专利摘要:
Apparatus for concentrating cells in a suspension includes a centrifuge holder for receipt within a centrifuge, the holder comprising at least one wall defining an interior chamber, said interior chamber having a first selected shape; a sedimentation assembly (10) comprising: a first chamber (12) for receiving a suspension including a cell population, a second chamber (26) in fluid communication with said first chamber (12), said first and second chambers defining an outer surface having a second selected shape; wherein said first selected shape of said holder interior chamber is configured to cooperatively engage the second selected shape of said sedimentation assembly to stabilize the assembly during centrifugation. Fig. la Fig. 1 40
公开号:AU2013204205A1
申请号:U2013204205
申请日:2013-04-12
公开日:2013-05-02
发明作者:Thomas E. Dudar;James C. Laird;Kyungyoon Min
申请人:Baxter Healthcare SA;Baxter International Inc;
IPC主号:C12M1-26
专利说明:
Regulation 3.2 Revised 2/98 AUSTRALIA Patents Act, 1990 ORIGINAL COMPLETE SPECIFICATION TO BE COMPLETED BY THE APPLICANT NAME OF APPLICANT: Baxter International Inc. and Baxter Healthcare S.A. ACTUAL INVENTORS: MIN, Kyungyoon DUDAR, Thomas E. LAIRD, James C. ADDRESS FOR SERVICE: Peter Maxwell and Associates Level 6 60 Pitt Street SYDNEY NSW 2000 INVENTION TITLE: APPARATUS AND METHOD FOR PROCESSING BIOLOGICAL MATERIAL DETAILS OF ASSOCIATED APPLICATION NO(S): Divisional of Australian Patent Application No. 2009 322 822 filed on 13 November 2009 The following statement is a full description of this invention including the best method of performing it known to us: m:docs20091201283872.doc APPARATUS AND METHODS FOR PROCESSING BIOLOGICAL MATERIAL This application claims priority to U.S. Application Serial No. 12/326,061 filed on December 1, 2008, which application is incorporated by reference herein in its entirety. 5 DESCRIPTION TECHNICAL FIELD The present subject matter generally relates to an apparatus and method for 10 processing biological material to concentrate and wash a biological component in the material. BACKGROUND Biological materials, such as cells, are used in numerous therapeutic, diagnostic 15 and research applications. For example, stem cells may be administered to patients to obtain a desired therapeutic effect such as regeneration of tissue in vivo, In other situations, biological materials including cells may be administered for grafts, transplants, or other procedures. To provide an effective preparation of the biological material, having sufficient 20 concentration that may be administered to a patient or that may be useful for diagnostic and research purposes, it often is necessary to perform numerous and lengthy manipulations involving the material. For example, stem cells often are first separated and isolated from a tissue from which they are derived, such as muscle, blood or adipose (fat) tissue. The cells of such a composition then may have to be subjected to 25 multiple rounds of purification, washing or other treatments before they can be introduced, such as by injection, into a patient. These procedures may require sequential transfer of the cells to different containers. They also may require further manipulations, such as to promote sedimentation. Each procedure preferably is performed aseptically or in a closed sterile system to limit or avoid the potential 30 introduction of contaminating material or organisms into the composition. Alternatively, even if the cells will not be administered to a patient but, instead cultured in vitro, for example, they still may require extensive washing and concentration preferably in aseptic conditions. lq1 Also, to be suitable for administration to a patient, it may be preferable for a preparation of biological material to be highly concentrated. This may permit a relatively small volume to be administered, For example, stem cell preparations of about 1 x 108 cells or more generally may be concentrated into a volume of less than 5 five (5) mis for injection into a patient. Although much work has been done in the field of tissue processing, there continues to be a need for advances in the field of processing biological material including in the areas of washing and concentrating material for subsequent therapeutic, diagnostic, research or other applications. 10 SUMMARY In one example, the subject matter of this application is directed to a sedimentation assembly for concentrating cells in a suspension. The sedimentation assembly includes a first chamber for receiving the suspension including a cell 15 population. The first chamber has a cell concentration zone for receiving a concentrated population of the cells upon application of a sedimentation force upon the chamber. The assembly also includes a second chamber that is adapted to be removably placed in fluid communication with a fluid destination or source, including the concentration zone of the first chamber. The first and second chambers as a unit are 20 placeable in a sedimentation force field with the first and second chambers in fluid communication for flowing a portion of the suspension including a cell population into the second chamber. The chambers are preferably physically separable so that fluid communication is effected physically by joining the chambers or broken by physically separating the chambers. 25 In another example, the disclosed subject matter is directed to a sedimentation assembly for washing and concentrating a cell population in a suspension. The sedimentation assembly includes a first chamber for receiving a suspension including a cell population. The sedimentation assembly also includes a second chamber, adapted to be removably placed in fluid communication with a fluid destination or source, 30 including the first chamber. The first and second chambers are placeable as a unit in a sedimentation force field with the first and second chambers in fluid communication, such that when the unit is subjected to the sedimentation force field at least a portion of the suspension flows from the first chamber to the second chamber, thereby forming a concentrated cell suspension in the second chamber. 2 The disclosure also is directed to methods of concentrating cells in a suspension. In one example, a method of concentrating cells in a suspension includes collecting a suspension including a cell population within a first chamber. The cell population is sedimented to obtain a concentrated cell suspension within the first chamber and the 5 concentrated cell suspension is flowed into a second chamber under a sedimentation force field. In a further example, a method of concentrating and washing cells in a suspension is disclosed. The method includes collecting a suspension including a cell population within a first chamber and sedimenting the cell population to obtain a concentrated cell 10 suspension within the first chamber. The concentrated cell suspension is flowed into a second chamber under a sedimentation force field. The second chamber is detached from the first chamber and the concentrated cell suspension is flowed into a further fluid destination or source. The further fluid destination or source is placeable together with the second chamber in a sedimentation force field. 15 In a further example, an apparatus for reconstituting, washing or treating a cell preparation is described. The apparatus has a first chamber with at least one port. The apparatus also includes a second chamber that has at least one port and that is adapted to be repeatedly and removably placed in fluid communication with a fluid destination or source, such as the first chamber. At least one port of the first chamber 20 has a resealable valve and at least one port of the second chamber has a member for opening the valve. A method for reconstituting, washing or treating a cell preparation is also disclosed. The method includes placing a cell preparation within a first chamber and flowing the cell preparation from the first chamber into a second chamber which is 25 adapted to be repeatedly and removably connected to and placed in fluid communication with the first chamber. One of the first and second chambers has a port having an automatically resealable valve and the other of the first and second chambers has a port having a member adapted to automatically open the valve when the chambers are connected. The second chamber is then disconnected from the first 30 chamber and the valve automatically closed. 3 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a partial cross-sectional view of one example of a sedimentation assembly according to the disclosure where first and second chambers are shown in a separated position and out of fluid communication; 5 Fig. 1 a is an enlarged cross-sectional view of one example of a coupling between the first and second chambers of Fig. 1, with the chambers shown in a separated position; Fig. 2 is a partial cross-sectional view of the of sedimentation assembly of Fig. 1 with the first and second chambers shown in a connected position in fluid 10 communication. Fig. 2a is an enlarged cross-sectional view of the example of a coupling between the first and second chambers of Fig. 2, with the chambers shown in a connected position; Figs. 3a-3f show one example of a method of using the sedimentation assembly of 15 Fig. I according to the disclosure; Fig. 4 is a perspective view of one example of a holder, holding a modified sedimentation assembly for use in a sedimentation force field, specifically generated by a centrifuge; Fig. 5 shows a further example of a sedimentation assembly with a holder, such as 20 the holder of Fig. 4; Fig. 6 is a cross-sectional view of the example of the holder with the sedimentation assembly of Fig. 4 located in the holder; Figs. 7a-7g show an example of a method of using the sedimentation assembly of Fig. 1 according to the disclosure; 25 Figs. 8a-8h show an example of a method of use of another sedimentation assembly according to the disclosure, where one chamber includes a plunger; Fig. 9 is a cross-sectional view of a further example of a sedimentation assembly according to the disclosure. Figs. 10a-d are cross-sectional views of further examples of valves and 30 connectors that may be used with an apparatus disclosed herein. DETAILED DESCRIPTION While detailed examples are disclosed herein, it is to be understood that these disclosed examples are merely exemplary, and various aspects and features described 4 herein may have utility alone or in combination with other features or aspects in a manner other than explicitly shown but would be apparent to a person of ordinary skill in the art. The subject matter of the present application is directed generally to an apparatus 5 and method for processing biological material. In one example, the apparatus is a sedimentation assembly that may be used to concentrate biological material. In other preferred examples, the sedimentation assembly may be used to reconstitute, wash and/or otherwise treat the material with desired reagents and solutions. For example, the apparatus may be used to wash or treat cell preparations with selected buffers. In 10 other examples, the apparatus may be used to treat a cell preparation with reagents such as serum, antibodies or growth factors. In further examples, the apparatus may be used to prepare cells for freezing and storage and may be used reconstitute a cell preparation that had been frozen and which may be required to be transferred to culture media. 15 In other preferred examples, the apparatus may be used to reconstitute, wash or otherwise treat a preparation of cells without necessarily sedimenting the cells. For example, the apparatus may be used to transfer a thawed cell preparation to tissue culture media so that the cells may be cultured. Turning to the accompanying drawings, Fig. 1 illustrates a sedimentation assembly 20 generally at 10 that may be used in concentrating biological material, such as cells, from tissue. The sedimentation assembly includes a first chamber 12 that may receive biological material, such as a suspension of cells. The sedimentation assembly 10 also includes a second chamber 26 that may be placed in fluid communication with the first chamber 12, for example, as seen in Fig. 2. That is, the first chamber 12 and second 25 chamber 26 may be readily coupled together or connected to form a sedimentation assembly 10 as a stable, integrated unit. The chambers 12, 26 then may be separated and then reconnected, if necessary, so that fluid communication between the chambers may be repeatedly established, removed and re-established. For example, Fig. 1 shows the sedimentation assembly 10 with the first and second chambers 12, 26 30 separated -- and thus fluid communication has not yet been established or has been removed. Fig. 2 shows the assembly 10 with the two chambers connected or having been reconnected and placed in fluid communication. As shown in Figs. 1 and 2, a coupling 32 may be used to facilitate the connection, separation and reconnection of the two chambers. 5 In one example, the first chamber 12 is substantially rigid and the second chamber 26 may have the same or different degree of rigidity. The chambers, for example, may be generally be more rigid than bags commonly used in blood processing procedures, but may retain a degree of flexibility. Thus, in some examples, the chambers may be 5 sufficiently pliable such that they may be manipulated by the application of no more than an average manual force. The chambers 12, 26 may be formed, at least in part, of substantially rigid transparent plastics such that the contents may be viewed during processing. Of course, the first and second chambers need not necessarily be made of the same materials or have the same degree of rigidity. In one preferred example, at 10 least part of the second chamber 26 may be less rigid than the first chamber 12, thereby permitting the volume of the second chamber to be manipulated or expelled by the application of force to the wall of the second chamber or by a change in pressure of the chamber. The sedimentation assembly also is preferably disposable, and may be made from 15 polyethylene, polypropylene or other materials that are suitable for use with biological material and that may be easily sterilized before use, or otherwise provided in a sterile form. Although typically not believed to be necessary, the chamber surfaces may be treated or coated with materials such as serum, albumin, polycations, polyanions, or other materials, as desired, using methods known in the art, to increase or decrease 20 the adherence or affinity of selected biological material to the walls of the first and second chambers, or for other purposes. The volumes of the first and second chambers 12, 26 may be selected depending on particular requirements. In one example, such as shown in Fig. 1, the second chamber 26 has a smaller volume than the first chamber 12. This example may be 25 used, for example, when the suspension of cells is to be concentrated into a smaller volume for administration to a patient or for further processing. The chambers 12, 26 also may assume numerous shapes, as desired. For example, as described further herein, one or both chambers may be in the form of a syringe with a moveable plunger therein. 30 In the example shown in Fig. 1, the first chamber 12 has an upper wall portion 14 which is cylindrical. The upper wall portion 14 of the first chamber 12 is closed at an upper end by a wall or base 15 and is joined at a lower end to a conical or tapered portion, forming a concentration zone or area 16 within the first chamber 12, proximate its lower end. As shown in Fig. 1, an inlet tubing 20 may be attached to the first 6 chamber 12 via an aperture 18 in the base 15. The inlet tubing 20 may be used to introduce biological material including a suspension of cells into the first chamber 12. The first chamber 12 also has an outlet 22 adjacent the lower end of the concentration zone 16. The first chamber 12 further includes a vent 24 in the base 15 to permit 5 venting of air as may be required when fluid is being added to or removed from the first chamber 12. In the example shown in Figs. 1 and 2, the second chamber 26 is shown as having a substantially rigid spherical shape with a port 28 to permit the introduction and/or removal of fluid. Of course, the second chamber 26 may be constructed to be more or 10 less flexible and to have a different shape, as desired. In this example, the second chamber 26 also includes a lower pocket or region 30 opposite the port 28. The pocket 30 provides a space or zone where cells can accumulate during sedimentation, and may facilitate later removal of a fluid from the second chamber 26 with less disruption to the cells collected in the pocket 30. Of course, the sedimented cells may be suspended 15 within the second chamber and used directly as a final suspension for a desired purpose such as injection into a patient without further processing. As noted above, in Fig. 1, the second chamber 26 is shown as physically separated from the first chamber 12. Therefore, the second chamber 26 has not yet established or has been removed from fluid communication with the first chamber 12. 20 Fig. 2 shows the second chamber 26 as connected to the first chamber 12, so that the second chamber 26 is placed in fluid communication with the first chamber 12. As shown in Figs. I and 2, a separable coupling 32 may be utilized to facilitate the connection, separation and reconnection of the first chamber 12 and second chamber 26. Figs. 1a and 2a show cross-sectional, enlarged views of an example coupling 32. 25 Fig. Ia shows an arrangement of the coupling when the chambers 12, 26 are not connected and not in fluid communication with each other. Fig. 2a shows an arrangement when the chambers 12, 26 are connected and fluid communication between the chambers may have been established, As shown in Figs. 1a and 2a, the illustrated coupling 32 includes two mating 30 elements. A first mating connector or element 34 of the coupling 32 is shown as being externally threaded at its upper end, and engaged with the first chamber 12 via complementary threads in the outlet 22. It will be appreciated that the first mating element 34 may be constructed in other ways to engage the first chamber 12 or may be molded with or otherwise connected to the first chamber 12. The first element 34 7 shown in Figs. 1a and 2a also includes an outer collar 35 that is internally threaded, a blunt cannula 36, located within the collar. A second mating connector or element 38 of the coupling 32 may be threaded, molded or otherwise connected to the second chamber 26 at its port 28. In the 5 example illustrated in Fig. 1a, the second mating element 38 is shown with internal threads at its lower end that engage complementary external threads extending from the port 28 at the top of the second chamber 26. The second mating element 38 also includes at its upper end an external thread or flange 37 for mating with the internally threaded collar 35 of the first mating element 34. 10 In this illustrated example, the second mating element 38 of the coupling 32 further includes a flexible pre-slit, re-sealable septum valve 40. As seen in Fig. 1a, the septum valve 40 is biased towards a closed position. Therefore, the septum valve 40 automatically closes and seals the second chamber 26 from the environment when the first and second chambers 12, 26 are separated. As seen in Fig. 2a, the septum valve 15 40 also automatically seals against the cannula 36 when the chambers 12, 26 are connected. The disclosed apparatus is not limited to a particular connector or valve construction shown. For example, the above elements may be otherwise constructed or reversed in their placement, if desired. It also will be appreciated that other 20 examples may include valves on both chambers, as desired. To join the two chambers 12, 26 and place them in fluid communication, the first and second mating elements 34, 38 of the coupling 32 are connected together. This causes the cannula 36 to pass through the re-sealable septum valve 40, as indicated in Fig. 2a. In this arrangement, the connector provides a closed passageway or channel 25 42 in the sedimentation assembly 10 that is sealed from the environment. In this regard, the septum valve is preferably elastically stretched about the penetrating member. In this example with the first and second chambers 12, 26 connected as a unit, fluid including cells i.e. a cell suspension (or liquid alone), may flow in either direction (first chamber 12 to second chamber 26 or second chamber 26 to first 30 chamber 12) depending on the direction and magnitude of forces applied to the sedimentation assembly 10. To remove the fluid communication between the chambers 12, 26, the cannula 36 is withdrawn from the septum valve 40, which automatically re-seals instantaneously. 8 Figs. 3a-3f illustrates generally a method of use of a sedimentation assembly 10. As shown in Figs. 3a and 3b, the first chamber 12, which has received a suspension of cells, may be connected to a second chamber 26 and fluid communication between the chambers may be established. A coupling 32 may be used to facilitate the connection 5 of the two chambers, creating a sedimentation assembly 10 in the form of an integrated unit, with the chambers 12, 26 rigidly connected together by the coupling 32, as seen in Fig. 3b. The sedimentation assembly 10 may be placed in a sedimentation force field, such as a centrifugal force field, although a simple gravitational force field, i.e. normal 10 gravitational force, may be sufficient to promote sedimentation in certain circumstances. The sedimentation force field, such as developed by centrifugation in Fig. 3c, should be sufficient to cause desired cells of the suspension to become concentrated in the concentration zone 16 of the first chamber 12 and, optionally, to flow from the first chamber 12 to the second chamber 26. 15 After the second chamber 26 receives a quantity of the desired suspension of cells, the second chamber 26 may be separated from the first chamber 12, as illustrated in Figs 3d and 3e. Thus, the sedimentation assembly 10 may be inverted, as shown in Fig. 3d, to reduce potential spillage as the cannula 36 is removed from the septum valve 40. The second chamber 26 then may be disconnected at the coupling 20 32 from the first chamber 12, such as by disengaging the internal threads of the collar 35 from the flange 37 on the second chamber 26, and withdrawing the cannula 36. With the second chamber 26 disconnected and separated from the first chamber 12, as indicated in Fig. 3f, the concentrated suspension of cells may be removed from the second chamber 26 such as by use of a syringe 41. If desired, the cells also may 25 be maintained in the second chamber 26, such as for further processing. For example, the separated second chamber 26 with the desired cells may be placed in fluid communication with a further fluid destination or source, such as an additional chamber, for further treatment and concentration, as described below in reference to another example. 30 The example sedimentation assembly. 10 may be used to reconstitute, wash, treat or concentrate a diverse set of cell preparations. For example, the biological material received by the first chamber 12 may be a relatively crude suspension of cells and may include individual cells, multi-cellular aggregates and/or cells associated with non cellular material. The suspension of cells may include one or more cell types. The 9 suspension of cells also may include stem cells alone or in combination with other cell types, including other types of stem cells. The sedimentation assembly 10 also may be used with cell preparations that have been subjected to purification procedures. For example, the sedimentation assembly 5 10 may be linked, connected to or otherwise incorporated into a system for purifying cells, In such an arrangement, the first chamber 12 of the sedimentation assembly 10 may receive a suspension of cells from the cell purification system. For instance, the suspension of cells received by the first chamber may be stem cells that have been isolated according to the presence or absence of a selected cell marker using affinity 10 techniques. The suspension of cells may have been, for example, isolated as being CD34 positive. As indicated, centrifugation may be used to produce a sedimentation force field to flow a suspension of cells from the first chamber 12 to the second chamber 26. When centrifugation is used, the sedimentation assembly 10 may be placed in a holder, for 15 convenient further placement of the assembly in a centrifuge. The holder also may assist in stabilizing the assembly during centrifugation. The size and shape of the holder may be adapted to a given sedimentation assembly and centrifuge bucket. Such a holder also may be used to hold a sedimentation assembly for sedimentation at normal gravity force. 20 Figs. 4-6 show an example of a holder 44 that may be used with a further example of a sedimentation assembly 48. Fig. 4 shows the example of a holder 44 that may be used to hold a sedimentation assembly 48 in a centrifuge bucket during centrifugation. The holder includes an opening 46, best seen in Fig. 5, for placement of the sedimentation assembly into the holder 44. In this example, the overall shape of the 25 holder generally is cylindrical, to fit the most common shape of centrifuge buckets. Fig. 5 shows the placement of the sedimentation assembly 48 into the holder 44 of Fig. 4. As shown, the sedimentation assembly includes a first chamber 50 with a concentration zone, 52 a second chamber 54, and a coupling 56. In this example, the first chamber 50 includes an. inlet 58 for receiving a suspension of cells. The inlet 58 30 may be covered, for example, with a screw cap 60. In Fig. 6, the sedimentation assembly 48 is shown placed within the holder 44, shown in cross-section, for use in a sedimenting procedure, as would occur during centrifugation. During the sedimenting procedure, the desired cells, initially in the first 10 chamber 50, will become concentrated within the concentration zone 52, and will tend to flow into the second chamber 54, via the coupling 56. Figs. 7a-7g exemplify a use of a sedimentation assembly 61 according to the disclosure for performing multiple washing and/or treating steps of a cell population. 5 The sedimentation assembly 61 includes a first chamber 64 and a second chamber 26. In Fig. 7a, the second chamber 26 contains a suspension of cells 62 that may require further processing. The suspension of cells in the second chamber 26 may result from processing according to previously described examples for obtaining a concentrated cell population such as is discussed, for example, with respect to use of the first 10 chamber 12 in Figs. 3a-3f. As shown in Fig. 7b, the second chamber 26 with the suspension of cells 62 may be placed in fluid communication with another fluid destination or source, such as an additional first chamber 64 which may contain a washing or treatment solution. The connection of the two chambers may be facilitated by the presence of a coupling, such 15 as previously discussed coupling 32 that allows for repeated coupling (in fluid communication) and uncoupling (not in fluid communication) of the chambers. The cells 62 then may flow into the additional first chamber 64, with the flow being enhanced simply by applying manual force to a wall of the second chamber 26, such as by squeezing the second chamber 26 while the sedimentation assembly 61 is in an 20 inverted position. It will be appreciated that a sedimentation force field, such as a centrifugal force field, also may be applied to the inverted sedimentation assembly so as to facilitate the flow of cells from the second chamber 26 to the first chamber 64. In examples where the cells are to be washed, the suspension of cells may be flowed from the second chamber 26 to an additional first chamber 64 that contains a 25 large volume of a wash solution. In other examples, the cells may be flowed into an additional first chamber containing a relatively small volume of fluid, as might occur when the cells are to be treated with an expensive reagent. After flowing the cells from the second chamber 26 to the additional first chamber 64, to limit cell loss the second chamber 26 may remain connected with the first chamber 64, or alternatively may be 30 disconnected from the first chamber 64. After washing or treatment of the cells within the additional first chamber 64, the cells may be flowed back into the second chamber 26, which remains attached to the additional first chamber thereby allowing complete recovery of all the cells or at least reducing cell loss. This may be accomplished using a sedimentation force field, such as 11 shown in Fig. 7c. Alternatively, the additional first chamber 64 may be connected to and placed in fluid communication with a new second chamber. The second chamber 26 then may be separated from the additional first chamber 64, resulting in a suspension of cells in the second chamber 26 that has been washed and re 5 concentrated, as seen in Fig. 7d. If desired, the washed suspension of cells in the further second chamber 26 then may be flowed to yet another first chamber 68 for further processing, such as by additional washing or treatment. The connection and flowing of the suspension of cells from the second chamber 26 to the additional first chamber 68 is represented in Fig; 7e 10 and is accomplished in a similar manner as with respect to the above description of Fig. 7b. As shown in Fig. 7f, the cells then may be flowed back to the original second chamber 26 or a new second chamber, such as by use of a sedimentation force field. The first and second chambers may remain attached and the use of the same second chamber may reduce cell loss. In this way, a suspension of cells may be repeatedly 15 moved between "first" and "second" chambers that are placed in fluid communication, providing for repeated washing, treatment and/or re-concentration of the cells, shown deposited in the second chamber 26 in Fig. 7g. Figs. 8a-8h shows a further example of a sedimentation assembly 70 and a method of use thereof in accordance with the disclosure. The sedimentation assembly 20 70 includes a first chamber 72 for receiving a cell suspension and a second chamber 76, which can be in the form of a syringe. A coupling 78 can be used to place the chambers 72, 76 in fluid communication. As described with respect to the other examples, the second chamber 76 may be placed in fluid communication with a first chamber 72. The sedimentation assembly 70 with the first chamber 72 connected to 25 the second chamber 76 may be placed in a sedimentation force field, such as shown in Fig. 8b, to flow a cell population 74 into the second chamber 76. The flow of the cell population 74 to the second chamber 76, in the form of a syringe, also may be facilitated or accomplished by moving a piston 80 of the syringe 76, so as to create a vacuum in the second chamber 76, as shown by the displacement 30 of the piston 80 in Figs. 8c and 8d. This movement of the piston 80 causes fluid to be drawn into the second chamber 76 from the first chamber 72 to relieve the vacuum. The volume of the syringe chamber may be configured as fixed or variable, depending on anticipated fluid volume. In one example, retraction of the piston 80 will draw fluid into the second chamber thereby helping to recover cells that remain in the first 12 chamber 72 or in the area of the coupling 78 even after the application of a sedimentation force field. In addition, retraction of the piston may be used to increase the amount of fluid in the second chamber, if desired. The piston 80 of the syringe 76 also may be pushed after the cell population has been flowed into the syringe 76, 5 thereby removing excess supernatant from the second chamber and adjusting the volume in which the cells are suspended in the second chamber 76. The second chamber 76 then may be removed from fluid communication with the first chamber 72, as illustrated in Fig. 8e. Given that the second chamber 76 is in the form of a syringe, the second chamber 76 may be used to administer the cells to a 10 patient or used for other purposes. As indicated in Fig. 8f, the syringe also may be placed in fluid communication with a further fluid destination or source, such as a further first chamber 82, for further washing or treatment. The cells 74 may be flowed into the further first chamber 82 by movement of the piston 80 of the second chamber syringe 76, as shown in Figs. 8f and 8g, or by application of a sedimentation force field, 15 such as described above in reference to Fig. 8b. The cells also may be flowed back into the second chamber 76 (or into a further "second" chamber) to result in a concentrated cell population in the second chamber 76, as shown in Fig. 8h. A further example of a sedimentation assembly according to the disclosure is shown in Fig. 9. According to this example, one or both chambers of the sedimentation 20 assembly is adapted by the provision of one or more air pockets to more easily allow the trapping of air in the chamber. This feature is beneficial when it is necessary to easily compress the contents of a chamber, such as occurs, for example, when a a structure such as needle or cannula must be introduced into a chamber filled with liquid. The sedimentation assembly 84 shown in Fig. 9 is substantially similar to the 25 example shown in Figs. I and 2. That is, the sedimentation assembly 84 includes a first chamber 86, a second chamber 88, and a coupling 90. The coupling 90 shown in Fig. 9 is identical to that shown in Fig. Ia. In Fig. 9, the wall of the second chamber 88 curves upwards on both sides of inlet port 92, forming air-trapping pockets or regions 94 within the second chamber 88. 30 According to the example of Fig. 9, air is trapped in the air-trapping regions 94 when the chamber is placed upright and filled with liquid. When a syringe needle or similar device is inserted into the second chamber 88 through, for example, the septum 96, liquid is forced into the air-trapping regions because the trapped air is compressible, allowing a structure such as needle or cannula to more easily penetrate the chamber. 13 Further, other types of valves and couplings may be used with the sedimentation assembly of the disclosure. Resealable valves are preferred (and particularly preferably automatically resealable) to regulate the flow of fluid between the chambers, either alone or in combination with other valves. For example, stopcock valves as well as 5 clamps are examples of manually resealable elements that may be used. In one example, a syringe-type needle may be used with a rubber plug forming a valve. Other valves and couplings that may be used are disclosed, for example, in U.S. Patent Nos. 4,683,916, 5,188,620, 5,957,898, 6,039,302 6,261,282 and 6,605,076 which are herein incorporated by reference in their entirety. These valves and others 10 may employ a variety of septums and septum opening mechanisms, and may be employed with various types and shapes of coupling members such as needles, Luer members, cannulas, nozzles and hybrid structures, Fig. I Oa-d shows examples of such valves and connectors. In Fig 1 Ga, valve 100 has a resealable pre-slit septum 102 mounted on the first end 104 of a housing 106. 15 The septum is mounted between annular, U-shaped, swaged end members 108 and an internal septum supporting ridge 110. As described more fully in U.S. Patent Nos. 5,188,620 and +6,605,076, this septum is co-operative with a blunt cannula that may be inserted through septum slit 102 for introducing fluid into and through the valve. A further example of a valve connector 200 is shown in Fig. 10b. In this example, a 20 nozzle 202 in the form of a male Luer fitting is shown partially inserted into the valve 200 to establish a fluid flow path. Briefly, the insertion of the nozzle 202 depresses a gland or elastomeric member 204 and axially displaces a hollow internal post 206 to open a fluid flow path through the gland and the hollow post to valve outlet 208, Fig. 1Oc shows a further example of a valve connector that may be used with an 25 apparatus according to the disclosure. The valve connector 300 includes a resealable valve member 302 having an upper portion 304, middle portion 306 and annular skirt (not shown). One valve slit 308, extends downwardly through the upper portion 304 and middle portion 306 into a chamber 310. Engagement of a cannula against the face of the valve 302 causes the slit 314 to open and provides a fluid flow path through the slit 30 and chamber 310 to the valve outlet. Fig. 10d shows one further valve that may be used with the present apparatus. Specifically, the valve body 400 of Fig. 10d includes a male Luer portion 402 and a female Luer portion 404. A valve disc 406 is located within the valve body and rests on a triangular projection 408. The inherent resiliency of the valve disc normally biases it 14 in a closed position as shown in solid lines. A valve actuator 410 is located in the female Luer bore, so that the insertion of a connecting male Luer forces the actuator 410 axially to engage and bend the edges of the valve disc 406 downwardly to an open position. The disc reseals upon removal of the connecting male Luer. 5 Aspects of the present subject matter described above may be beneficial alone or in combination, with one or more other aspects. Without limiting the foregoing description, in accordance with one aspect of the subject matter herein, there is provided an sedimentation assembly for concentrating cells in a suspension which comprises a first chamber for receiving a suspension including a cell population. The 10 first chamber has a cell concentration zone for receiving a concentrated population of the cells upon application of a sedimentation force upon the first chamber. The sedimentation assembly also includes a second chamber that is adapted to be repeatedly removably placed in fluid communication with a fluid destination or source, including the concentration zone of the first chamber. The first and second chambers 15 are placed in a sedimentation force field as a unit with the first and second chambers in fluid communication for where a portion of the suspension including a concentrated population of the cells flows into the second chamber. In accordance with another aspect which may be used or combined with the preceding aspect, the first chamber is adapted to receive cells from a system for 20 isolating cells. In accordance with another aspect which may be used or combined with any of the preceding aspects, the first chamber further comprises an inlet port. In accordance with another aspect which may be used or combined with any of the preceding aspects, the first chamber further comprises a vent. 25 In accordance with another aspect which may be used or combined with any of the preceding aspects, the cell concentration zone includes a tapered portion of the first chamber. In accordance with another aspect which may be used or combined with any of the preceding aspects, the sedimentation assembly is adapted to be centrifuged when the 30 first and second chambers are in fluid communication. In accordance with another aspect which may be used or combined with any of the preceding aspects, the sedimentation assembly is adapted for placement in a holder during sedimentation. 15 In accordance with another aspect with which may be used or combined with the preceding aspect, the sedimentation assembly in the holder is placed in a centrifuge during sedimentation. In accordance with another aspect which may be used or combined with any of the 5 preceding two aspects, the sedimentation assembly in the holder Is maintained at unit gravity during sedimentation. In accordance with another aspect which may by used or combined with any of the preceding aspects, the sedimentation assembly further comprises a coupling between the first and second chambers. 10 In accordance with another aspect which may be used or combined with the preceding aspect, the coupling is separable and the coupling comprises a first portion attached to said first chamber and a second portion attached to second chamber wherein the first and second portions have mating elements. in accordance with another aspect which may be used or combined with any of the 15 preceding two aspects, the coupling includes a coupling member. In accordance with another aspect which may be used or combined with the preceding aspect, the coupling member is selected from the group consisting of a syringe needle, a Luer fitting, nozzle, a cannula and combinations and hybrids thereof, In accordance with another aspect which may be used or combined with the 20 preceding aspect, the coupling member is a cannula. In accordance with another aspect which may be used or combined with any of the preceding five aspects, the coupling comprises a closeable valve. In accordance with another aspect which may be used or combined with the preceding aspect, the closeable valve is selected from the group consisting of a 25 stopcock, clamp, a rubber plug, a gland-type valve and a pre-slit septum valve In accordance with another aspect which may be used or combined with any of the preceding two aspects, the closeable valve includes at least one pre-slit septum valve. In accordance with another aspect which may be used or combined with any of the preceding three aspects the first and second chambers each have one closeable valve. 30 In accordance with another aspect which may be used or combined with any of the preceding aspects, the chambers are adapted to receive a cell population that includes stem cells. 16 in accordance with another aspect which may be used or combined with any of the preceding aspects, the chambers are adapted to receive a cell population that has been isolated according to the presence or absence of a cell marker. In accordance with another aspect which may be used or combined with any of the 5 preceding aspects, the first chamber has a larger volume than the second chamber. In accordance with another aspect which may be used or combined with any of the preceding aspects, the first and second chambers are substantially rigid, In accordance with another aspect, there is provided a sedimentation assembly for washing and concentrating a cell population in a suspension, which comprises a first 10 chamber for receiving a suspension including a cell population. The sedimentation assembly also comprises a second chamber which is adapted to be repeatedly removably placed in fluid communication with a fluid destination or source, including the first chamber. The first and second chambers are placeable as a unit in a sedimentation force field with the first and second chambers in fluid communication. 15 When the unit is subjected to the sedimentation force field at least a portion of the suspension flows from the first chamber to the second chamber, and a concentrated cell suspension is formed in the second chamber. In accordance with another aspect, there is provided a method of concentrating cells in a suspension. The method includes collecting a suspension including a cell 20 population within a first chamber. The method also comprises sedimenting the cell population to obtain a concentrated cell suspension within the first chamber; and flowing the concentrated cell suspension into a second chamber under a sedimentation force field. In accordance with another aspect which may be used or combined with the 25 preceding aspect, the first chamber is disconnected from the second chamber and the second chamber is connected to a third chamber for further processing of the concentrated cell suspension. In accordance with another aspect which may be used or combined with the preceding two aspects, the first chamber is disconnected from the second chamber and 30 any contents remaining in the first chamber are removed. A solution is added to the first chamber, and the concentrated cell suspension from the second chamber is added to the first chamber the first and second chambers are reconnected for further processing. 17 In accordance with another aspect which may be used or combined with the any of the preceding three aspects, the method includes collecting a suspension including a cell population within a first chamber. The method also comprises sedimenting the cell population to obtain a concentrated cell suspension within the first chamber; and 5 flowing the concentrated cell suspension into a second chamber under a sedimentation force field but the suspension including a cell population that is collected in the first chamber when repeated is the concentrated cell suspension that was flowed to the second chamber. In accordance with another aspect, there is provided a method of concentrating or 10 washing cells in a suspension which comprises collecting a suspension including a cell population within a first chamber. The cell population is sedimented to obtain a concentrated cell suspension within the first chamber and the concentrated cell suspension is flowed into a second chamber under a sedimentation force field. The second chamber is disconnected from the first chamber; and the concentrated cell 15 suspension is flowed into a further fluid destination or source which is adapted to be placed together with the second chamber in a sedimentation force field. In accordance with another aspect which may be used or combined with the preceding aspect, the sedimentation force field is a centrifugal force field. In accordance with another aspect which may be used or combined with any of 20 the preceding two aspects, the sedimentation force of the sedimentation force field may be measured in units of gravity. In accordance with another aspect with may be used or combined with any of the preceding three aspects, the first and second chambers are adapted to be coupled together to form a sedimentation assembly which is adapted to be placed in a holder 25 and subjected to centrifugation. In accordance with another aspect which may be used or combined with any of the preceding four aspects, the first chamber receives the suspension from a system for isolating cells. In accordance with another aspect which may be used or combined with any of 30 the preceding five aspects, the suspension includes stem cells that have been isolated according to the presence or absence of one or more selected cell markers. In accordance with another aspect which may be used or combined with any of the preceding six aspects, the further destination or source contains a solution for washing the cells within the suspension. 18 In accordance with another aspect which may be used or combined with any of the preceding seven aspects, the further destination or source contains a solution for treating the cells within the suspension. In accordance with another aspect, there is provided an apparatus for 5 reconstituting, washing or treating a cell preparation which comprises a first chamber having at least one port and a second chamber having at least one port that is adapted to be repeatedly and removably placed in fluid communication with a fluid destination or source, including the first chamber. At least one port of the second chamber has a resealable valve and at least one port of the first chamber has a member for opening 10 the valve. In accordance with another aspect which may be used or combined with the preceding aspect, the valve is biased towards a closed position. In accordance with another aspect which may be used or combined with the preceding two aspects, the valve is a pre-slit, resealable septum valve. 15 In accordance with another aspect with may be used or combined with the preceding three aspects, the first and second chambers each have one closeable valve. In accordance with another aspect with may be used or combined with any of the preceding four aspects, the member for opening the valve automatically opens the 20 valve. In accordance with another aspect with may be used or combined with the preceding five aspects, the member for automatically opening the valve is a cannula. In accordance with another aspect, there is provided a method for reconstituting, washing or treating a cell preparation which comprises placing a cell preparation within 25 a first chamber and flowing the cell preparation from the first chamber into a second chamber. The second chamber is adapted to be repeatedly and removably connected to and placed in fluid communication with the first chamber. One of the first and second chambers further comprises a port having a resealable valve and the other of the first and second chambers further comprises a port having a member adapted to open the 30 valve when the chambers are connected. The second chamber is disconnected from the first chamber and the valve is closed. In accordance with another aspect which may be used or combined with the preceding aspect, the second chamber contains a solution for treating the cell preparation. 19 In accordance with another aspect which may be used or combined with any of the preceding two aspects at least one of the chambers contains a buffer for treating the cell preparation, In accordance with another aspect which may be used or combined with any of 5 the preceding four aspects, the cell preparation is flowed into the second chamber under a sedimentation force field. In accordance with another aspect which may be used or combined with any of the preceding five aspects, the cell preparation is flowed into the second chamber under a centrifugal force field. 10 In accordance with another aspect which may be used or combined with any of the preceding six aspects, the cell preparation is flowed into the second chamber when a pressure is applied to the first chamber. In accordance with another aspect which may be used or combined with any of the preceding seven aspects, the method further comprises flowing the cell preparation 15 into a further fluid destination or source. In accordance with another aspect which may be used or combined with any of the preceding eight aspects, the method further comprises the step of connecting the second chamber to a third chamber for further processing of the cell preparation. In accordance with another aspect with may be used or combined with any of the 20 preceding nine aspects, the method further comprises the step of reconnecting the first and second chambers for further processing of the cell preparation In accordance with another aspect which may be used or combined with any of the preceding ten aspects the resealable valve is biased toward a closed position and automatically closes when the first and second chambers are disconnected. 25 In accordance with another aspect which may be used or combined with any of the preceding eleven aspects, the member adapted to automatically open the valve is a cannula that establishes fluid communication through the valve when the first and second chambers are connected. It will be understood that the examples provided in the present disclosure are 30 illustrative of some of the applications of the principles of the present disclosure. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the disclosure. Various features which are described herein can be used in any combination and are not limited to particular combinations that are specifically described herein. 20
权利要求:
Claims (76)
[1] 1. Apparatus for concentrating cells in a suspension comprising: a centrifuge holder for receipt within a centrifuge, the holder comprising at least one wall defining an interior chamber, said interior chamber having a first selected shape; a sedimentation assembly comprising: a first chamber for receiving a suspension including a cell population, a second chamber in fluid communication with said first chamber, said first and second chambers defining an outer surface having a second selected shape; wherein said first selected shape of said holder interior chamber is configured to cooperatively engage the second selected shape of said sedimentation assembly to stabilize the assembly during centrifugation.
[2] 2. The apparatus of claim I wherein said holder has an outer surface configured for placement in a centrifuge bucket.
[3] 3. The apparatus of claim 2 wherein said holder has a generally cylindrical outer surface.
[4] 4. The apparatus of claim 1 wherein the second chamber further comprises a fluid communication port including a resealable closure and wherein said second chamber comprises a housing defining a substantially spherical inner chamber, said port being in communication with said inner chamber, 22
[5] 5. The apparatus of claim 4 wherein said second chamber further comprises a celi receiving pocket generally positioned opposite said port.
[6] 6. The apparatus of claim I wherein the second chamber further comprises a gas collection region.
[7] 7, The apparatus of claim I wherein said second chamber is less rigid than said first chamber,
[8] 8. The apparatus of claim 1 wherein said second chamber is compressible.
[9] 9. The apparatus of claim 6 wherein said gas collection region is adjacent to said second port of said second chamber.
[10] 10. The apparatus of claim 1 wherein said second chamber comprises a syringe.
[11] 11. The apparatus of claim 4 wherein said resealable closure is selected from the group consisting of a septum, a pre-sit septum, an elastomeric member, a gland-type valve and combinations thereof,
[12] 12. The apparatus of claim 11 wherein said first container further comprises a member configured to open said resealable closure, wherein said member is selected from the group consisting of a Luer member, a needle, a cannula, a nozzle and combinations thereof, 23
[13] 13. The apparatus of claim 1 wherein the first chamber has a larger volume than the second chamber.
[14] 14. The apparatus of claim I wherein the first and second chambers are substantially rigid.
[15] 15. The apparatus of claim I wherein the first chamber has a larger volume than the second chamber, and the second chamber is less rigid than the first chamber.
[16] 16. A apparatus for concentrating cells in a suspension comprising: a centrifuge holder for receipt within a centrifuge, the holder comprising at least one wall defining an interior chamber, said interior chamber having a first selected shape; a sedimentation assembly comprising; a first chamber for receiving a suspension including a cel population, the first chamber including a cell concentration zone; a second chamber in fluid communication with said first chamber; the first chamber including a first port, and the second chamber including a second port; at least one of the first and second ports including a resealable closure and the other of the ports including a mating member for the resealable closure that allow the first and second ports to be repeatedly joined in fluid communication; said first and second chambers, when joined in fluid communication, defining an outer surface having a second selected shape; 24 wherein said first selected shape of said holder interior chamber is configured to cooperatively engage the second selected shape of said sedimentation assembly to stabilize the assembly during centrifugation.
[17] 17. The apparatus of claim 16 wherein said holder has an outer surface configured for placement in a centrifuge bucket
[18] 18. The apparatus of claim 16 wherein said resealable closure is selected from the group consisting of a septum, a pre-slit septum, an elastomeric member, a gland-type valve and combinations thereof, and the mating member is configured to open said resealable closure and is selected from the group consisting of a Luer member, a needle, a cannula, a nozzle and combinations thereof.
[19] 19. A apparatus for concentrating cells in a suspension comprising: a centrifuge holder for receipt within a centrifuge, the holder comprising at least one wall defining an interior chamber, said interior chamber having a first selected shape; a sedimentation assembly comprising: a first chamber for receiving a suspension including a cell population, the first chamber including a cell concentration zone and a first port communicating with the cell concentration zone; a second chamber including a second port configured to be repeatedly placed in fluid communication with the first port of said first chamber, the second chamber including a cell receiving pocket defined generally opposite the second port and a gas collection region proximal to the second port, said 25 first and second chambers defining an outer surface having a second selected shape; wherein said first selected shape of said holder interior chamber is configured to cooperatively engage the second selected shape of said sedimentation assembly to stabilize the assembly during centrifugation.
[20] 20. The apparatus of claim 19 wherein said first chamber includes a generally cylindrical portion at one end and a funnel shaped portion at the other end defining the cell concentration zone, and the second chamber is generally spherically shaped.
[21] 21. A sedimentation chamber for concentrating cells ir a suspension, the chamber comprising: a housing defining a substantially spherical inner chamber; a port in said housing communicating with the inner chamber; the port including a resealable closure; and the chamber having a cell-receiving pocket positioned generally opposite said port
[22] 22. The sedimentation chamber of claim 21 further comprising a gas collection region,
[23] 23. The sedimentation assembly of claim 22 wherein said gas collection region is adjacent to said port.
[24] 24. The sedimentation assembly of claim 21 wherein said chamber housing is compressible. 26
[25] 25. The sedimentation assembly of claim 21 wherein said resealable closure is selected from the group consisting of a septum, a pre-slit septum, an elastomeric member, a gland-type valve and combinations thereof.
[26] 26. A sedimentation chamber for receiving cells in a suspension, the chamber comprising: a housing defining a substantially spherical inner chamber; a port in the housing communicating with the inner chamber; the port including a resealable closure; the inner chamber including a defined gas collection region generally in proximity to the port.
[27] 27. The sedimentation chamber of claim 26 wherein the chamber housing is compressible.
[28] 28. The sedimentation chamber of claim 26 wherein the gas collection region comprises a volume that is located higher than substantially the remainder of the chamber when the port is positioned at a top of the chamber.
[29] 29. The sedimentation chamber of claim 26 wherein the gas collection region comprises at least one pocket defined in an inner surface of the chamber.
[30] 30. The sedimentation chamber of claim 26 wherein the gas collection comprises at least one pocket defined in an inner surface of the chamber and the pocket is located higher than the substantially remainder of the chamber when the port is positioned at the top of the chamber. 27
[31] 31 The sedimentation chamber of claim 26 in which the resealable closure is selected from the group consisting of a septum, a pre-slit septum, an elastomeric member, a gland-type valve and combinations thereof.
[32] 32. A sedimentation chamber for receiving cells in a suspension, the chamber comprising: a housing defining an inner chamber having a chamber surface; a port in the housing communicating with the chamber; a defined cell collection region in the chamber surface generally opposite the port; and a defined gas collection region on the chamber surface generally in proximity to the port.
[33] 33. The sedimentation chamber of claim 32 in which the chamber housing is compressible.
[34] 34. The sedimentation chamber of claim 32 in which the port includes a resealable closure.
[35] 35. The sedimentation chamber of claim 32 in which the chamber is generally spherical.
[36] 36. The sedimentation chamber of claim 34 in which the resealable dosure is selected from the group consisting of a septum, a pre-slit septum, an elastomeric member, a gland-type valve and combinations thereof.
[37] 37. A method of concentrating cells in a suspension, comprising: 28 a. collecting a suspension including a cell population within a first chamber; b. sedimenting the cell population to obtain a concentrated cell suspension within the first chamber; and c. flowing the concentrated cell suspension into a second chamber in fluid flow connection with the first chamber under a sedimentation force field.
[38] 38. The method of claim 37 further comprising disconnecting the first chamber from the second chamber and connecting the second chamber to a third chamber for further processing of the concentrated cell suspension.
[39] 39. The method of claim 37 further comprising disconnecting the first chamber from the second chamber, removing any contents remaining in the first chamber, adding a solution to the first chamber, adding the concentrated cell suspension from the second chamber to the first chamber and reconnecting the first and second chambers for further processing.
[40] 40. The method of claim 37 wherein the steps of a-c are repeated but the suspension including a cell population that is collected in the first chamber when repeated is the concentrated cell suspension that was flowed to the second chamber.
[41] 41. The method of claim 37 in which the sedimentation force field is a centrifugal force field. 29
[42] 42. The method of claim 37 in which the first and second chambers are adapted to be coupled together to form a sedimentation assembly which is adapted to be placed in a holder and subjected to centrifugation.
[43] 43. The method of claim 37 in which the first chamber receives the suspension from a system for isolating cells.
[44] 44. The method of claim 37 in which the cell population has been isolated according to the presence or absence of one or more selected cel markers.
[45] 45. A method of concentrating or washing cells in a suspension, comprising: a, collecting a suspension including a cell population within a first chamber; b, sedimanting the cell population to obtain a concentrated cell suspension within the first chamber; c. flowing the concentrated cell suspension into a second chamber in fluid flow connection with the first chamber under a sedimentation force field; d. disconnecting the second chamber from the first chamber; and e. flowing the concentrated cell suspension into a further fluid destination or source, the further fluid destination or source adapted to be placed together with the second chamber in a sedimentation force field.
[46] 46. The method of claim 45 wherein the sedimentation force field is a centrifugal force field. 30
[47] 47. The method of clam 45 wherein the first and second chambers are adapted to be coupled together to form a sedimentation assembly which is adapted to be placed in a holder and subjected to centrifugation.
[48] 48. The method of claim 45 wherein the first chamber receives the suspension from a system for isolating cells.
[49] 49. The method of claim 45 wherein the suspension includes stem cells that have been isolated according to the presence or absence of one or more selected cell markers.
[50] 50. The method of claim 45 wherein the further destination or source contains a solution for washing the cells within the suspension.
[51] 51. The method of claim 45 wherein the further destination or source contains a solution for treating the cells within the suspension.
[52] 52. A method of concentrating or washing cells in a suspension, comprising: a. collecting a suspension including a cell population wihin a first chamber including a cell concentration zone; b, sedimenting the cell population to obtain a concentrated cell suspension within the cell concentration zone of the first chamber; C. flowing the concentrated cell suspension into a second chamber in fluid flow connection with the first chamber under a sedimentation force field; d. disconnecting the second chamber from the first chamber; and e. flowing the concentrated cell suspension from the second chamber into a further fluid destination or source, the further fluid destination or 31 source being in fluid flow connection with the second chamber and configured to be placed together with the second chamber in a sedimentation force field.
[53] 53. The method of claim 52 wherein the sedimentation force field is a centrifugal force field.
[54] 54. The method of claim 52 wherein the first chamber receives the suspension from a system for isolating cells.
[55] 55. The method of claim 52 wherein the suspension includes stem cells that have been isolated according to the presence or absence of one or more selected cell markers.
[56] 56. The method of claim 52 wherein the further destination or source contains a solution for washing or treating the cells within the suspension.
[57] 57. A method for reconstituting, washing or treating a cell preparation, comprising: a. placing a cell preparation within a first chamber; b. flowing the ce preparation from the first chamber into a second chamber wherein the second chamber is adapted to be repeatedly and removably connected to and placed in fluid communication with the first chamber and wherein one of the first and second chambers further comprises a port having a resealable valve and the other of the first and second chambers further comprises a port having a member adapted to open the valve when the chambers are connected; and 32 c. disconnecting the second chamber from the first chamber and closing the valve.
[58] 58, The method of claim 57 wherein the second chamber contains a solution for treating the cell preparation.
[59] 59. The method of claim 57 wherein at least one of the chambers contains a buffer for treating the cell preparation.
[60] 60. The method of claim 57 wherein the cell preparation is flowed into the second chamber under a sedimentation force field.
[61] 61. The method of claim 57 wherein the cell preparation is flowed into the second chamber under a centrifugal force field.
[62] 62. The method of claim 57 wherein the cell preparation is flowed into said second chamber under a force applied to the first chamber.
[63] 63. The method of claim 57 further comprising flowing the cell preparation from one of first or second chambers to a further fluid destination or source.
[64] 64, The method of claim 57 further comprising the step of connecting the second chamber to a third chamber for further processing of the cell preparation.
[65] 65. The method of claim 57 further comprising the step of reconnecting the first and second chambers for further processing of the cel preparation 33
[66] 66. The method of claim 57 wherein the resealable valve is biased toward a closed position and automatically closes when the first and second chambers are disconnected.
[67] 67. The method of claim 57 wherein the member adapted to automatically open the valve is a cannula that establishes fluid communication through the valve when the first and second chambers are connected.
[68] 68. A method for reconstituting, washing or treating a cell preparation, comprising: a. placing a cell preparation within a first chamber; b. flowing the cell preparation from the first chamber into a second chamber wherein the second chamber is adapted to be repeatedly and removably connected to and placed in fluid communication with the first chamber and wherein the second chamber further comprises a port having a resealable valve and the first chamber further comprises a port having a member adapted to open the valve when the chambers are connected; c. disconnecting the second chamber from the first chamber and closing the valve; d, flowing the cell preparation from the second chamber into a third chamber, wherein the third chamber further comprises a port having a member adapted to open the valve of the first chamber when the chambers are connected; e. processing the cell preparation in the third chamber; f. after such processing flowing the cel preparation from the third chamber into the second chamber; and 34 g. disconnecting the second chamber from the third chamber and closing the valve.
[69] 69. The method of claim 68 wherein at least one of the chambers contains a solution for treating the cell preparation.
[70] 70. The method of claim 68 wherein at least one of the chambers contains a buffer for treating the celi preparation.
[71] 71. The method of claim 68 wherein the cell preparation is flowed into the second chamber under a sedimentation force field,
[72] 72. The method of daim 68 wherein the cell preparation is flowed into the second chamber under a centrifugal force field.
[73] 73. The method of claim 68 wherein the cell preparation is flowed into said second chamber under a force applied to the first and/or the third chamber.
[74] 74. The method of claim 68 further comprising flowing the cell preparation into a further fluid destination or source.
[75] 75. The method of claim 68 further comprising the step of connecting the second chamber to a fourth chamber for further processing of the cell preparation. 35
[76] 76. The method of claim 68 wherein the resealable valve is biased toward a closed position and automatically closes when the first and second chambers and the first and third chambers are disconnected. Dated this 12 TH day of April 2013 Baxter International Inc. and Baxter Healthcare SA. Patent Attorneys for the Applicant PETER MAXWELL AND ASSOCIATES
类似技术:
公开号 | 公开日 | 专利标题
US9176038B2|2015-11-03|Apparatus and method for processing biological material
AU753536B2|2002-10-24|Systems and methods for processing and storing placenta/umbilical cord blood
AU731766B2|2001-04-05|Cell separation method
US20040009542A1|2004-01-15|Apparatus and method for detecting bacteria in blood products
US20070119780A1|2007-05-31|Prechargable fluid filtration method and apparatus
US20200368741A1|2020-11-26|Systems and methods for cellular separation
AU2013219890A1|2014-10-02|Apparatus for centrifugation and methods therefore
AU2013204205B2|2015-09-24|Apparatus and method for processing biological material
AU2015275279A1|2016-01-21|Apparatus and method for processing biological material
EP2590613A2|2013-05-15|Devices and methods for processing a biomaterial in a closed system
JP2001161352A|2001-06-19|Method for separating cell for regenerating biotissue, cell for regenerating biotissue and apparatus for separating cell for regenerating biotissue
CN106190842B|2018-12-11|It is a kind of for removing the device of cell micelle in cell preparation
CN104830682B|2017-08-25|A kind of biological therapy closed type multifunctional unit system
CN107723226A|2018-02-23|Blood sampling separation bag
CN201308491Y|2009-09-16|Removing white blood cells blood bag of red cell suspension filtering type
JPH10224A|1998-01-06|Bag system to isolate stem cell and precursor cell from umbilical blood
JPH09253195A|1997-09-30|Device for separating stem cell and precursor cell from umbilical cord blood
同族专利:
公开号 | 公开日
AU2013204205B2|2015-09-24|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US5271852A|1992-05-01|1993-12-21|E. I. Du Pont De Nemours And Company|Centrifugal methods using a phase-separation tube|
AT186235T|1996-04-24|1999-11-15|Claude Fell|CELL SEPARATION DEVICE FOR BIOLOGICAL LIQUIDS LIKE BLOOD|
AT479085T|2001-08-29|2010-09-15|Dahm Michael W Dr Dr|METHOD AND DEVICE FOR PREPARING A BIOLOGICAL TEST FOR DETERMINING AT LEAST ONE COMPONENT INCLUDED THEREIN|
AU2003249642A1|2002-05-24|2003-12-12|Biomet Manufacturing Corp.|Apparatus and method for separating and concentrating fluids containing multiple components|
法律状态:
2015-11-26| PC1| Assignment before grant (sect. 113)|Owner name: BAXALTA GMBH; BAXALTA INCORPORATED Free format text: FORMER APPLICANT(S): BAXTER INTERNATIONAL INC.; BAXTER HEALTHCARE SA |
2016-01-21| FGA| Letters patent sealed or granted (standard patent)|
2020-06-11| MK14| Patent ceased section 143(a) (annual fees not paid) or expired|
优先权:
申请号 | 申请日 | 专利标题
US12/326,061||2008-12-01||
AU2009322822A|AU2009322822B2|2008-12-01|2009-11-13|Apparatus and methods for processing biological material|
AU2013204205A|AU2013204205B2|2008-12-01|2013-04-12|Apparatus and method for processing biological material|AU2013204205A| AU2013204205B2|2008-12-01|2013-04-12|Apparatus and method for processing biological material|
AU2015275279A| AU2015275279A1|2008-12-01|2015-12-23|Apparatus and method for processing biological material|
[返回顶部]