![]() Dispositif, installation et procédé de fourniture de gaz
专利摘要:
Dispositif de fourniture de gaz comprenant une centrale (2) d'inversion, la centrale (2) d'inversion comprenant deux entrées destinées à être reliées respectivement à deux sources (4, 5) de gaz sous pression distinctes et une sortie destinée à être reliée à un organe (3) utilisateur, la centrale (2) d'inversion comprenant un mécanisme de commutation automatique et/ou manuel permettant de basculer l'alimentation en gaz de l'organe (3) utilisateur à partir d'une source (4) ou de l'autre (5) source afin d'assurer une continuité d'alimentation, le dispositif comprenant un capteur (6) de pression mesurant la pression de gaz au niveau de la sortie et/ou d'au moins une entrée de la centrale (2) d'inversion, caractérisé en ce que le dispositif comprend un capteur (7) de température ambiante et un organe (8) électronique de stockage et de traitement de données, l'organe (8) électronique de stockage et de traitement de données recevant la mesure du capteur (7) de température ambiante et la mesure du capteur (6) de pression et étant configuré pour calculer, à partir de ces mesures de pression et de température ambiante, la variation de pression du gaz corrigée qui n'est pas due à la variation de température ambiante 公开号:EP3699478A1 申请号:EP20152779.3 申请日:2020-01-21 公开日:2020-08-26 发明作者:Fouad Ammouri;Stéphane BONNETIER 申请人:Air Liquide SA;LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude; IPC主号:F17C13-00
专利说明:
[0001] L'invention concerne un dispositif, une installation ainsi qu'un procédé de fourniture de gaz. [0002] L'invention concerne plus particulièrement un dispositif de fourniture de gaz comprenant une centrale d'inversion, la centrale d'inversion comprenant deux entrées destinées à être reliées respectivement à deux sources de gaz sous pression distinctes et une sortie destinée à être reliée à un organe utilisateur, la centrale d'inversion comprenant un mécanisme de commutation automatique et/ou manuel permettant de basculer l'alimentation en gaz de l'organe utilisateur à partir d'une source ou de l'autre source afin d'assurer une continuité d'alimentation, le dispositif comprenant un capteur de pression mesurant la pression de gaz au niveau de la sortie et/ou d'au moins une entrée de la centrale d'inversion. [0003] Une centrale d'inversion de cadres de bouteille de gaz est composée d'un système de basculement manuel et/ou automatique. Ce système bien connu permet de passer l'alimentation en gaz d'une centrale d'une première bouteille ou d'un premier cadre de bouteilles à une seconde bouteille ou un second cadre de bouteilles lorsque le niveau de pression du premier cadre en cours d'utilisation descend en-dessous d'un certain seuil de sécurité. Le rôle de la centrale d'inversion est d'assurer une alimentation continue du gaz lors d'un changement de cadre ou de bouteille(s). [0004] La centrale d'inversion est souvent munie d'un détendeur permettant la réduction de la pression du gaz dans les bouteilles sources vers le niveau de pression nécessaire pour l'utilisation finale. [0005] Un capteur de pression alimenté par fils ou bien un manomètre est souvent installé en amont du détendeur (en aval de la sortie de la centrale d'inversion) pour suivre la pression restante dans la source de gaz et ainsi connaître s'il faut basculer d'une source de gaz à l'autre. [0006] Cette pression mesurée subit les variations de la température ambiante. En effet, plus la température ambiante augmente et plus la pression dans les bouteilles sources non utilisées a tendance à augmenter (et vice versa lors d'une baisse de température). L'impact des variations de température ambiante introduit des erreurs non négligeables sur l'estimation de la masse de gaz restante dans la source de gaz et aussi sur les variations de la pression. [0007] La détection de fuite sur une canalisation alimentée par une capacité de gaz sous pression est souvent réalisée avec un ou plusieurs détecteurs externes installés le long de la canalisation. Ce système nécessite donc d'installer à intervalles réguliers un détecteur de gaz. Pour une canalisation de gaz longue de plusieurs dizaines de mètres, cela représente un coût important et un suivi régulier contraignant pour calibrer les détecteurs afin de s'assurer de leur fiabilité dans le temps. [0008] Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus. [0009] A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que le dispositif comprend un capteur de température ambiante et un organe électronique de stockage et de traitement de données, l'organe électronique de stockage et de traitement de données recevant la mesure du capteur de température ambiante et la mesure du capteur de pression et étant configuré pour calculer, à partir de ces mesures de pression et de température ambiante, la variation de pression du gaz corrigée qui n'est pas due à la variation de température ambiante. [0010] Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : le dispositif comporte un capteur de détection de consommation de gaz délivré par le dispositif de fourniture de gaz, l'organe électronique de stockage et de traitement de données recevant le signal de ce capteur de détection de consommation du gaz et étant configuré pour détecter une fuite et générer en réponse un signal d'alerte lorsque la variation de pression du gaz calculée corrigée excède la variation de pression réelle correspondant au signal du capteur de détection de la consommation de gaz délivré, l'organe électronique de stockage et de traitement de données est configuré pour détecter une fuite et générer en réponse un signal d'alerte lorsque le capteur de détection de consommation ne détecte pas de consommation de gaz délivré par le dispositif alors que la variation de pression du gaz corrigée calculée correspond à une diminution de pression, le dispositif comprend un détendeur de pression disposé au niveau de la sortie de la centrale d'inversion et configurée pour abaisser la pression délivrée à un organe utilisateur à une valeur déterminée [0011] L'invention concerne également une installation de fourniture de gaz à un organe utilisateur comprenant un dispositif de fourniture de gaz conforme à l'une quelconque des caractéristiques ci-dessus ou ci-dessous et deux sources de gaz sous pression reliées respectivement aux deux entrées de la centrale d'inversion. [0012] L'invention concerne également un procédé de fourniture de gaz à un organe utilisateur au moyen d'un circuit incluant une centrale d'inversion reliée deux sources de gaz sous pression distinctes, la centrale d'inversion comprenant un mécanisme de commutation automatique et/ou manuel permettant de basculer l'alimentation en gaz de l'organe utilisateur d'une source ou de l'autre source afin d'assurer une continuité d'alimentation, le procédé comprenant une étape de mesure de la pression du gaz dans le circuit, notamment entre la centrale d'inversion et l'organe utilisateur, une étape de mesure de la température ambiante, une étape de calcul de la pression corrigée du gaz dans le circuit à partir des valeurs de pression mesurée et de la température ambiante, pour déterminer les variations de pression uniquement dues à un transfert de gaz d'une source vers l'organe utilisateur. [0013] Selon d'autres particularités possibles : le procédé comporte une étape de détection d'une fourniture de gaz à un organe utilisateur via le circuit et, lorsque la pression corrigée calculée diminue et qu'il n'est pas détecté de fourniture de gaz à un organe utilisateur, une étape de génération d'un signal d'alerte, la température du gaz dans le circuit et notamment dans les sources est approximée par la valeur de la moyenne mobile de la température ambiante mesurée sur une durée égale à trois fois le temps caractéristique total de l'échange de chaleur entre le milieu ambiant et le gaz dans la source, la variation de pression du gaz corrigée est calculée en calculant la pression P (en Pa) à partir de l'équation [Math 1] des gaz réels PV=n.R.Z.T dans laquelle V est le volume du gaz (en m3), n le nombre de mole de gaz, R la constante des gaz parfaits (unités en J.K-1.mol-1), Z le facteur de compressibilité pour le gaz considéré (sans dimension dépendant de la nature du gaz, de la température et de la pression du gaz), T la température du gaz (en K), et en ce que la température T du gaz approximée comme une moyenne mobile de la température ambiante mesurée sur une durée déterminée comprise entre une heure et cinq heures et notamment trois heures, la pression corrigée (Pc) du gaz dans le circuit est calculée sur la forme d'une fonction polynomiale en température T du gaz (en degré K) et dont les coefficients sont des polynômes en pression mesurée (P en bara), la pression corrigée (Pc) du gaz dans le circuit est calculée sous la forme d'une fonction polynomiale d'ordre 2 en température T du gaz (en degré K) et dont les coefficients sont des polynômes d'ordre 3 en pression mesurée (P en bara) [Math 8] : Pc= [A.P3+B.P2+C.P+D].T2+ [E.P3+F.P2+G.P+H].T+ [I.P3+J.P2+K.P+L] , dans lesquels les coefficients A, B, C, D, E, F, G, H, I, J, K et L sont des coefficients réels obtenus par lissage polynomial de la fonction qui fait intervenir le coefficient de compressibilité du gaz. [0014] L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous dans le cadre des revendications. [0015] D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence à la : [Fig. 1] qui représente de façon schématique et partielle un exemple de structure et de fonctionnement de l'invention. [0016] L'installation de fourniture de gaz illustrée à la [Fig. 1] comprend deux cadres 4, 5 de bouteilles de gaz sous pression reliées respectivement à deux entrées d'une centrale 2 d'inversion. Comme illustré, à la sortie de la centrale 2 d'inversion, le circuit peut comprendre un détendeur 10 de pression pour réguler la pression fournie à l'utilisateur 3 à une valeur déterminée. L'installation comprend un capteur 6 de pression mesurant la pression dans le circuit avant la détente. [0017] L'installation 1 comprend en outre un capteur 7 de température ambiante, mesurant par exemple la température autour du cadre des sources 4, 5. [0018] L'installation comprend (localement ou de façon déportée) un organe 8 électronique de stockage et de traitement de données. Cet organe 8 électronique comprend par exemple un microprocesseur, un ordinateur, une carte électronique et/ou tout autre appareil approprié. Cet organe 8 électronique de stockage et de traitement de données est configuré (relié) pour recevoir la mesure du capteur 7 de température ambiante et la mesure du capteur 6 de pression. De plus, cet organe 8 électronique est configuré (programmé ou piloté notamment) pour calculer, à partir de ces mesures, la variation de pression du gaz corrigée qui n'est pas due à la variation de température ambiante. [0019] Par exemple, cet organe 8 électronique est reliée à la mesure de pression, à la mesure de la température ambiante et reçoit une information ou un signal représentatif de l'utilisation ou non de l'installation (fourniture de gaz ou non) . [0020] Comme illustré, et sans que ceci soit limitatif, l'organe 8 électronique peut se trouver physiquement au niveau du capteur 6 de pression. Les signaux des capteurs peuvent être transmis par fil ou sans fil (signal Bluetooth ou Internet des objets par exemple). [0021] Le dispositif permet ainsi la détection de fuite de gaz dans le circuit (notamment sur une canalisation en aval de la centrale 2 d'inversion) en se basant sur le profil de mesure de pression mesuré par le capteur 6 de pression et sur la température ambiante mesurée par le capteur 7. [0022] En effet, la valeur de pression mesurée est corrigée par rapport à la variation de température ambiante. Ceci permet d'analyser par exemple la pente (variation) de la pression corrigée afin de détecter la présence ou pas d'une fuite de gaz. [0023] Ainsi, la mesure de pression (avant détente en cas de détente), de la température ambiante et d'un signal représentatif de non-utilisation/utilisation du gaz permet de déterminer la présence ou non d'une fuite de gaz dans le circuit (entre la source 4, 5 de gaz sous pression et l'endroit d'utilisation finale du gaz en aval de la centrale 2 d'inversion). [0024] En effet, d'après la loi des gaz réels (ou éventuellement selon la Loi des gaz parfaits avec une précision moindre), il y a une relationPV = nRZT [0025] Cette relation peut être mise sous la forme d'une masse de gaz m contenue dans le volume V en fonction des autres paramètres déjà citésm = nM = PVM RZT [0026] Ce rapport dépend de la pression et de la température moyenne du gaz dans le volume. Or il est très difficile de mesurer la température à l'intérieur d'une ou plusieurs bouteilles de gaz. Selon l'invention la température moyenne du gaz dans la source ou le circuit est déduite (approximée) de la mesure de température ambiante autour celle-ci. Pour cela, les variations de la température du gaz à l'intérieur des bouteilles sont déduites des variations de la température ambiante. [0027] La variation de la température ambiante autour des sources 4, 5 influence en effet la température du gaz dans les sources à travers le flux de chaleur qui traverse les parois des bouteilles. Le flux de chaleur de nature convectif et radiatif sur la paroi externe des bouteilles se transforme en flux conductif à travers la paroi des bouteilles et ensuite sous forme convective entre la paroi interne de la bouteille et le gaz à l'intérieur. [0028] Pour estimer le temps nécessaire au bout duquel la température interne du gaz varie suite aux variations de la température ambiante, il est souvent d'usage d'introduire les temps caractéristiques relatifs à chacun des modes de transfert de chaleur de part et d'autre de la paroi de la bouteille. [0029] Le temps caractéristique d'échange de chaleur autour de la paroi externe de la bouteille peut être calculé selon la formule suivante τ e =m w Cp w k e S e [0030] Par exemple, pour une bouteille métallique de type B50 en acier, pesant 74 kg dont le coefficient d'échange total externe est de l'ordre de 10 W/(m2.K), de volume interne de 50 litres et de surface d'échange externe de 1,08 m2, ce temps caractéristique d'échange de chaleur externe vaut donc (74x460)/(10x1,08)=3152 secondes. [0031] Le temps caractéristique de convection sur la paroi interne de la bouteille peut être calculé selon la formule suivante τ cvi =m g Cp g k cvi S i [0032] Par exemple, pour une bouteille métallique de type B50 contenant par exemple du monoxyde de carbone (CO) à 100 barg dont la masse dans la bouteille à 15°C est de 5, 94 kg, la chaleur spécifique de 1234 J/(kg.K), le coefficient d'échange convectif interne est de l'ordre de 50 W/(m2.K), la surface d'échange interne de 1 m2, le temps caractéristique de convection interne vaut (5,94x1234)/(50x1) = 146,6 secondes. [0033] Le temps caractéristique de conduction dans l'épaisseur de la paroi de la bouteille peut s'exprimer sous la forme τ cd =e w 2 a w [0034] Pour une bouteille de type B50 en acier inoxydable dont l'épaisseur moyenne est de 9 mm et dont la diffusivité thermique de la paroi est de 4,3510-6 m2/s, on obtient pour ce temps caractéristique 81x10-6/4,35x10-6 = 18,6 secondes. [0035] Le temps caractéristique total de transfert de chaleur du milieu ambiant autour de la bouteille vers le gaz à l'intérieur de la bouteille peut être représenté par la somme des 3 temps caractéristiques cités plus haut soit 3152+18,6+146,6 = 3317 secondes=55,3 minutes soit environ une heure. [0036] Donc l'ordre de grandeur du temps caractéristique total est d'environ 1 heure et il est nettement dominé par le temps caractéristique d'échange de chaleur externe qui représente la quasi-totalité (95%) du temps total. Autrement dit, la variation de la température du gaz dans la bouteille atteint celle de la température ambiante au bout d'environ trois fois le temps caractéristique total. [0037] Il a été constaté que la moyenne mobile de la température ambiante sur une durée de 3 heures (trois fois le temps caractéristique total) donne une bonne estimation de la température interne du gaz dans la bouteille dans le cas où il n'y a pas de consommation de gaz. [0038] Ainsi la température T du gaz peut être approximée par la moyenne mobile de la température ambiante sur une durée comprise entre une heure et cinq heures et notamment trois heures. [0039] En conclusion, la température moyenne du gaz dans la bouteille sans consommation c'est-à-dire sans soutirage) peut être approximée par la moyenne mobile sur une durée égale à trois fois le temps caractéristique total de l'échange de chaleur entre le milieu ambiant et le gaz dans la bouteille. [0040] La pression corrigée Pc (qui est proportionnelle à la masse de gaz restante dans la bouteille) tient compte des variations de température du gaz et du facteur de compressibilité Z sous la forme de P c T P = f T P ∗ Z 0T 0 P 0 ∗ T 0 [0041] La pression corrigée Pc peut être mise sous la forme d'une fonction polynomiale d'ordre 2 en T (température du gaz dans la bouteille) où les coefficients sont des polynômes d'ordre 3 en P (pression mesurée dans la ou les bouteilles du cadre avant détente) avec P en bara et T en K (la température peut être exprimée en degré K ou en degré C mais dans ce cas la valeur des coefficients est modifiée en conséquence) P c T P = A . P 3 + B . P 2 + C . P + D . T 2 + E . P 3 + F . P 2 + G . P + H . T + I . P 3 + J . P 2 + K . P + L [0042] Les coefficients A à L peuvent être notés comme les valeurs d'une matrice A(3,4), qui pour le monoxyde de carbone (CO) avec P0=221 bara et T0=15°C=288, 15K peut être définie dans la table ci-dessous : [Tableau 1] -5.51605E-10 1.51951E-07 1.66395E-05 -4.36997E-05 3.70776E-07 -0.0001018 -0.013670931 0.028489057 -6.31947E-05 0.016902099 3.622898655 -4.695505679 [0043] Ces coefficients dépendent de la nature du gaz. En effet la formule de la pression corrigée Pc fait intervenir le coefficient de compressibilité du gaz. Ce coefficient dépend de la nature du gaz, de la température du gaz et de sa pression. Ce coefficient de compressibilité Z peut être tabulé pour chaque gaz en fonction de la température et de la pression du gaz. On peut extraire ce coefficient de compressibilité Z en se basant par exemple sur les données fournies par le site du NIST (National Institute of Standards and Technology) (https://webbook.nist.gov/chemistry/). Connaissant le coefficient de compressibilité du gaz considéré, on calcule ainsi la pression corrigée pour différentes valeurs de pression et de température du gaz. Ensuite on ajuste une ou si nécessaire plusieurs fonctions polynomiales d'ajustement (« fit » en anglais) qui permettent de reproduire la pression corrigée sur l'ensemble du domaine de variation de température et de pression du gaz. On obtient ainsi à partir de l'ajustement polynomial pour le gaz considéré les coefficients A, B, C, D, E, F, G, H, I, J, K et L. [0044] Ainsi, connaissant la mesure de pression du capteur 6 et la température du gaz T déduite de la température ambiante mesurée par le capteur 7, le dispositif peut calculer la pression corrigée Pc à partir de la formule précédente. [0045] Si l'organe 8 électronique reçoit un signal représentatif de la non utilisation du gaz sur le réseau après la centrale d'inversion (pas de soutirage, pas de fourniture de gaz à l'utilisateur 3) et que la pression corrigée calculée Pc par la formule précédente diminue avec le temps (par exemple Pc(t)-Pc(t+delta t) supérieur à un seuil), cela implique qu'une fuite est présente dans le circuit. Un signal d'alerte peut être généré (visuel et/ou sonore) et tout autre action (arrêt, fermeture de vannes... peut être déclenché). Le signal représentatif de la non utilisation du gaz sur le réseau peut être obtenu par exemple par un signal de vanne fermée au niveau de l'utilisation finale du gaz ou bien par un signal de débit nul au niveau du débitmètre très proche de l'utilisation finale du gaz. [0046] Ce seuil en bar peut être égal à au moins deux fois la précision du capteur de pression utilisé (par exemple seuil de 5 bar pour un capteur à 250 bar max ayant 1% de précision). La valeur delta t est de préférence de l'ordre de plusieurs heures notamment trois heures comme discuté ci-dessus. [0047] Dans ces conditions, un signal peut être affiché au niveau du capteur de pression et/ou un message peut être envoyé à distance en utilisant par exemple un réseau Internet des Objets ou bien un réseau GSM ou tout autre réseau de télécommunication (Bluetooth, etc...) pour alerter de la présence de fuite de gaz
权利要求:
Claims (9) [0001] Dispositif de fourniture de gaz comprenant une centrale (2) d'inversion, la centrale (2) d'inversion comprenant deux entrées destinées à être reliées respectivement à deux sources (4, 5) de gaz sous pression distinctes et une sortie destinée à être reliée à un organe (3) utilisateur, la centrale (2) d'inversion comprenant un mécanisme de commutation automatique et/ou manuel permettant de basculer l'alimentation en gaz de l'organe (3) utilisateur à partir d'une source (4) ou de l'autre (5) source afin d'assurer une continuité d'alimentation lors de l'utilisation du dispositif, le dispositif comprenant un capteur (6) de pression mesurant la pression de gaz au niveau de la sortie et/ou d'au moins une entrée de la centrale (2) d'inversion, caractérisé en ce que le dispositif comprend un capteur (7) de température ambiante et un organe (8) électronique de stockage et de traitement de données, l'organe (8) électronique de stockage et de traitement de données recevant la mesure du capteur (7) de température ambiante et la mesure du capteur (6) de pression et étant configuré pour calculer, à partir de ces mesures de pression et de température ambiante, la variation de pression du gaz corrigée qui n'est pas due à la variation de température ambiante, et en ce qu'il comporte un capteur (9) de détection de consommation de gaz délivré par le dispositif (1) de fourniture de gaz, l'organe (8) électronique de stockage et de traitement de données recevant le signal de ce capteur (9) de détection de consommation du gaz et étant configuré pour détecter une fuite et générer en réponse un signal d'alerte lorsque la variation de pression du gaz calculée corrigée excède la variation de pression réelle correspondant au signal du capteur (9) de détection de la consommation de gaz délivré. [0002] Dispositif selon la revendication 1, caractérisé en ce que l'organe (8) électronique de stockage et de traitement de données est configuré pour détecter une fuite et générer en réponse un signal d'alerte lorsque le capteur (9) de détection de consommation ne détecte pas de consommation de gaz délivré par le dispositif alors que la variation de pression du gaz corrigée calculée correspond à une diminution de pression. [0003] Dispositif selon l'une quelconque des revendications 1 à 2, caractérisé en ce qu'il comprend un détendeur (10) de pression disposé au niveau de la sortie de la centrale (2) d'inversion et configurée pour abaisser la pression délivrée à un organe (3) utilisateur à une valeur déterminée. [0004] Installation de fourniture de gaz à un organe (3) utilisateur comprenant un dispositif de fourniture de gaz conforme à l'une quelconque des revendications 1 à 3 et deux sources (4, 5) de gaz sous pression reliées respectivement aux deux entrées de la centrale (2) d'inversion. [0005] Procédé de fourniture de gaz à un organe (3) utilisateur au moyen d'un circuit incluant une centrale (2) d'inversion reliée deux sources (4, 5) de gaz sous pression distinctes, la centrale (2) d'inversion comprenant un mécanisme de commutation automatique et/ou manuel permettant de basculer l'alimentation en gaz de l'organe (3) utilisateur d'une source (4) ou de l'autre (5) source afin d'assurer une continuité d'alimentation lors de l'utilisation du dispositf, le procédé comprenant une étape de mesure de la pression du gaz dans le circuit, notamment entre la centrale (2) d'inversion et l'organe (3) utilisateur, une étape de mesure de la température ambiante, une étape de calcul de la pression corrigée du gaz dans le circuit à partir des valeurs de pression mesurée et de la température ambiante, pour déterminer les variations de pression uniquement dues à un transfert de gaz d'une source vers l'organe (3) utilisateur, le procédé comportant une étape de détection d'une fourniture de gaz à un organe (3) utilisateur via le circuit et, lorsque la pression corrigée calculée diminue et qu'il n'est pas détecté de fourniture de gaz à un organe (3) utilisateur, une étape de génération d'un signal d'alerte. [0006] Procédé selon la revendication 5, caractérisé en ce que la température du gaz dans le circuit et notamment dans les sources (4, 5) est approximée par la valeur de la moyenne mobile de la température ambiante mesurée (7) sur une durée égale à trois fois le temps caractéristique total de l'échange de chaleur entre le milieu ambiant et le gaz dans la source (4, 5). [0007] Procédé selon l'une quelconque des revendications 5 à 6, caractérisé en ce que la variation de pression du gaz corrigée est calculée en calculant la pression P (en Pa) à partir de l'équation [Math 1] des gaz réels PV=n.R.Z.T dans laquelle V est le volume du gaz (en m3), n le nombre de mole de gaz, R la constante des gaz parfaits (unités en J.K-1.mol-1), Z le facteur de compressibilité pour le gaz considéré (sans dimension dépendant de la nature du gaz, de la température et de la pression du gaz), T la température du gaz (en K), et en ce que la température T du gaz est approximée comme une moyenne mobile de la température ambiante mesurée sur une durée déterminée comprise entre une heure et cinq heures et notamment trois heures [0008] Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que la pression corrigée (Pc) du gaz dans le circuit est calculée sur la forme d'une fonction polynomiale en température T du gaz (en degré K) et dont les coefficients sont des polynômes en pression mesurée (P en bara). [0009] Procédé selon l'une quelconque des revendications 5 à 8, caractérisé en ce que la pression corrigée (Pc) du gaz dans le circuit est calculée sous la forme d'une fonction polynomiale d'ordre 2 en température T du gaz (en degré K) et dont les coefficients sont des polynômes d'ordre 3 en pression mesurée (P en bara) [Math 8] :Pc = A . P 3 + B . P 2 + C . P + D . T 2 + E . P 3 + F . P 2 + G . P + H . T + I . P 3 + J . P 2 + K . P + L , dans lesquels les coefficients A, B, C, D, E, F, G, H, I, J, K et L sont des coefficients réels obtenus par lissage polynomial de la fonction qui fait intervenir le coefficient de compressibilité du gaz.
类似技术:
公开号 | 公开日 | 专利标题 US20160090717A1|2016-03-31|Non-invasive Thermal Dispersion Flow Meter with Chronometric Monitor for Fluid Leak Detection US10054959B2|2018-08-21|Real time diagnostics for flow controller systems and methods Koschel et al.2006|Enthalpy and solubility data of CO2 in water and NaCl | at conditions of interest for geological sequestration JP4824234B2|2011-11-30|2線式温度送信機およびプロセス温度測定方法 CA2468291C|2009-05-19|Buse d'alimentation en combustible munie d'un detecteur de fuite moleculaire integre US9534978B2|2017-01-03|Non-invasive thermal dispersion flow meter with fluid leak detection and alert US20170138022A1|2017-05-18|Non-invasive Thermal Dispersion Flow Meter with Fluid Leak Detection and Freeze Burst Prevention KR101572407B1|2015-11-26|차압식 매스 플로우 컨트롤러에 있어서 진단 기구 US7167813B2|2007-01-23|Water heater performance monitoring system US6155160A|2000-12-05|Propane detector system US7399118B2|2008-07-15|Thermal gas flowmeter comprising a gas quality indicator JP4009523B2|2007-11-14|オゾンガス濃度計測方法及びオゾンガス濃度計測装置 CA2598266C|2014-09-09|Debitmetre a dispersion thermique a suiveur chronometrique pour la detection de fuites EP0242946B1|1995-04-05|Calibrage d'appareils combinés d'analyse d'oxygène et de combustibles US20090187356A1|2009-07-23|Flow Meter Diagnostic Processing US5684245A|1997-11-04|Apparatus for mass flow measurement of a gas KR940009575A|1994-05-20|가스공급 설비이상 검출장치와 그 검출방법 EP0227504B1|1989-09-20|Procédé de protection d'une installation frigorifique contre les dépôts d'additifs dans le circuit du fluide caloporteur US9234834B2|2016-01-12|Sensor assembly and method for determining the hydrogen and moisture content of transformer oil DE10393185B4|2013-01-31|Kalorimetrischer Durchflussmesser US20040034480A1|2004-02-19|Fourier transform infrared | spectrometric toxic gas monitoring system, and method of detecting toxic gas species in a fluid environment containing or susceptible to the presence of such toxic gas species US6037592A|2000-03-14|System for measuring gases dissolved in a liquid KR20010031332A|2001-04-16|압력식 유량제어장치에 있어서의 막힘 검출방법 및 그검출장치 US20100206054A1|2010-08-19|Apparatus and method for leak testing US7818133B2|2010-10-19|Leak inspection method and leak inspector
同族专利:
公开号 | 公开日 US20200263834A1|2020-08-20| FR3092896B1|2021-04-16| FR3092896A1|2020-08-21|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2020-07-24| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED | 2020-07-24| PUAI| Public reference made under article 153(3) epc to a published international application that has entered the european phase|Free format text: ORIGINAL CODE: 0009012 | 2020-08-26| AK| Designated contracting states|Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2020-08-26| AX| Request for extension of the european patent|Extension state: BA ME | 2021-03-05| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE | 2021-04-07| RBV| Designated contracting states (corrected)|Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2021-04-07| 17P| Request for examination filed|Effective date: 20210226 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|