dispersion by lowering a pH of the silica dispersion to a pH of from 2 to 4 to form the destabilized silica dispersion provided. in step (a).
[34" id="c-fr-0034]
The process of claim 1, wherein said silica has a hydrophilic surface.
[35" id="c-fr-0035]
The process of claim 1, wherein said silica is a highly dispersible silica (HDS).
[36" id="c-fr-0036]
36. The process according to claim 5, wherein said acid may comprise acetic acid, formic acid, citric acid, phosphoric acid or sulfuric acid or a combination thereof.
[37" id="c-fr-0037]
37. The process of claim 5, wherein said acid has a molecular weight or an average molecular weight of less than 200.
[38" id="c-fr-0038]
38. The method of claim 4, wherein said salt comprises at least one metal salt of group 1,2 or 13.
[39" id="c-fr-0039]
39. The method of claim 4, wherein said salt comprises a calcium salt, a magnesium salt or an aluminum salt or a combination thereof.
[40" id="c-fr-0040]
40. The method of claim 1, said method further comprising exposing the silica to mechanical processing to obtain a reduced particle size.
[41" id="c-fr-0041]
41. The process of claim 1, wherein the silica is precipitated silica or fumed silica or colloidal silica, or combinations thereof.
[42" id="c-fr-0042]
42. The process of claim 1 wherein said silica has a BET surface area of from about 20 m 2 / g to about 450 m 2 / g.
[43" id="c-fr-0043]
The method of claim 1, wherein said elastomer latex is natural rubber latex.
[44" id="c-fr-0044]
The method of claim 43, wherein said natural rubber latex is in the form of planting latex, latex concentrate, decanted latex, chemically modified latex, enzymatically modified latex, or a combination thereof.
[45" id="c-fr-0045]
The method of claim 43, wherein said natural rubber latex is in the form of an expoxidized natural rubber latex.
[46" id="c-fr-0046]
The method of claim 43, wherein said natural rubber latex is in the form of latex concentrate.
[47" id="c-fr-0047]
The method of claim 1, further comprising mixing the elastomeric silica composite with an additional elastomer to form an elastomeric composite blend.
[48" id="c-fr-0048]
A method of making a rubber compound comprising: (a) performing the method of claim 1 and (b) mixing the elastomeric-silica composite with other components to form the rubber compound, wherein said other components comprise at least one antioxidant, sulfur, a polymer other than an elastomer latex, a catalyst, a diluent oil, a resin, a coupling agent, one or more additional elastomeric composites or a reinforcing filler, or one of their combinations.
[49" id="c-fr-0049]
A method for manufacturing a rubber article selected from tires, moldings, fasteners, coatings, conveyors, seals or liners, comprising: (a) performing the method of claim 1 and (b) mixing the elastomeric-silica composite with other components to form a compound, and (c) vulcanizing the compound to form said rubber article.
[50" id="c-fr-0050]
The method of claim 1, further comprising performing one or more additional post-processing steps after recovering the elastomeric-silica composite.
[51" id="c-fr-0051]
The method of claim 50, wherein the post-treatment steps comprise at least one of: a) drying the elastomeric-silica composite to obtain a dry mixture; b) mixing or mixing the dried mixture to obtain a composite elastomer-silica composite; c) milling the composite elastomer-silica composite to obtain a crushed elastomer-silica composite; d) granulating or mixing the elastomer-milled silica composite; e) pressing the elastomer-silica composite after granulation or mixing to obtain a pressed elastomer-silica composite; f) extruding the elastomer-silica composite; g) the calendering of the elastomer-silica composite; and / or h) optionally decomposing the pressed elastomer-silica composite and mixing with other components.
[52" id="c-fr-0052]
52. The method of claim 50, wherein the post-processing steps comprise at least rolling of the elastomeric-silica composite.
[53" id="c-fr-0053]
The method of claim 50, wherein the post-treatment steps comprise compressing the continuous phase of solid or semi-solid rubber containing silica to remove about 1 wt.% To about 15 wt.% Of aqueous fluid. contained in it.
[54" id="c-fr-0054]
54. The process according to claim 1, wherein the elastomer latex is brought into contact with at least one destabilizing agent when the destabilized silica dispersion is combined with the elastomer latex.
[55" id="c-fr-0055]
The method of claim 1, further comprising contacting the flow of elastomeric-solid or semisolid silica composite with at least one destabilizing agent.
[56" id="c-fr-0056]
The method of claim 1, further comprising the step of performing one or more of the following steps with the continuous phase of solid or semi-solid rubber containing silica: a) transfer of the continuous phase of solid or semi-solid rubber containing silica in a holding tank or container; b) heating the continuous phase of solid or semi-solid rubber containing silica to reduce the water content; c) exposing the continuous phase of solid or semi-solid rubber containing silica to an acid bath; d) the mechanical treatment of the continuous phase of solid or semi-solid rubber containing silica to reduce the water content.
[57" id="c-fr-0057]
The method of claim 1, wherein said elastomer-silica composite is a continuous phase of silica-containing semi-solid rubber and said method further comprising converting said continuous phase of silica-containing semi-solid rubber to continuous phase of solid rubber containing silica.
[58" id="c-fr-0058]
The method of claim 57, wherein said silica-containing semi-solid rubber continuous phase is converted to said solid silica-containing solid rubber phase by treatment with an aqueous fluid comprising at least one acid or at least one salt or a combination of at least one acid and at least one salt.
[59" id="c-fr-0059]
The method of claim 1, wherein said second fluid comprises a blend of two or more different elastomeric latexes.
[60" id="c-fr-0060]
The method of claim 1, wherein said method further comprises providing one or more additional fluids and combining the one or more fluids with said first and second fluid streams, wherein said one or more additional fluids comprise a or a plurality of elastomeric latex fluids and said additional fluids are the same or different from said elastomer latex present in said second fluid stream.
[61" id="c-fr-0061]
The method of claim 1, wherein said silica content of said elastomeric silica composite is from about 35 phr to about 180 phr.
[62" id="c-fr-0062]
62. An article of the continuous phase of solid rubber containing silica comprising at least 40 parts per hundred parts by weight of rubber (phr) of silica dispersed in natural rubber and at least 40% by weight of aqueous fluid, and having length dimension (L), wherein the solid silica-containing continuous rubber article article is capable of being stretched to 130-150% (L) without breaking.
类似技术:
公开号 | 公开日 | 专利标题
FR3038902A1|2017-01-20|
FR3038899A1|2017-01-20|
FR2964661A1|2012-03-16|ELASTOMERIC COMPOSITE COMPRISING A SILICA - CONTAINING LOAD AND PROCESS FOR PRODUCING THE SAME.
同族专利:
公开号 | 公开日
AU2016291793B2|2018-10-04|
RU2685310C1|2019-04-17|
JP2018524451A|2018-08-30|
US20170306106A1|2017-10-26|
CN108026316B|2021-02-09|
CL2018000087A1|2018-05-11|
CA2992259C|2020-06-02|
US20180273701A1|2018-09-27|
CN108026316A|2018-05-11|
JP6669851B2|2020-03-18|
BR112018000833A2|2018-09-11|
US20190375899A1|2019-12-12|
CA2992259A1|2017-01-19|
DE112016003169T5|2018-04-12|
GB2556569B|2021-04-14|
WO2017011548A1|2017-01-19|
GB201801670D0|2018-03-21|
US10961359B2|2021-03-30|
US10000612B2|2018-06-19|
AU2016291793A1|2018-02-01|
GB2556569A|2018-05-30|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题

US3700621A|1970-07-16|1972-10-24|Burke Oliver W Jun|Elastomer-silica pigment masterbatches and production processes relating thereto|
US3700620A|1970-07-16|1972-10-24|Burke Oliver W Jun|Elastomer-silica pigment masterbatches and production processes relating thereto|
US3878153A|1971-11-26|1975-04-15|Cities Service Co|Process of mixing two elastomers|
SU463117A1|1972-03-13|1975-03-05|Тбилисский Научно-Исследовательский Институт Приборостроения И Средств Автоматизации|Device for averaging number pulse codes|
DE2822148C2|1978-05-20|1983-02-24|Chemische Werke Hüls AG, 4370 Marl|Process for the production of a powdery, filler-containing rubber|
GB2113692B|1981-12-18|1985-06-26|Malaysian Rubber Producers|Epoxidized cis 1, 4-polyisoprene rubber|
FR2588008B1|1985-09-27|1988-06-24|Rhone Poulenc Chim Base|PROCESS FOR OBTAINING A FILLER-POLYMER COMPOSITION AND PRODUCT OBTAINED|
TW334467B|1994-12-22|1998-06-21|Cabot Corp|Latex compositions and films|
US5674932A|1995-03-14|1997-10-07|The Goodyear Tire & Rubber Company|Silica reinforced rubber composition and use in tires|
US5580919A|1995-03-14|1996-12-03|The Goodyear Tire & Rubber Company|Silica reinforced rubber composition and use in tires|
TW360585B|1996-04-01|1999-06-11|Cabot Corp|Elastomeric compositions and methods and apparatus for producing same|
JP4234200B2|1996-04-01|2009-03-04|キャボットコーポレイション|Novel elastomer composite and method for producing the same|
US6365663B2|1996-04-01|2002-04-02|Cabot Corporation|Elastomer composite blends and methods-II|
US6075084A|1996-04-01|2000-06-13|Cabot Corporation|Elastomer composite blends and methods - II|
US5872173A|1996-04-03|1999-02-16|Cabot Corporation|Synthetic latex compositions and articles produced therefrom|
US5763388A|1996-12-18|1998-06-09|Dsm Copolymer, Inc.|Process for producing improved silica-reinforced masterbatch of polymers prepared in latex form|
ES2367644T3|1999-04-16|2011-11-07|Cabot Corporation|METHOD FOR THE PRODUCTION AND TREATMENT OF NEW ELASTOMER COMPOUNDS AND ELASTOMER COMPOUNDS.|
KR20020021407A|1999-08-10|2002-03-20|토마스 지. 티테코트|Process for Preparation of Rubber Silica Masterbatches Based on the Use of Polymer Latices|
AT442398T|2000-01-25|2009-09-15|Cabot Corp|POLYMERS CONTAINING MODIFIED PIGMENTS AND ITS MANUFACTURE|
CN100381448C|2001-04-30|2008-04-16|通用电气公司|Hybrid silicon-containing coupling agents for filled elastomer compositions|
EP1607408B1|2001-07-27|2010-11-17|Bridgestone Corporation|Natural rubber master batch, production method thereof, and natural rubber composition|
US7341142B2|2001-11-09|2008-03-11|Cabot Corporation|Elastomer composite materials in low density forms and methods|
US6908961B2|2001-12-07|2005-06-21|Cabot Corporation|Elastomer composites, elastomer blends and methods|
EP1489102B1|2002-03-28|2007-12-05|Bridgestone Corporation|Natural rubber, rubber composition and pneumatic tire|
DE10256790A1|2002-12-05|2004-06-17|Degussa Ag|Continuous process for the production of rubber granules containing fillers|
DE602004032341D1|2003-06-30|2011-06-01|Zeon Corp|SILICATE COMPOSITION AND PRODUCTION METHOD THEREFOR|
JP4573523B2|2003-12-17|2010-11-04|住友ゴム工業株式会社|Silica masterbatch, method for producing the same, and rubber composition using silica masterbatch|
ES2385569T3|2004-11-19|2012-07-26|Bridgestone Corporation|Mixture of modified natural rubber and method to produce it as well as rubber and pneumatic composition|
JP4963786B2|2004-11-26|2012-06-27|株式会社ブリヂストン|Modified natural rubber latex and method for producing the same, modified natural rubber and method for producing the same, rubber composition and tire|
JP4595513B2|2004-12-01|2010-12-08|株式会社ブリヂストン|Heavy duty pneumatic tire|
JP4770422B2|2004-12-01|2011-09-14|株式会社ブリヂストン|Pneumatic tire|
JP4872209B2|2004-12-01|2012-02-08|株式会社ブリヂストン|Heavy duty pneumatic tire|
JP4582703B2|2004-12-20|2010-11-17|株式会社ブリヂストン|Rubber composition and tire|
JP4726510B2|2005-02-07|2011-07-20|株式会社ブリヂストン|Natural rubber masterbatch, method for producing the same, rubber composition using the same, and tire|
JP4726509B2|2005-02-07|2011-07-20|株式会社ブリヂストン|Natural rubber masterbatch and method for producing the same, and rubber composition and tire using the same|
JP2007154095A|2005-12-07|2007-06-21|Bridgestone Corp|Rubber composition and tire by using the same|
JP2007154089A|2005-12-07|2007-06-21|Bridgestone Corp|Rubber composition and tire by using the same|
US7312271B2|2005-12-29|2007-12-25|Bridgestone Corporation|Solution masterbatch process using fine particle silica for low hysteresis rubber|
US7625965B2|2007-02-08|2009-12-01|Momentive Performance Materials Inc.|Rubber composition, process of preparing same and articles made therefrom|
AU2008296995B2|2007-08-30|2012-01-12|Cabot Corporation|An elastomer composite and method for producing it|
US7816435B2|2007-10-31|2010-10-19|Momentive Performance Materials Inc.|Halo-functional silane, process for its preparation, rubber composition containing same and articles manufactured therefrom|
AU2009210723B2|2008-02-08|2012-08-16|Cabot Corporation|An elastomer composite and method for producing it|
CN102083892B|2008-07-24|2016-08-03|内格罗梅克斯工业可变动资本额公司|Manufacture silane, the silicon dioxide of hydrophobization, silicon dioxide masterbatch and the method for rubber product|
RU2405003C2|2009-02-17|2010-11-27|ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг"|Liquid-phase method of preparing rubber mother batches containing white soot|
WO2011034581A2|2009-09-17|2011-03-24|Cabot Corporation|Tire composition using elastomer composite blends|
EA026634B1|2009-09-17|2017-04-28|Компани Женераль Дез Этаблиссман Мишлен|Formation of latex coagulum composite for tire composition|
FR2954775B1|2009-10-30|2012-03-30|Michelin Soc Tech|PROCESS FOR THE PREPARATION OF A MASTER MIXTURE OF SYNTHETIC DIENE ELASTOMER AND SILICA|
FR2952064B1|2009-10-30|2012-08-31|Michelin Soc Tech|METHOD OF PREPARING A MASTER MIXTURE OF DIENE ELASTOMER AND SILICA|
FR2954774B1|2009-10-30|2012-01-06|Michelin Soc Tech|METHOD OF PREPARING A MASTER MIXTURE OF NATURAL RUBBER AND SILICA|
RU2541066C2|2010-04-01|2015-02-10|Родиа Операсьон|Use of precipitated silicon dioxide containing aluminium and 3-acryloxy-propyltriethoxysilane in composition of one or more isoprene elastomers|
US20110244382A1|2010-04-06|2011-10-06|Christopher Alyson M|Hydrophobic silica particles and method of producing same|
GB2496362B|2010-09-15|2018-05-02|Cabot Corp|Elastomer composite with silica-containing filler and methods to produce same|
FR2969163B1|2010-12-17|2012-12-28|Michelin Soc Tech|ELASTOMERIC COMPOSITION HAVING GOOD DISPERSION OF THE LOAD IN THE ELASTOMERIC MATRIX|
FR2969624B1|2010-12-23|2013-02-08|Michelin Soc Tech|PROCESS FOR THE PREPARATION OF A LIQUID PHASE MIXTURE|
FR2969623B1|2010-12-23|2013-02-08|Michelin Soc Tech|PROCESS FOR THE PREPARATION OF A LIQUID PHASE MIXTURE|
FR2974093B1|2011-04-15|2015-05-08|Michelin Soc Tech|PROCESS FOR THE PREPARATION OF A MASTER MIXTURE OF ELASTOMER AND A REINFORCING INORGANIC LOAD|
JP5443453B2|2011-09-16|2014-03-19|住友ゴム工業株式会社|Manufacturing method of composite, composite, rubber composition, and pneumatic tire|
FR2981080B1|2011-10-11|2013-11-01|Michelin Soc Tech|PROCESS FOR THE PREPARATION OF A MASTER MIXTURE OF NATURAL RUBBER AND SILICON DOPED MAGNESIUM|
FR2981077B1|2011-10-11|2013-11-01|Michelin Soc Tech|METHOD FOR PREPARING A MASTER MIXTURE OF DIENE ELASTOMER AND SILICA|
FR2981076B1|2011-10-11|2013-11-01|Michelin Soc Tech|METHOD FOR PREPARING A MASTER MIXTURE OF DIENE ELASTOMER AND SILICA|
FR2981078B1|2011-10-11|2013-11-01|Michelin Soc Tech|METHOD FOR PREPARING A MASTER MIXTURE OF DIENE ELASTOMER AND SILICA|
FR2981079B1|2011-10-11|2013-11-01|Michelin Soc Tech|METHOD FOR PREPARING A MASTER MIXTURE OF DIENE ELASTOMER AND SILICA|
FR2981081B1|2011-10-11|2013-11-01|Michelin Soc Tech|METHOD OF PREPARING A MASTER MIXTURE OF NATURAL RUBBER AND SILICA|
FR2981937B1|2011-10-28|2013-11-08|Michelin Soc Tech|ELASTOMERIC COMPOSITION HAVING VERY GOOD DISPERSION OF THE LOAD IN THE ELASTOMERIC MATRIX|
CN103159994B|2011-12-08|2015-02-11|中国石油化工股份有限公司|Master batch and preparation method thereof, and vulcanized rubber and applications thereof|
FR2984333B1|2011-12-14|2014-05-09|Michelin Soc Tech|PROCESS FOR PREPARING A LIQUID PHASE MASTER MIXTURE|
TWI555829B|2011-12-20|2016-11-01|Gcp應用技術有限公司|Container sealant composition|
EP2943322B1|2013-01-14|2017-08-02|Cabot Corporation|Method for processing elastomer composite|
AR096344A1|2013-05-20|2015-12-23|Cabot Corp|ELASTOMER COMPOUNDS, MIXTURES AND METHODS TO PREPARE THE SAME|
CN103419293B|2013-08-05|2016-04-27|怡维怡橡胶研究院有限公司|Rubber masterbatch prepared by the method for continuously producing of rubber masterbatch and the method|
CN103600435B|2013-08-05|2016-04-27|怡维怡橡胶研究院有限公司|Rubber masterbatch prepared by the method for continuously producing of rubber masterbatch and the method|
WO2016014037A1|2014-07-22|2016-01-28|Li Junjuan|A process to prepare high-quality natural rubber-silica masterbatch by liquid phase mixing|
AU2016291793B2|2015-07-15|2018-10-04|Cabot Corporation|Methods of making an elastomer composite reinforced with silica and products containing same|
FR3038901A1|2015-07-15|2017-01-20|Cabot Corp|
FR3045620B1|2015-12-16|2017-11-17|Michelin & Cie|PROCESS FOR THE PREPARATION OF A MASTER MIXTURE, COMPRISING A DIENE ELASTOMER, A REINFORCING ORGANIC LOAD, AND, POSSIBLY, ANTIOXIDANT AGENT|AU2016291793B2|2015-07-15|2018-10-04|Cabot Corporation|Methods of making an elastomer composite reinforced with silica and products containing same|
FR3038901A1|2015-07-15|2017-01-20|Cabot Corp|
JP6880657B2|2016-11-01|2021-06-02|住友ゴム工業株式会社|Masterbatch manufacturing method|
JP6878836B2|2016-11-01|2021-06-02|住友ゴム工業株式会社|Masterbatch manufacturing method|
BR112020009137A2|2017-11-10|2020-10-20|Cabot Corporation|methods of producing an elastomeric compound and elastomeric compounds|
WO2020208130A1|2019-04-10|2020-10-15|Compagnie Generale Des Etablissements Michelin|Intensive mixing tool for producing elastomer-based composites|
法律状态:
2017-06-21| PLFP| Fee payment|Year of fee payment: 2 |
2018-06-20| PLFP| Fee payment|Year of fee payment: 3 |
2020-06-19| PLFP| Fee payment|Year of fee payment: 5 |
2021-06-25| PLFP| Fee payment|Year of fee payment: 6 |
2021-09-03| PLSC| Publication of the preliminary search report|Effective date: 20210903 |
优先权:
申请号 | 申请日 | 专利标题
US201562192891P| true| 2015-07-15|2015-07-15|
[返回顶部]